- 231 -

Estratto da

C. Bernardi (a cura di), Atti degli incontri di logica matematica Siena 7-8-9 gennaio 1982, 15-16-17 aprile 1982, 4-5-6 giugno 1982.

Disponibile in rete su http://www.ailalogica.it

TEORIA DEI MODELLI

PER UNA CLASSE DI ANELLI DIFFERENZIALI

Carlo Toffalori (Firenze)

Nel seguito, si intende per anello un anello com mutativo unitario. Sia \mathbf{T}_D la teoria degli anelli differenziali R tali che:

- 1. per ogni $r \in \mathbb{R}$, $r^2 = 0$ oppure r è invertibile;
- 2. $(rad R)^2 = (0);$
- 3. esiste un endomorfismo differenziale idempotente f di R tale che il nucleo di f coincide con rad R.

Un linguaggio del 1° ordine per la teoria T_D è $L=(+,\cdot,-,D,f,0,1)$ (D è il simbolo funzionale corrispondente alla derivazione in R). Si ha:

- 4. f(R) è un campo differenziale, e car R = car f(R);
- 5. R è un anello locale; il suo ideale massimale M_R coincide con rad R ed è un ideale differenzia le, così che il campo residuo R/M_R è un campo differenziale isomorfo a f(R).

Intuitivamente, se $R \models T_D$, R ha uno scheletro f(R) di campo differenziale; se $k \in f(R)$, k è circonda to da una corona $k + M_R$ di elementi che si possono supporre infinitamente vicini a k, rispetto alla idea ingenua degli infinitesimi come elementi dal

prodotto trascurabile (Lawvere).

Si intendono esporre le proprietà di teoria dei modelli per T_D . Il collegamento, evidente, è con i concetti di campo differenziale, campo differenziale campo differenziale di un campo differenziale (A. Robinson, I. Blum, C. Wood). Si noti che, se $R \models T_D$, f(R) è un campo differenziale, M_R è uno spazio vettoriale su f(R) (ed an zi è un'algebra banale). Se poi $a \in M_R$, è $D(a) \in M_R$, perciò, se $B = \{a_\nu\}_{\nu < \alpha}$ è una base di M_R su f(R), al lora, per ogni $\nu < \infty$, si ha

$$D(a_{\gamma}) = \sum_{\mu < \alpha} t_{\nu\mu} a_{\mu}$$

con $t_{\nu\mu} \in f(R)$ opportuni, $t_{\nu\mu} = 0$ q.o. $\mu > \omega$. Insiemi sticamente, R si può dunque ritenere come il prodotto cartesiano $f(R) \times M_R$, sul quale +, ·, -, 0, 1, f, D sono definiti in modo opportuno (D a partire dalla derivazione di f(R) e, rispetto alla base B di M_R , dall'insieme $\{t_{\nu\mu}: \nu, \mu < \omega\}$).

Sia $E(T_D)$ la classe delle strutture esistenzialmente chiuse di T_D .

<u>Lemma</u> - Sia $R \in E(T_D)$. Allora:

- (1) f(R) è un campo differenzialmente chiuso;
- (2) $M_R \neq (0)$;
- (3) la dimensione di M_R su f(R) è 1, e M_R è generato su f(R) da una costante (cioè da un elemento a tale che D(a)=0).

Sia T_D^* la teoria degli anelli $R \models T_D$ tali che f(R) è un campo differenzialmente chiuso, e M_R ha dimensione 1 su f(R); per $T = T_D^*$, T_D , siano poi T(O), T(p) (per p primo) le teorie dei modelli di T aventi caratteristica O o p.

Teorema 1 - (1) $T_D^*(0)$ è il model-companion di $T_D(0)$ ma non il suo model-completamento;

- (2) $T_D^*(0)$ non ha l'eliminazione dei quantificatori in L_D (in particolare, esiste $R \models T_D(0)$ privo di \underline{u} na "chiusura differenziale" in $T_D^*(0)$;
- (3) $T_D^*(0)$ è ω -stabile.

Se la caratteristica è prima p, in analogia al ca so dei campi definiamo anzitutto un anello $R \models T_D(p)$ differenzialmente perfetto se il campo f(R) è differenzialmente perfetto. Sia $T_D'(p)$ la teoria degli anelli $R \models T_D(p)$ differenzialmente perfetti, $T_D'(p)$ si può rappresentare in L_D o in $L_D' = L_D \cup \{\ell\}$, dove ℓ è un simbolo funzionale unario così definito: se $R \models T_D'(p)$ e reR, $\ell(r) \in F(R)$ e, se D(f(r)) = 0, $(\ell(r))^p = f(r)$ mentre; se $D(f(r)) \neq 0$, $\ell(r) = 0$.

Teorema 2 - (1) $T_D^*(p)$ è il model-companion di $T_D(p)$ e di $T_D'(p)$, ma non è il model-completamento nè di $T_D(p)$ nè di $T_D'(p)$;

- (2) $T_D(p)$ non ha l'eliminazione dei quantificatori nè in L_D nè in L_D' (in particolare esiste $R \models T_D'(p)$ privo di "chiusura differenziale" in $T_D^*(p)$;
- (3) $T_D^*(p)$ è stabile, ma non superstabile.-