- 137 -
Estratto da ON THE EXISTENCE OF FINITELY DETERMINATE

C. Bernardi (a cura di), Atti degli incontri di logica matematica Siena 7-8-9

MODELS FOR SOME THEORIES IN STATIONARY LOGIC
gennaio 1982, 15-16-17 aprile 1982, 4-5-6 giugno 1982. ‘

by

Disponibile in rete su http://www.ailalogica.it

Joé€l Combase

The following is a write up of series of talks

that the author gave at the Siena Logic Seminar in April
j982. The material is part of the wéik that the au

thor carried out as a graduate student at Stanford
University under the supervision of Prof.S.Feferman.
Many thanks are due to him for his guidance.
Also, we would like to thank thé Siena logicians,
especially A. Ursini, C. Bernardi and F. Montagna,
for inviting us at Siena and for their interest in
the subject. Finally, we are grateful to L. Harrin-
gton, M. Kaufman and A. Mekler for helpful - talks
on stationary Logic.

Let P¢ (A) be the set of subsets of A of car-
.dinality less than that of A. As shown by Kueker and
Jech, there exists a notion of stationary set on P<(A).

Shelah, Barwise, Kaufman, Makkai have developped
a logic with an extra quantifier where one can express
the fact that a formula holds’true on a stationary

set. A model is finitely determinate if it is not,
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‘poseible to find a formula ¢ such that both ¢ and
e holds true on a staticnary set(this definition is due
to M.Kaufman). The following investigates the exi-
stence of finitely determinate models for some theo -
ries in stationary Logic.

More precisely,

an aa,-theory is one whose every axiom says in effect

that a first order formula e(s ,...,S )holds true

on a closed unbounded set. The main result of this

paper shows that if an aa -theory has models of large

cardinality, then it has a finitely determinate one
(theorem 2.3.2). |

’ A substantial part of the material presented
here is introductory. §§1.2,1.3 are independent of
the rest of this paper and are only supposed to give
the readerwho is not familiar with the subject a feel
for stationary sets on P« (A). It is organized as
follows. Part I deals with combinatorics on P« (A).
It ends up with a technical fact needed for the. next
part. Part 2 contains a short introductioﬁ to statio
nary logic and finite determinacy along with the
above-mentioned existence theorem. Part 3 introduces
a notion of Skolenlultiapower‘for finitely determina
 te weak models‘and'puts’it to use in order to derive

some Hanf number results.
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I. SOME COMBINATORICS ON P (B).

1.1. Basic definitions and facts. (Jech,Kueker)

We assume throughout this paper that A is a
set whose cardinal number k is uncountable and re
gular.

P< (A) is the set of subsets of ‘A whose car

dinality is <k. A set CE Pg (&) is closed unboun-

ded iff VaeP< (A) Fa' eP< (A) such that aca'e C
and C is closed under unions 1ndexed by a cardinal
< k . The closed unbounded sets constitute a filter

basis. D« (A), the closed unbounded filter is the

filter generated by this basis. X€P< (A) 1is sta-
tionary iff P< (A) — X¢D < (A). Let XEP< (A)
and f : X— Aj}f is regressive iff Vaex £@3)ed .

Let (Z ) e be a family of subsets of P« (B).

Az ' the diagonal. 1ntersectlon of (Z ), is the set
x

of ae P« (A) such that VXea aezx.

facts.

(3) D« (A) is non principal, i.e. every set
of the form
fser< m:asst (@ep < (A)is in Do (a).
(b) D(A) is k —complete, i.e. it is closed
under intersections indexed~by a cardinal

< k. >I;n fact,
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(c) D« (A) is norﬁal i.e. every regre351ve
functlon on a statlonary set is constant
on a stationary set.‘-

(d) De (A) is not an ultra filter, i.e. there
exists a stationary subset which is not
closed unbounded.

(In fact, Solovay proved a result to the

effect that D« (A) is not even k-saturated).

cofinal in k and such that whenever §<:k and

Cng is cofinal in E Ee&C Xck is statlonary if

k-X is not closed unbounded. We shall investigate the
relationship between D « (A) and D (k).

A filtration of A is a fam;ly (35)‘§<k of ele-
ments of P« (A) such that (ag) is increasing, .

ad_—_Ua

A=U

a
gék
Now, pick any filtration (33) of A. The map

3€k V> 35eP ¢ (B)

for every limit ordinal «< k and

induces a dual map
| X€P Po(A) > F(x)= {§<k: agex}e P (k)

Moreover, the map
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‘ class of Xe€P P,(A) modulo D (A) >
class of F(X)€P(k) modulo I (k)
is well defined, does not depend on the choice of
(ag) and defines an isomorphism between the boolean
algebras P P<(A) /D (A) and P(k)/D (k).
Let XSP _ (A). Define the ordinal content X off}o be

<
the class of F(X) modulo'lxk).

Theorem (Solovay).
The cardinal number of P(k)/kD(k)is 2k.

1.3 Some typical closed unbounded and stationary sets.

1.3.1 Example. (Lowenheim, Skolem;TarSki,..,,Kueker).
| LetOL =<A,...7 be a first order structure for

a countable language. Let X={ae P_ (A): Ot
restricted to a is an elementary substrgcture
of OL} Then X is closed unbounded. |

1.3. 2.Example (Conway). Let A be a dense, k-like,
linear ordering (an ordering is k-like if has
cardinality k but all its bounded initial se-
gments have cardinality< k).Let X(A) be the set
of a€ P, (A) which have a lowest upper bound.
It can easily be shown that for each &ﬂeP(k)/xxk)
there exists a dense k-like linear ordering A
such‘that’QTK) =[§]. Therefore, by theorem 1.2,

k .
- there are 2 ~such orderings (Remember that k>4).
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For example, if k =w, and
A‘ = Q+ Q + ® o o
B =@+ (1+0) + (1+0Q) + ... ( w times)

( witimés)

then, by picking the right fiitration, the
. ) A
reader can convince himself that X(A)=0 and
— .
X(B)=1. So A and B are not isomorphic.

For more on the subject, see Eklof-Mekler

(19791, 8 7.

i._3.3.‘ ‘Exam‘glé. Suppose k=w1 and let A be an abelian

group. Also, assume that A is an w,=group, i.e.

that every countable subgroup of A is free.

Notice that the set of countable subgroups

is closed unbounded so that we can identify

it with P « (A&).

Now, let Y(A) be the set of a ¢ P, (A7) such

that Ibe P« (A):, 3cb and b/a is not free.

It is easy to see that A is free iff ?Z/(A)=O.

Eklof has shown that for every [s] € P(wi)/;D (1)
there exists an w,-group A such

that [S]= ?(A) . As above, it follows that

are 2% non isomorphic w,-group of cardina-

lity Wy -

For more information on the subject the reader

~is referred to the original paper (Eklof (1975]).
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1.4, n-ineffability.

We shall now introduce a large cardinal pro-

perty and prove a statement about it which we éhall

need later on.

Let 3,be P~ (A). We shall write a<b for
a€P<« (b) and a<b for aeP« (b)u {b} . Also,
if XCP, (Aa), [X]n will be the set of sequences
a= (30,...,an_1> such that aié X (0 £ i< n) and
ai<ai+1 (O i <« n-1).

1.4.1. Definitions (Baumgartner). Let X €P < (A)

and n Z 1. An (Xyn) - sequence is a family

(S3), where a= <ao,...;an > ranges over

-1

n :

[x] « such that, for every such a, Sacd
. . o)

any a = a 7oeoygel ok -
¥y - <a_ 1> amd b=<b_,....b >
in [H]™

< b =
ao O:? Sbf\ao Sa

This amounts: to saying that if SzUSa; where

a8 ranges over H, then S, = Snao.'
A set X is n—ineffable iff every (X,n)-sequence admits a
stationary homogeneous set. k is an n-ineffable cérdinal
iff P (A) is an n-ineffable set.
In Baumgastner [1973) it is shown that

— o

=y , =
measurable # n+l - ineffable n-ineffable weakly
<& & compact..
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1.4.2., Definition. (Abramson,Harrington,Kleinberg,Swicker) .

t X be a set and(ZX)xeA be a family of subsets of X. A
flip of (ZX) is a family(Z}'{) such: that/YxeA,Z' is either
. i X '
Z or X-7

X X

1.4.3. Definition. Let n = 1 and (2 ) be a family
X

of subsets of [P¢ (a) | . z=AZ_, the dia-
gonal intersection of (Z ), is the set of
- X

=‘<ao,'...,an__1,> & [P< (A):l n such that

Vxea aecz
X

The following result is proved in Abramson |
et al. [1977] for the case n = 1.

1.4.4, Proposition. Let k be n—lneffable. Then for

any family (Zx) of subsets of X=[Pe (A)]n

X €A
there exist a flip (Z}'{) of (ZX) and a statio
nary set HE P~ (A) such that [H]"cAz’.

X

| Proof. For a =<a_,...,a__,>€[P< (a)] ", put
= {xéao H asZX }
Since P« (A) is n-ineffable, there exists a
stationary set which is homogeneous for (S ).
a

L — . ,
et S, USa where a ranges Qver H(so Sr\ao=

Sa whenever ae H). Now put

1

7! i
% Zx if xe s

X - Z}'{ otherwise.

It remains to show that H and (Z ) are as -

desired. Let a= <a RS 1) € fH] and xea .
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Show a €& Z].
X
2 cases may arise:z

case 1: Z;<=Zx‘ Then x€ S sO icésa . Therefore
o)

aez .
X

case 2: Z'=X-Z . Then xés Je) xés .Therefore
X X a

aézx.

This fipishes the proof.

2. STATIONARY LOGIC AND THE EXISTENCE OF FINITELY

DETERMINATE MODELS.

So far, we have assumed that the cardinal num-
ber k of A is regular and uncountable. Now, we drop
the condition that k be uncountable. Instead, for
ksw we put P« (A) = P< (A V&) and D. (A)=D<(AVO}) .
This is a way of saying that we do not intend to deal

seriously with the situation.

‘Let L be a first order language. We enlarge it

by adding second order variables s,s',...t,t'...

which can occur only in contexts of the form s (t)
where T is term. Also, we add a new quantifier aas

(read: for almost all sets s),
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The language so obtained is called 2%

o

Stat s (read: for stationary many sets s) is

defined to be the dual quantj:fiér “aas-1. Given

. aa o

a formulasa of L whose free variables are among
- 2 T e . aa j

s,v, the closure of ;o (in L°7) is aas V;f)f (Warning:

- >
V3 aasf’ will not be equivalent in our logic and

would not do the job).

A natural model for Laag-is a first order stru -

cture ({ = <a,.. .p for L where it 1s u'ndeﬂré:tood

that the satisfaction relation obeys the extra rules'

((2,b€ P~ (A), xen):

Qb (vt 33) irr N2 e

-
OLE aas ¢ (s,2,3) iff Ipe pe (n): mk(b,é”,“;?)}eD((A)

Notq‘.ce that it follows from our conventions
that the cardinal of a natural model is reqular.
Clearly,. the following formulagare valid (i.e.

their closure is true) in every natural model

aas (f(s)—a"f(s) ) A aas (s)eaasY/(s) '

Yv aas s (v)

VV aas P(s,v)> aas Vve s Sb(s,v)
They say that D<(A) is a filter,that it is not principal
and it is closed under diagonal intersection. The clo-

'sj.lre of these formulae constitute the 'é‘xioms for sta-

tionary '_,logic - Stationary logic is obtained from.

first order logic by adding these axioms and the new rule:
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from ‘f‘?f (s), infer Waa.s.f(s) (s not free in f) .
Define Qv f(v) to be —Taas V/V(VQ(V)*? s(v)). Q is the
Chang Quantifier in the sense that, if O is an -

uncountable model,

| .
@ E ov ¥ (v) iff the cardinality of ¢  is k.

" Completeness theorem (Barwise, Kaufman, Makkai).

. aa
Let T be a countable consistént theory in L .

Then T has a natural model of cardinélity < Wy .

Clearly this natural model is uncountable iff it

satisfies the sentence Qvi{v=v).

2.2. Finite determinacy.

2.2.1 Definition (M. Kaufman). A natural model Ol is

finitely determinate if it satisfies the schema

of determinacy, i.e. the closure of all the

formulae of the form aas (f\' aas " ('0 (?9 being in

Laa) )

2.2.2. Example. Let V be an uncountable ve-ctor space
over a countable field XK. We think of it as a
structure of the form <V,+,L >'>\€ K where each
_/\, is a unary function symbol. The techniques of
'Eklof—MeklerE(%’?S]show that V is finitely determi
nate. | |

2.2.3. Example. For each limit ordinal«x<w,,6 let

(of ) be a sequence of ordinals <« such that
n'n<w : o _ ) ~
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sup o(n =&, Let R be

{(o(,n,o/n> n<w . & is a limit ordinal} and
Ol =, w, <, R>.

Ot is not finitely determinate. To see this,
pick N<w such that the regréssivé function
“FF}NN (£ 1imit) is not almost bounded i.e.

such that

VP {«x limit 2P } is stationary
(or look at any proof that oo @U1) is nof an

ultrafilter).
Make,ﬁ = O.VSince‘ﬂ)(u@) is normal, this pro-
vides a stationary set XO and an ordinal %

| o
such that Ve« €X o= Eo’ Now, makeﬁ=§ +1.
This yields a statlonary set X and an ordlnal
% 4 such that VQEX d }ﬂ_ and § # f
From this (remember § 1.2) it follows that
o }= stat s R(sup g, N, Eo)/\stat S TR(sup.s

N, §<3)° This proves the desired result.

2.2.4.'ExamEle. Let A be a dense k-like linear

ordering. Then .

If X(A) (as in 1.3.2) is 0 or 1, A is finitely
determinate.

If X(a) # 0,1, then A Fstat S (sup s exists)A
. stat s (sup s exists). Therefore A is not
finitely determinate.

2.2.54¢

2.3
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pProposition. The schema of determinacy is

equivalent to the family of Schemas

Det closuré of aa§9~v aagﬁf} where E?is
a sequence<mflenght n and‘e“ls a first
order formula (i.e. does not contain any
occurrence of aa or stat)
sketch of proof. By induction on n , we show
kthat
De 1=£,;>finite' determinacy for formulae
haVLng at most n occorrences of aa (or stat).

ConcluSLOn. Canonical mathematlcal structures,

like the field of real numbers, are always
finitely determinate.The construction of a non finitely
determinate structure , like that of a stationary
set which is not closéd unbounded, requires the
use of the uncountablé axiom of choice. The
resulting structures are just as pathological

as a set of realswhich is not Lebesgue measurable.

On the existence of finitely determinate models.

2.3.1. Definition. A theory 1is called an §§1Vtheory

iff all its axioms are of the form aas ©,
where © is a first order formula. A formula

of this form is called an §§1 formula.

Problem : when does an aa; theory have a
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finitely determinate madel? where © is a first order formula, 3£P< (A)
and ¥ €A. This is possible since k, the cardi-

Eklof and Mekler [1979 \at e i » |
[ ] prove that every first nal number of A, is n-ineffable and so is

order theory has a finitely determinate n . - :
: Y : Y rminate model strongly inaccessible whence P< (A) and A have

Shelah (unpublished) recently showed that every thé same cardinalitv. Notice that the family (Z )
< ° x

theory in L(Q) has a finitely determinate model, ' is not supbosed to be uniform

thus answering a question of the above menti :
gagq . ntioned By proposition 1.1.4, there exists a flip (2!)

article. Notice that a theo in L i i — _ .
o ln, Q) 1s equi of (ZX) and a stationary set HE Pg (A) such

valent to an aa, theory.

, that CHJHQA Z'. Now, define a new "model"
On the other hand,if OC ={0J1,W, <, R}is as ’ x :

fgby keeping the same first order structure as

in 2.2.3 thé readér can check th | : :
’ at we have in Ol but changing the satisfaction rule for

actually shown that the first order theory second order formulaé into

of LU {aas (sup s exists)} has no fini-

. - -3 - . . i . . _
tely determinate model. Of course, this is fyl:_:aas ?(s,a,x) %ff there exists a closed un
‘ ‘ bounded set C such that:

an aa1 theory.

. , ' > 21
2.3.2. Theorem. Let T be a countable aa, theory. If ot g{beP<(A) ) mk?(b'a'X)}'

for every n, T has a natural model whose cardinality

Now,

is n-ineffable, then T has a finitely determi
fact a). i?’ satisfies the axioms for stationary

nate (natural) model.

Proof of the theorem. We show that for'every logic since H is stationary, Hence, it

n,T uDetn is consistent.By the Completeness Theorem § will do the Job for a consistency proof.
and 2.2.5, this will be enouh. fact b). 01% T. In fact every aa1-—statement

Let ny»41 be given and( be an n-ineffable na- | (with parameters from AUP< (A)) which

, X . :
tural model. Let (z) _, be a list of all , is true in (lremains so in & .
the sets of the form fact c¢) 9U= Detn. To see this, it is enough

to find for each Z;{ a closed unbounded

'{ h e [P<' (A)J "0 ﬁ(b,gﬁz)} set CX such that
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n
c gt = .
[_cxn H] €z, . Put C_ {aEP< (A).xea} .
Then
N
= s A > e ' = 5 ¢ '
b=<b_,.../b__ [anx]-?b eNz!
= VYyeb b ¢3!
(] X
= be&Z' since x€b
X o]

This finishes the proof.

3. SOME HANF NUMBERS

3.1 Weak models.

Now, we allow the language Laa to be uncountable.
Also, we drop the requirement that 1%? be derived from
a first order language Laa. Instead we allow pArJ".m_J:._
tive function symbols to occur in contexts of the
form f(s), this being considered a first order term.

Now let Ol = < ()(,',ai,fj, E> be a structure

i€eI,jed
where Ol= <A,...» is a first order structure, each
a:,L is a subset of A, each f, is a function on
{ai:ie I} (possibly empty) into A (we need a magic
convention to the effect that even in this case

fj # ’f.j' whenever j # j') and k 1is an extension of

the usual first order satisfaction relation to for-

aa :
mulae from L™ . The first order parameters of ol
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are the x& A. The second order parameters are the
a’s .
i

OL is a weak model, if beside the obvions rules
Okf (a,) =x iff f.(a.) = x
-J 1 j 1
if
O(,i_-:ai(x) iff xg a;
it obeys the crucial ones
& }: —-1Qv ai(v) for each i

q = ( where ¢ is an instance of an axiom

of stationary logic with parameters.

Example: if Jr is as in the proof of 2.3.2 then

< is a weak medel.
I‘T’a>aép<(A) N N

A weak model is tidy if for every }0 = }ﬂ(s,v,t,w:) in
aa

L (without parameters), there exists a function
- -7
i s,v,t) s.t.
syrbol faat Jwp (s,v,t)
the following is satisfied
-3 -y e Nad - = - -
aas ¥ v ( aat Ex’wfa (s,v,t,w)-> aat Yo(s,v,t,faatﬂw‘o(s,v,t)).

3.1.1. Definitions. A finitely determinate weak model

is one which satisfies the schema of determinacy.
Let €L be a finitely determinate weak model
which is tidy.Ult (&) =<Ult [0:V I N
is defined as follows ,

(a) universe: Let U be the set of function

symbols f=f . Put frmvg 1iff

aas 3vep



= 154 -

Ol kFaat £(t) = g(t), Ult (A) is the set of
equivalence classes [f] modulo ~, where
'fetJ;VIn what follows, we shall indentify
[f] and f;

(B) first order structure: it is given by

thé rulés

ULE(OU) | R(E_, .. E__

...,En_,l (t)) J

Ult (OUEA (£) iff £nE_ for some xeh,

1) iff 'Utl:aat..,R(fo(t) ,

f being £ '
X 9 Taat dviv = x)°

(c) Second ordér structure: it is given by
the rule
Ult (L) E aas F(A,s,fo,...,fn_1)
iff GE#aat7aas$p(t,s,§o(t),..,fn_1(t)L

3.1.2. The fundamental theorem on Ult.Let Ol be a

tidy, finitely determinate weak model. Then

(a) For any formula f(t,vo,...,vn_1)
ult () E gt ..., £ ) iff

Ol aat PEE_(E),.. B (B,

(b) The canonical embedding x»»fx is 129
-elementary and so we can identify
pULED {£,:x<n} anaa.
From this, it follows immediately that

(c) A is a second order parameter of O(, i.e.
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OCE=0v A(y)
(d) Ult (L) is a blunt extention of (L, i.e.

for évery Y with parameters from o
uit (G0 k p(a) =>0kaat p(e).

The proof is easy and is left to the reader.

3.2. ' The Hanf number calculation.

3.2.1. Theorem 2.3.2 strengthned. In theorem 2.3.2,

we can require that the determinate model be

tidy.

Proof. Let O( be as in thé‘proof of 2.3.2.
Construct CXb by adding for each formula
y9(s,v,t,w) without parametérs where all the
free variables are displayéd, a function

F=F such that
aat3d WF

Vabers ) yeea (O(Fffw;a(eﬁx,b,w) —>¢(E,x/b,F(a,x,b)),
Let Lza be the language of CX,. Iterate this
operation w timesand let (., be the limit
structure and Lif be the corresponding language,

Clearly, if &, is to Clo, as ¥ is to X, then

F E T\/Detnl) axioms for tidyness.
This completes the proof.
Now, we can use our previous results to compute

some Hanf numbers. 3.2.2 generalizes a theorem
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. in Schmerl {127630

3.2.2

3.2.3

Theorem. Let T be a countable aa,-theory. If
for every n, T has a natural model whose cardi
nal is n-ineffable, then T has a finitely de-
terminate natural model in every uncountable

regular cardinality.

Call a theory~ finitely determinate iff T |

schema of determlnacy Clearly, a finitely
determinate theory is equivalent to an aa,-

theory, whence

. Corollary. Let T be finitely determinate

and countable. If for every n, T has a
natural model which is n-ineffable,then T has
a natural model in every uncountable regular

cardinality.

" Proof of 3.2.2. LetT‘bea51n the assumption and

k be a regular uncountable cardinal. Since

weak models are essentially first order objects,
_the Lowenhein Skolem Theorem holds for them.
Therefore, by 2.3.2, T has a countable, tidy,

finitely determinate weak model (X . By
iterating the Ult operation k times (this

" means that we take direct limits at limit

X & (3)
stages) we obtain a sequence ( CC )§<:k

whose direct limit Cx}k) is the desired model.
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Ta see this, we have only to ensure that if
o (
) is

finitely determinate and satisfies T (it is

®x< k is a limit aordinal, then

obviously tidy). These facts are proved by

showing that, if § <. E 1<% and
éA(S“"l )(0<1<n—1 ) then
Fea®,alBes) 5
(§) )
iff (';L(d)}: aas,...aas . QA 5 ,--,A@‘ rSppeeerSp_g_pr¥)
(5 _,+1) )
iff Gk,gn ! same formula.

(remember that the A(§) ¥<® are the second

oA
order parameters of Cn( )
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