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This ié a short course on naive set theory at the
firSt year graduate level. The emphasis lays on

the notion of a normal filter. All the material
presented here is by now classical.

Section I is devoted to closed unbounded sets which
constitute thé}first historically known example of
a normal filter. Mést of its content can be traced
back to the prehistory of the field.

Secfioﬁ IT uses the‘machinery.presented in section I
\to COnétruct pathdlogical'Abelian groups;”This work
was done by P. Eklof in ﬁhe early 70's and has been
continued by S. Shelah in his celebrated solution of
the Whitehead problem.

Section III introduces the notion of a normal ideal;
Therev; it is used to prove an important theorem on
closed unbounded’ sets due to R. Solovay.
Séction'IVW£OUCheswupon real-valued measurable
cardinals. The material presented there is also- due
to Solovay.

Section III and IV deal with topics which play an
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important role in today's combinatorial set theory.
Finally section V collects some facts about
measurable cardinals which follow directly from the
previous sections. The only important omission we can

think of is Silver's theorem on the continuum

hypothesis at singular cardinals. Our excuse for not

including it here is that some authors seem to
think that it should be taught at the undergraduate

level (clearly, this view is highly éuestionable).

Prerequisites. Ordinal and cardinal numbers.
Cofinality cf(x) of a cardinal number «. Some
basic facts about Abelian groups and filters in a

Boolean algebra.
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- Closed unbounded sets.

Definition. Let k be an infinite cardinal number.

®

A set Cck is closed unbounded (in k)
if it is unbounded below k and closed
in the sense that oeC whenever w<k

and CNe& is unbounded below o .

Examples. For k =w , C is closed unbounded iff C is

infinite. If k>w, k and the set of limit
ordinals below k are closed unbounded. If
cf(k)>w and f: k—>k, the set of &<k which
are closed under £ (i.e. £( §)<N.whenever

€ <«) is closed unbounded.

2. Let cf(k)>w and C,C' ¢k be closed unbounded;
i ek, pi C- ' eCc' - eC-o'
given k, pick aoe ’ “‘o db' oLy ag

' ecth- .... Then [o= {aé ti<wl= s roy
¢15C o S en |jv= sup ;33 } up{qi

1
i<6u}is <k since cf(k) >w. Also, both C(Wﬁ and
C‘ﬂ[& are unbounded below [3 . So ﬁecnc' . This shows
that CNC' is*unbounded below k. CNC' is ob-
viously closed,so it is closed unbounded. Elabora-

ting on this argument, we obtain the

Definition and fact. Let cf(k)>w. Then the collection

of closed unbounded sets is closed under intersections
indexed by sets of cardinality < cf(k). Hence, it is

a filter basis and the resulting filter



D(k) = {Xxek : 3C ¢k such that CEX and C is
closed unbounded} is cf(k) - complete in the
sense that it is closed under interéedtions as

above. D(k) is called the closed unbounded filter.

30
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Xeck is regressive iff Va(&X flat) <ot . Fact 3 can

now be restated as follows.

Fodor's Lemma. Let 'k>w be regular. If X<k

is stationary, then every regressive function.

When k is regular, we obtain a little more. "f: X-»k is constant on a stationary subset of X.

Let (X,) be a collection of subsets of k;the Proof. Suppose for a contradiction that a
R'E<k - UpPP

diagonal intersection of (Xg)rlﬁxgr is the set regressive function f: X—»k is constant on no

of ®<k such that YE<« X | stationary subset of X. Let Xg= forck:if(@)? £f -
Fact. If k>w is regular, then D(k) is closed Clearly XEGD(k) . Therefore AXgéD(k) . So

Axs()x;é ¢ . Pick déAXEﬂX. Then

VE<x £l0) # &

under diagonal intersection.
Proof. Clearly, it is enough to show that the

collection of closed unbounded sets has this

f(ad) <
property. Let (CE)E<k be a family of closed
unbounded sets and o <k. Pick o 3 n CE -, a contradi(ction.t
’ E<w
‘ - o, -, ...

E<a ° E<ay 5. Let cf(k)> w. We would like to know if D(k) is an

‘ i ‘ | i . ié: never. In other words
put,13= sup<{ai:1<60}. Clearly f>& and ultrafilter. The answer ‘

i : tationary set which does not
f‘é‘ACg . This shows that ACE is unbounded there always exists a s y

' . arise:
below k. As usual, ZXCE is obviously closed. belong to D(k). Three cases may

case i. cf (k) >tu1. {d< k: cf (o) =w»}is such a set;

We are nbw finished with the basicé on closed cage ii. k = w_. The existence of such a set will

1

unbounded sets. Since we intend +to work hard on be shown in § III;

them, it will be helpful to look for different case iii. cui = df(k)'( k. The existence of the

ways to look at them. A set Xck is stationary

desired set readily follows from casé ii.
iff k-X¢D(k) or equivalently iff it meets every

closed unbounded'set. A function £ : X-—>k where
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6. The Boolean algebra P(k)/ D (k). Let cf (k)>w and
for Xek, let X be the class of X modulo D(k),i.e.
the set of Y<k which are equal to X on a closed un
bounded set. Also let P(k)/D(k) be the set of these
z's endowed with the structure induced by the
boolean operations on P(k). P(k)/D(k) is well
defined and is also a Boolean algebra. Notice that

X € D (k) iff X = 1

X
~)
X

X is stationary iff >0

D(k) is an ultrafilter iff P(k)/D(k) = {0,1}

(we remind the reader that we are planing to show that

this is never the case).
Using diagonal intersection it is easy to show that

P(k) /D(k) is complete, although we shall not use
this fact.
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IT AN APPLICATION TO ABELIAN GROUPS.

In this section, a group will always be an abelian
group. If A and B are groups, we shall mean by A&B
that A is a subgroup of B. The rank of a free group
is defined to be the cardinality of a maximal set
of independent generators. Finally F, denotes the
free group of rank w.

We remind the reader that, in the category of
abelian groups, free=projective. This means that if
A€B and B/A is free, then A is a direct summand

of B.

1. Reminder. Let (A.), be a sequence of free
—— i 1<w

groups such that Aié_'-Ai+1 and each factor group

A, /A is free. Then A=UAa,k 1is free.
i+1" i i

This tells us how to build a countably generated
free group using finitely generated ones. We shall

now state a result allowing us to construct free

groups of cardinality w, using countable ones.

1

2. Let A be a group of cardinality cu1.

A filtration(of A) is a family (AE)g <o of

countable subgroupé of A such that Agg,Ag 1’

Ay = L)AE whenever }Z<uﬁ is a limit ordinal
E<y
(arid UAE = A). Clearly, every group of cardinality
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011 admits a filtration. We are now in a position to

state the promised reéult.

Theorem. ILet A be a group of cardinality (u1. A is
free iff it admits a filtration (Ag) such that
A is free and every factor group A A_ i |
o Y | grOup By /Rp is

free.

Proof. Trivial.

3. This can be restated in terms of equivalence
classes modulo D(aﬁ). A group of cardinality w, is
0J1-££§g iff every countable subgroup is free. Let
A be an cu1~free group; pick a filtration (AE) of A
ind putNE ={§’ <w1i3~2>§ Ay /As is not free} . Let
E(A) = E, Then E(A) is independent of the choice
of (AE)' To see this, pick another filtration (BE)E
of A and put F = {5<w1 : AN >E By/Bg is not freed,
Let C = {E<°ﬁ : AE = B£}». Clearly, C is closed un

bounded. Let £«C, E€E, 7 >E be such that Ay/Rg is

not f;ee and %'>%® be in C. Clearly AQ'/Ag is not free

But Agq =By . So EGF. By symmetry, ENC = FNC, as
desired.Using the above notion, we are now in a

position to state.

"Theqrem 2 reformulated. Let A be uH—free, Then A is

free iff H(A) = 0.

4. An obvious question is: ié every (»1—free group

free? The answer is a very definite no . The rest of
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this section will be devoted to a proof of this fact.

5. Lemma. Let F be a free group and F/B be a presen-
tation of the additive group of rational numbers Q.

Then B is not finitely generated.

.Proof. Suppose by contradiction that B is finitely

generated. Let ao,...,an__.1 be a list of free
generators of F such that every generator of B is

a linear combination of the ai‘s. Let F_ be the
subgroup of F generated by the ai‘s.‘ FgFO@ Fi' By
the structure theorém for finitely geherated abelian

groups, F is not finitely generated, so F1# 0. Also
] xF/B ¥F /B ®F
o 1

a contradiction.

6. Theorem. (P. Eklof). Let E gaﬁ. There exists an

: D
001—free group A such that E(A) = E .

Proof. We can assume without loss-of generality

that E contains no successor ordinal.

We shall construct by recursion on o & filtration

(Aq)d<g) such that

i. Ay is free of rank w

ii. AQ/AE+JA is free of rank w whenever

Eocpex
iii. A /hg is free iff £¢E.

E+1"
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From ii and iii, it will follow that

Ag/Ay is free iff a¢E, whenever d'<ﬁ<“ﬁ°

Then A = UA, will be as desired.
Four cases may arise
case a. «is 0. Put A, = Fy-

case b. o is a limit ordinal. Put A 4= U{AE: <o}

We show that A, is free. Pick a sequence («, ), ~
; itikw

such that & <o and sup o, =, Ay = UA .
i i e, +1

So, by ii, Ay is free. The rest is obvious.

case c. o=ol'+1 and either ' is not a limit ordinal
or o' ¢E. Put Ay = AOUG) F., . Clearly this
will do the job.

case d. o=od'+1 and «¢E (so o' is limit). Let
F,/B be a presentation of . By lemma 5,
B is not finitely genefated. Since B 1is
a subgroup of a free group, it is free,

So, it can be written as B= U B, where

) i<w T
Bog Fo s Big-_ Bi+1 Aand each Bi+1/Bi is
isomorphic to F,.
Write A ,, = v A, q where di <! and
i<w |
o' = supcxi . From i, it follows that Aééis free

of rank w . From ii, it follows that A , . /A |,
- q.+1+1 di+1
i
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is also isomorphic to F, .
Putting things together, we obtain a commutative

diagram which can be complete as shown,
A
B

Put Ay = X. Clearly, Ay is free and A, /A _,%® is not

=

> ...
ot!

Coolinnnis >

“""1 c(‘l

Uf .

<eeemmeD M

A
o
£
1
B

fd
W <——> >

> Cveeinn >

&
€

1
o) 1 -

free. Also, ii follows from the corresponding property

of B. This finishes the proof of the theorem.

Corollary. The exists an uﬁ-free group A which is

not free.

Proof. By 3, any A such that E(A)=1 will do.

Question. How many are there non isomorphic w -free
1

groups?

By the above theorem there are at least as many such

groups as the éardinality of P(k)/D(k).

This cardinality will be investigated in section III.
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: F be a normal filter on k. Then

IIT. NORMAL FILTERS.

i, F is k-complete

This section is devoted to showing that P (k) /D (k) ii. If Xek does not belong to F* and f:X-»k

k
has cardinality 2 when k is uncountable and regular. is regressive, there exists a set X < X
o

In order to deal with the situation within a somewhat not belonging to F* such that f is

more general framework, we introduce the notion of a - constant on X (see I.4 for a proof).
‘ o

normal filter. This will turn out to be useful later

iii. k is uncountable and regular.
on. By a filter on an infinite cardinal number k, we

mean a filter in the Boolean algebra P(k). Given a Fact ii has a converse.

~Proposition. Let k be an infinite cardinal number

filter F on k, we denote by F* the ideal dual to F
i.e. {Xg_k . k—X eF} . and F is a filter on k containing the Fréchet filter,

If for every subset X:¢E* of k, every regressive

1. Normal filters. Let k be an infinite cardinal

function on X is constant on some subset XO¢IF*

number . {k -l s «<k} has the finite intersection of X, then F is normal.

property. So it is a filter basis. Proof. Let (XEX£<kbe a family of elements of F.

The resulting filter is called the Put X=k'£5xg and define f:X->k as

Fréchet filter on k. f(e) = some E<« such that oeqéxé,

Let k be an infinite cardinal number and F be a '

Suppose AX,¢F. Then X ¢ F* and , since f is
filter on k. F is normal iff F contains the &
regressive, it is constant on some YéF*.

Fréchét filter and is closed under A (see I.3 A
: Let f[Y] ={'70§ . Y”X*zf @. Pick some o€¥YN Xn,e

for a definition).

Examples. If k is regular and uncountable, D (k) f(a) = ”Zo since o« €Y and so °‘¢sz .
LXamp'es . , o

is a normal filter. If k is regular and uncountable .This is a contradiction.

and Ack is stationary, then F= {X ck: dclosed

unbounded C such that>AﬂC§aX} is a normal filter. Saturated filters. Let k and A be cardinal

Facts. Let k be an infinite cardinal number and

numbers and F be a filter on k. F is A -saturatéd

[y



‘such that for every £<A,
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iff there isno family 5 g 2 of subsets of k

Eé F* and for every
distinct &, <A, gnx,zfs F.
Clearly, a filter on k is (2 —saturated and

if A'< A, then A'—éaturation~;>A—saturation.
Finally F is an ultrafilter iff it is 2-saturated.
Fact. Let F be a filter on k. If F is not A-
saturated then the cardinality of P(k)/F is ;Zk.
Proof. Let XE)E<R be a family witnessing the

fact that F is not A -saturated. The map
S €P(A)—>class of U XE modulo F ¢P (k) /F

Ees
is one to one.

Theorem. If k carries a normal, k-saturated filter

then k is weakly inaccessible (i.e. k is uncountable,

regular and VA<k A+<k).
Corollary.

[Oé<w2 : cf () -‘—U} {oz<w :cf () -——w} can be split

into <p2 disjoint stationary sets

P(w1 /D ( w1) has cardinality 291, Also,

(see examples in §1)

;P;oof of the theorem. Let F be a normal, k-saturated

filter on k.
Claim .: If £: X—>k is regressive and X ¢ F* then f
is almost ‘bounded in the sense that there exists
A €F such that the range of f on XNA is bounded
below k.

Proof of the claim. Let E = {E<k:f—

yérxl o,
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Uv{f-1(E):§¢E}éF{

Since F is k-saturated, the cardinality of E is <k.

Since F is normal, E # ¢ and XO =
Let A=k-X . Clearly f [xNAa] is bounded.

Now, we know from §1 that k is uncountable and
regular. So, it -'suffices to show that it is not
a successor cardinal. Suppose for a contradiction
that k= ‘A Pick for each limit o<k a sequence
E &(A such that aE <& and sup {a,. §<R} o

Then V€<A Qpeagls regressive. So, by the claim, it
is almost bounded and V§<k we can find AgegF and

ﬂE<k such that
VdeA? ag<{3>E.
<X} Then A€EF

Let A =ﬂ{A E<:’l} and ﬁ~ sup ‘38

and {3<k . Clearly A< f3+1, a contradiction.

Theorem 3 can be generalized. We first need some
extra definitions. Clearly, if « is an ordinal of
cofinality > w , then D(«), when defined as in section

I, is still a filter. A set X is stationary in an

ordinal o of cofinality >w iff it not in D*(x).

Let k be an uncountable (preferably wéakly inacces
sible) cardinal. Then for A<k, M(A) is defined to

be the set
{oc<k : cf(x). >wand AfNa is stationary ino(},

M is called the Mahlo operation. A filter F on k

is a Mahlo filter iff it closed under M.
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Theogem. (Solovay) . If k is an infinite cardinal V. » REAL VALUED MEASURABLE CARDINALS.

number and F is a normal, k-saturated filter, then

F is a Mahlo filter. We shall now use the material presented in section

Sketéh of proof. Suppose F is not Mahlo. ITI to investigate real valued measurable cardinals.

Let A€F be such that M(A)¢ F. Then we can find

B %F* such that

- A non trivial measure on k is a map }k:P(k)—-?[O,']]

such that M ({cc}) = 0 for every o<k, /&(k)=1 and .
Ve B cf(«) =w or A« cpx(x), };.,(Uxi) =Z/u.(xi) for every finite, pairwise dis-
It can be shown that the ¢ B of cofinality w can be joint fémily (Xi) of subsets of k. Notice that
left out. So, we imitate the proof of Theorem 3

Fy = {xgk (X)) = 1}

is a filter and that it is non principal in the

By substituting a set Cy€&D(«) such that AN«Cy= @

(-4

£°8 <A°
Corollarz‘ (Solovay) Let k be aA'reg‘ular cardinal>w

for the sequence (a

sense that {o(}eF}f for every a<k.

Then D(k) is not k-saturated and so P(k)/D(k) has- Fact Let u be a non trivial measure. Then Fu is

cardinality Zk. w1-—saturated.

Proof. Every closed ﬁnbounded set contains a poinc _ Proof. Suppose (XE')E <w‘is a family of subsets of

of cofinality w. So D(k) is not a Mahlo filter. k such that for any two distinct & ,% <w XEQX"I
‘ has measure 0. Clearly, at most n Xg's have measure

>

> % So M vanishes on al_l but countable many

Xg's. We say that g is A -additive iff Fu is

A —complete} Remark: uﬁ—additivez G -additive.
Vitali's theorem tells us that 2% = [0,1] carries
no aﬁ—additive translation invariant measure.
Does this fact remain. true when we drop the

condition that the measure be translation invariant?.

In view of the above mentioned fact, this guestion

is related to the following
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1Problem. Let k be an uncountable cardinal number.

May it carry a k-complete, k-saturated, non principal
filter?

2. Theorem. (Solovay). Let k be an uncountable cardinal
number. If k carries a k—complete, k-saturated

non principal filter, then k carries a normal,

k~saturated filter.

To prove this important reeult,we need some
preliminaries. Throughoutbthié paragraph,k’
will be an uncountable cardinal number and F will
be a k—complete, k-saturated; non principal filter

°

on k. Let X,Yek and f : X=%k, g . Y—Q-rk. Then

i, g is almost bounded iff there exists

A€F such that g [XOA] has cardinality

<k.
ii.- f is F*-to-one iff f—1(€)e‘F* for every
g < k. |

iii. g*< f iff XevY and’g(g)gf(ﬁ)'for every

E < k. -

iv. f is incompressible iff X¢F* and £

is F*-to-one

every g < f is almost bounded.

‘Lemma a. Let Xck X¢ F* and cp X—>k There exists
a:partition {Y 2z} of X such that ¢|¢ is incompres
s:Lble and 3\(/ Z--»k such that y< C(’
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'<Z,W> is obtain as the direct limit of a family

of <Z',Y'>'s using Zorn's lemma.

Lemma b. There exists an incompressible function defined on k.

A : = = identity on k and Y = @.
Proof. Le ZO k, ﬁb Y o

Suppose Zi,Yi,Yi are deﬁined. For Zi=X and ?i=? ’

= = = Y as in Lemma a.

choose Zivr T % Wi B

Clearly, *;> ?})...'. So (\Zi

= = is as desired.
k—lJYi end £ L/*&/ Yi+1

@. Therefore

Proof of the theorem. Let f be as in lemma b.

We claim that F = {Xsk: £ [X] € F} is the desired

filter. The only non trivial fact to show is that

F is normal. We shall do this by using the proposi—
tion in ITI-1.

Let X ¢<F* and ? :X—2k be regre331ve. Clearly ;, dom
q’f = £ (X)¢ZF* and ?f<f Since f 1s incompressible,

the range of ¢f is bounded by some [3<k on some A€F.

Also £ (X) Na¢r*. So

£ ®na < U{(rff) Yoy s oq<flde

Slnce F is k- complete, there ex1sts ’Q<F such that
1 .
(ff) (»Z) ¢ F*, Therefore £ cfl (72) ¢ F* and so

cf (7)«#0:*, as desired.

Corollary. Let k be an uncountable cardinal number.
If k carries a k-complete, k-saturated, non principal

filter, then k is weakly inaccessible.



- 132 =~
Proof. Use the theorem above and § III.B;
Using the machinery developped in III, we can

improve on §2. A cardinal number k iSVWeakly Mahlo

iff k€ M(class of regular cardinals) or, equivalently,

iff there is a stationary set of regular cardinals
below k. Clearly, a weakly Mahlo cardinal is weakly
inaccessible, but the converse is not true.

Theorem. If k is an uncountable cardinal number

- carrying a non‘principal, k-complete, k-saturated

filter, then there is a Mahlo carainalvbelow k.

- Proof. By theorem 2, there is a normal, k-saturated

filter & on k. Define
Ao = {ot( k : olis regular}

We claim that~AOE €. To see this, suppose for a

‘contradiction that Aoe<F. The function f () =cf (k)

 is regressive on‘kéAo4<F*. So it is constant on

some X¢@F*, say f[x] ={}\} . For each o¢X, pick a
 sequence (a% “a% <. =el,
q (gE)E<A such that ag <« and sup{as.E<A} oL,

- into the infinite, the Qtoéﬂw

~Continuing the proof as that of the theorem in §

III1.3, we bbtain a contradiction.

Now, by III.4, & is a Mahlo filter. So A1=M(AO)£G

"and so is # §;any Aea, is Mahlo.

The;theorem tells - us that such a k is veryylarge.

Since the sequence A_sA, can be continued far

1

_tells us that k is

even larger.
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. MEASURABLE CARDINALS.

For all we know, -a real valued measurable cardinal-

or a cardinal k carrying a non principal, k-complete,
‘k-saturated filter, although very large,might,still
be gZ“’. We shall now introduce a new type of

‘large cardinal for which this does not hold.

A cardinal k is strongly inaccessible iffit is regular

A

and 2% < k whenever A<k. k is meaéurable»just in case

it carries a non principal, k-complete ultrafilter;']

M:Cléarly w is strongly inaccessible and measurable.

i 1. Theorem. A measurable cardinal is strongly inaccessible.

Proof. Let k be an infinite cardinal number and let
F be a non principal, k-complete ultrafilter on k.
Clearly k must be regular. |

Suppose for a contradiction that A<ngA for some

A <k. Abusing language a bit, we can write k£=.2;l =

= {f:f:)\ ->2} . For O'éU{Z“‘ :o(<r1§ , define

Xe = JE£ek sosf],
Now, we define ge.zA by recursion on £ <A. Suppose
g|E is defined and that Xglg
and £(g) = i} (i=0,1). Since

¢ F. Let Y,={fek:
: 1
fe X X =Y Uy
- gl& o 1

and F is an ultrafilter, there is an i such that

Y, €F. Choose g (B) such that Y, =X +1(thice the

glk

implicit use of k-completeness].

Let X =n{Xg|E : £<2} . By k-completeness X & F. But
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X = {g} . This is a contradiction. The material presented in section II cames from
P. EKLOF. On the Exiétence of k-free Abelian
Groups. Proc. of the A.M.S. (1975),
65-72.

2. We are now going to use the techniques developped
in sections III and IV to show that a measurable

cardinal is very large. Let k be an uncountable" In section III and IV, we have drawn from

measurable cardinal. A close examination of the R. SOLOVAY. Real valued measurable cardinals.
. In: Axiomatic Set Theory, I. A.M.S.
Proc. Symp. Pure Math. XIII(1971),
347-428.

proof of theorem IV.Z shows that k carries a

normal ultrafilter & . As in IV.3

Ay T fo<k : o is regular} €F. For more on the subject, the reader is referred to

Now, we claim that: the Set theory books by Levy, Jeck, Kunen or Drake

1‘ with the very readable
B = {«<k : & is strongly inaccessible}e@. atond Y

P. EKLOF. Set Theoretic Methods in Homological

To see this, suppose the contrary; let f(«) = some
Algebra and Abelian Groups.

Séminaires de Mathématiques Superieures,
Ies Presses de L'Université de Montréal
(1980) .

A <a such that 27 2o . Clearly £ is defined on
AO~ Boe & . So, it is constant on some Xe such
that XgA_.Let £ [X] = {A}. Then tkex 2*>a . so
kg2

. This contradicts § 1.
By IITI.4, F is a Mahlo filter; so
= = .. e @
B1‘ M(Bo), B2 M(B1?,.
As we have seen in IV.3, this shows that k is very

large indeed.






