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' INTERMEDIATE LOGICS

Ettore Casari (Florence)

Part I: PROPOSITIONAL LOGICS

A. PRELIMINARIES.

1. Positive, minimal and intuitionistic propositional

logics.

Let ¥ be the set of propositional formulas built

up from the variables po,p1,... and the connectives
1, N,V > furth.ér let 3% be the set of negation-
free formulas. '

P (the positive logic) is the smallest subset of

ﬁﬁ'which chtains :

A1 p-»(g-p) A1.2 (p>(g->r))—> ((p—aq)  (p->1))
A2.1 pAg~>p A2.2 pAg->q  A2.3 (p>q)-¥ ((p->1r)—> (P> AX))
A3.1 pspvg A3.2 g-»pvg A3.3 (p->1r)-((g>r)—>(pvag-r))

and is closed under modus ponens (MP) and substitution

rule (MS). [P (the minimal logic) is the smallest

subset of F which contains:
A1.1—2A3.3 as well as Ad4.1 (p—->q)—((p>q)—>-p)

and is closed under MP and MS.

a—
=

P (the intuitionistic logic) is the smallest
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subset of ¥ which contains:

A1.1—-Aad4.4 aswell as Ad.2 p—=>(-1p-—>q)

and is closed under MP and MS.

We 'recall some of ‘the most poéular alternative
axiomatizations.

Instead of A1.2 : (p=q)—>((p—>(@-1))— (p-x))

A1.2 : (p—(p>9)) > (p-q)and(p->q) > ((g-»1)>({P-—> 1))
" " A2.3 : p(gepAaqg) :
om Aa$3:(pemarn—ymﬁq»rﬁwﬂPAQ%ﬁ»®i@*I”
o EE VIR (?wwq)-»(q%’"}?) ‘

" " M (psa)>(7gwip) and p—yap

" " M (p3g)—> hgap) and (paap)->ap

" " A2 : ap-y(r1p—D)

" " 2.2 :p Vq-—’: (+\p-=q)

- In subsequent discussion it will be useful to

remember that the following formulas are in P:
(Pya-»r)e> (p>x) A (@>r)
| { (p=gAr)e(p-9g) A (p->r)

{(paq»ﬂ<~(pﬁﬂqu*r)}nmhmmmmm -

(p>gqVr)e— (p->q) v (p—>r)

(pV>T AS) e D->) A (P>S) A (@>T) A (q-5)
(pAag—srvs)e— (p->r) v (p-»s) v (@-r) v (q_,s)}not,hwever ->

(pAg=>rvs) ¢« (p»r)v (g=»s) } not, however —s

P

and also that following formulas are in P
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e B T TR e (% v o)
{—:(o{vfs) <> T Af}

'1(«4\{3),.«.. Ty vﬂﬁ } not,howe\kfer,——b(also not in ?;!)

70{—»(0{—-—;’1(3}

== —

and that following formula is in P- P

Al = ) = Ay

Finally remember that minimal logic and in-
tuitionistic  logic may be obtained by dropping —, assuming

the constant | , defining =p = p-»1 and,

Jdf o . .
respectively, making no assumption on L. and making

- the assumption _L —p.

2. Relational propositional semantics (Kripke-

semantics) .

Def. 1 (1) <P,s% 1is a partial order iff for

igi
all i,j,kePisianjgk—>isk
isjAajsi—»i= ]
(2) QeP is open (in the partial order
<P,$»)iff for all i,je P: ie Q Alsi- jeQ,

(3) <B<,0> is a special partial order

iff <P,s>1is a partial order and
Q is open.

(4) <P,¢,0>is a scotian partial order iff

<F5,0> is a special partial order

and Q = .



- Def. 2

- Def. 3

(1)
(2)
(3)
(4)

(5)
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In what follows we always assume: P # (.

A realization of (the propositional language)

L on the partial order <P,<» (on the special
partial order < Bs,0 > ) is a mapping g of
the set of propositional variables into the

set of open subsets of <P,s> (B,5,0Q).

If ¢ is a realization of £ on <P,sy (on
<P50>), the relation "¢ forcese at i"-
to be written: 9it=0( or, simply, ike -
between i ¢P and «e ¥t (we %) is so
defined by recursion on « :

iwp iff i€ @ (p)

ikdAfl iff irx and igf

ikdvfl iff ik« or iE(

ika-( iff W3 (if jee«, then JER)

igj

ikad iff \j (if jeo, then 3¢ Q)
i<

" Theor. 1 (1) for all o(é’}"(NC«.?),fi/fit:o(] is open

Def. 4

in <P,s> (in <B,0> )
(2) if <« P,<,0> is scotian, then ik=e iff
Vi iH«.

i<g]

(1) « holds in p [pra]iff Vi p kot
iep
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(2) otis valid in <P,<>(in < B, 5,05)

[Pra]iff preo for all p on <P, s>
(on < P,5,0>)

(3) if ® is a class of (special) partial
orders, then @t:a( iff ;ig PrFro,

Theor. 2 (1) foroe3t :weP iff o is valid in all

partial orders;
(2) for ol¢ '} :welP iff ® is valid in all
special partial orders
(Segerberg, 1968);
:o0¢ P iff « is valid in all
scotian partial orders

(Kripke, 1965).

B. INTERMEDIATE PROPOSITIONAL LOGICS.

1. Syntactical characterization.

negation-free

Def. 1 An intermediate negative propositional
gt

logic L is a subset of ;‘3' which contains
3

P
{?} and is closed under MP and MS.

P
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—

., 9 and J shall be, respectively, the set
of negation-free intermediate logics, the

set of negative intermediate logics, the set

of intermediate logics (always: propositional,

of course).
It is easy to see that for gg J, 0363( 'and
that the same holds for }gﬁ or ’Jg_ ﬁ ): so
we may define, for me 5+(respectively in 3),
H_ 4 M= [L el l'm c L] (and s:Lmllarly H_j(m)
and ﬂ_n (M) ) and thus prove

Theor. 1<<ﬂ)s;>1s a complete partial order with
Inf (g);-ﬂj and sup ‘(’}) =L 4 (V%) (and
analogously for <! ¢y and <J,e%).
Further:

[ . 2D i i : = ’ : + f—
Theor efining LyeL, Inf ({ L1,L21 ) Li+L,

= Sup ({L1,L2} ) ; L1-—-3L2 = Sup [L lLé Hooa
<+
LyeLeL,7:1=3";0=P ; the algebra
<)3 ot ,—310 > is a complete Heytlng algebra

(and analogously for 'J and ’3)

2. Some examples of negation-free intermediate logics.

Disregarding the trivial negation-free inconsistent
+
logic ?’ three well- renowned elements of ’3 are the

negation-free reducts of intuitionistic, Dummett s
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and classical logic respectively. The first one is
precisely P : the second one, to be called B ,can
be obtained by adjoining to P one of the following

interesting schemata.

(>3 v (->e) (@) =y) = (((Brea)=y)=y)
AR =)= (= y) v (f>y) (=) > @) v @-y)
@f=>=)v (avf=R) (8=>anf) v (Soaaf)
((@=>R)=f) & (f2)=mot) = av

(@A —> gv8)= (4> y) v (¢ = 8) v (f=y) v (B-=»9)
@=>3) v ((«=>f)=f) (x=R) v ((x=>f)—>et )

Among the most interesting properties of B can be

mentioned:

1) in B the v is definable by yvﬂe—a((o{»(& )-—bﬁ) A

N ((B>et) =)

2) in [B every «é ’3'+ can be equivalently written as con
junction of disjunctions(and,of course, viceversa)
of ' falling implications' (i.e. implications of

the form (. .((po-—->p1)-—’:pz)-"?---"’79n)-

The third one, to be called [ , can be obtained by
adjoining to B(in fact to P ) one of the following
interesting schemata.

av (d=3) ((3f)>u)=> »(((0(-—’3)-*3)-"( (oz»xl)-»x)::
(=>R)»R) 2} (=)o) ((foe)sa) () v (=)
(A= yvd) = (X=2y) v ( f—=>3).
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The inclusion diagram is of course the following:
P>B—=T. 1wo interesting refinements of this
diagrams can be obtained by considering the two

sequences of logics {A’ngnew {'I{‘q.,}n

obtained by adjoining to P the following schemata: -

o which are

n+1 n+1
/‘\n= V (et;—=> V)
i=0 g
T P v 7 (o¢ ol
'n o ilg 1% 4! ~ (Segerberg,1968)
It is: ﬂ A =1P; ﬂ -K_ IB;/A=B;T=7T
neN ne N © o

- And the inclusion diagramm (all inclusions are proper!)

is the following:

Wﬁ...—b#\n—» e A14~>!B..,->‘1Tn.a, ,,.._9"5'1__;5‘

Two other interesting sequences of logics, to be

called an and (I:n respectively, are obtained by

adjoining to P the following schemata:

n+1

n+1
an AN s, >Va)» Vo)V
i=o j . . J . 3
i#j i#j i=0 1

(Gabbay-De Jongh,1974)
€, =« v(oei—-s»o( ) |

C
‘n(f o vV (¢
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It is [BO=IB;<£O

diagram is as follows

=T (]Bn =P ; ﬂq_jn::TP and the inclusion

ReA SRS "”'fﬂ" . ’_"Cz"‘" d:i
ﬁ)\ --------- —+ A --—»Al—»/Ai—w»[B Rl PR =T, —Ti—T
== By -~ BB
. R - +
moreover ﬂn (]:n R.
A sequence equivalent to d:n is
N, = (e, = x ) ely)=>
N_: (Troelstra 1965,Nagata
" 1966)
Npyq = (L N = o )= )

3. Some examples of (negative) intermediate logics.

When negation is considered there are two kinds
of logics which deserve attention. The first one is
that obtained by simply adjoining the negation-free
schemata considered in’] to @ orfp .The resulting lo-
gics,for given nameX in 73 wi}_l be denoted v X or y

respectively.So, for example,]B is Dummett's logic and

ol
T is classical logic. Besides these,there are howaver

interesting logics in ] or 'J vhich may be cbtaihed from regative
logics
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by adjoining schemata which concern nagation. Within

the most famous sche‘mata of this kind we only recall:

(1) Kreisel-Putnam schema: (-xot—)ﬁvaz)v—a (Ra>R) Vv (> y )
(2) Weak TND schemata: one of the following schemata:
Ad Ve (e=f)— ((nasR)>(3); Al /\(& )= VAl
(>13) v () () = X v
(3) Strong TND schemata: one of the following
schemata: - /
Avad, (4> ) ((-wt-)[! )—»p) i (Ad>a) => o ;

(o(»ﬂ)——»-w(vr&,

2

l:remark that (3) adjoined to P gives, of course,
classical logic but adjoined to P gives a logicy,
first investigated by Curry, the negation-free
reduct of whicl_l__is sti1l ¥ (Pearson):]. Further ’remark
that P+ (1) € P+ (2) and of course P+(1), P+(2)S &;
P+3eT. | |
Another interesting schema is —(d->(3)—> -« (or
equivalently: -1ad —» 11 1 (-2 (3 ) )which adjoined to ﬁ
gives alogic which ii_both in E and inTr.
At last, remark that -ﬂ—s+(2)a‘ FPS +('1‘lal—->b()e—>o(\/-"la’.
An interesting sequence (due to Smorinski, 1973) is
the{ following Sn (n>0):

s. A

n° . Osigjsn

n

‘ - V V =4
BRGNP j)

- made, following definitions and
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Remark: P+s = P+ v (the same for ﬁ ) N P

) ’ =
+ Sn =P (the same for Py.

4. Relational semantic for intermediate logics.

To avoid tedious repetitions and notational
scomplications we will, in general, speak of "logics”
and "partial orders". If no special warning is
theorems aﬁ:e kfto‘ o
be understood as separate referring to three
couples: < negation free intermediate logics =
partial orders >; <negative intermediate logics -
special partial orders> ; < intermediate logics -

scotian partial orders > .

Def. 1 1)If P is a class of partial orders, then
L¥(®) =[]l PEa]
2)If M is a set of formulas, then MM =

= [eleeM]
From Def.1 it fpllows:

Theor. 1 [_¥and M determine a Galois connection
between sets of formulas and classes

-of partial orders i.e.

e MelFMan) 1.2 Pe M WP
2.1 MMM e M 2.2 PeQ->1F@ e IN®
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Theor. 2 For every gb,(ﬁ(@) is a logic i.e. a set
of formulas including, respectively, P, =

P ’ f(ﬁ and closed under MP énd MS.
Def. 2 If L is a logicthen we say:

(1) L is valid in @ iff Lo ¥(®) (i.e. iff
odelL—>Prw)

(2) L is complete in @ iff *(®cL (i.e.
iff Pero —> «¢ L)

(3) L is characterized by & iff L= | (D)

(4) L is Kripke-complete iff there is a &

such that §> characterizes L.

(5) L is finitary (or has the finite model

- property) iff it is characterized by
a class of finite partial orders.

(6) L is tabular iff it is characterized

by a single finite partial order.

We collect now some semantical characterizations which
are known for logics we spoke  about up to now. First

some definitions:

Def. 1 (1) i «3j iff i<jAVk (1< ks joizkw k=q)
(2) [i» =[3] i« j]
Def. 2 Let A< P, then:

(1) A is a chain in P iff iy (isjviei)
\ ‘ ilij
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(2) A is an antichain in P iff \f}j (i7#]—
‘ i,jeA

-—)i# Jaddi)
(3) A is directed in P iff WVij Jx
i,jeA ke

(iskajek)

Def. 3 (1) P has height n iff n is the maximal
length of chéins in P
(2) P has width n iff n is the maximal
length of antichains in P

(3) P has local width n iff Wi (n is the
i€p

maximal number of elements in[i}))
(4) P has top width n iff P has n maximal
elements.

(5) P is a tree iff  ¥i({i]is well ordered)
ieP : ’
and P is principal (where {i] = [j | 3 gi})

When the partial orders one is considering are special
ones (i.e. <P« Q> ) then it is often useful to-
consider the above properties limited to the normal

part of P i.e. to P= Q. In these cases we use the

specification 'normal' as indicated by the following
example: 'P has normal height n' means 'n is the

maximal length of chains in P-Q'.
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A rather involved proverty of partial orders is
thevfollowing. Define, first, for A¢P, A% =
Bl3iGenaien] 2> =[5]3ienaiei]
and then a° by setting: A= (A% )* . We then say:

A partial order has property# iff Wa. p - a° is
AEP
either empty or has a first element; A partial

order has the Kreisel - Putnam property iff

all its principal suborders have property:# .
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5. CHARACTERIZATIONS OF "SOME LOGICS Ny .

Logic

Classes of
partial orders

Classes of finite
partial orders

Partial orders

trees
] full binary tree}

finite partial orders

finite trees B
"uﬁesi }

Jaskowski J;sm

chains

{w}

finite chains

{1} (4=<1d=)

chains of cardgn + 1

{_’h’ﬂ + 'H.g =< f_o,..m,} (0.944...-9,,,}))

partial orders finite partial orders
e of height ¢ nt+1 of height ¢ nt+1
éértial<nibrs finite partial orders
of height n+1 of height n+1
A partial orders finite partial orders
A

of widthg n+1

of width ¢ n+1

finite partial orders
with local width £ n+1




Remarks: (1)

(2)
(3)
(4)
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Characterization of B by local width
is not extendible to iAfinite partial
orders (the full binary tree is of
local width 2 but E%n is not positive!)

All logics in the list are finitary.
mﬂyT‘mﬁ'Tn (n>0) are tabular. -

The Jaskowski trees are:

n+1 times

ATy
Ta Jm R

LY °% ® @ a8e o

me 4
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6. CHARACTERIZATIONS OF SOME LOGICS IN ‘’j.

Logic Classes of special
‘ partial orders

Classes of finite
special partial orders

Special partial
P orders

finite special
partial orders

special trees finite special

trees

finite special
chains

special chains

&l

T . i %( {o}=0>, <joy= {0}3,}

special chains of
~ cardgn + 1

special partial orders
m of height ¢ n +.1

A\

special partial orders

Pvin rtial ord
normally directed . .
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Classes of finite

AlDno=9

Logic Classes of special
partial orders special partial orders
= special partial :ﬁmiuéspeauﬂ_p&dial
P+avan orders with P—Q={o§ orders with P-O= {og
- spec. part. orders
P+F Cwith: Vi J3 (igia
ieP-Q JjeP

Rﬂmnks:

or

(1). Fis 9 (x—03)— ¢ (+!—§)

T — 1 (- R) (+F)

or
T’b1qud)

+P)
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7.VCHARACTERIZATIONS’OF‘SOME LOGICS IN 5 .

Logic

Classes of scotian
partial orders

Classes of finite

scotian partial orders

=

seotian partial
orders

scotian trees

full binary
"scotian tree

finite scotian
partial orders

finite scotian tree

scotian Jaskowski
trees '

=

{ scotian ’ﬂ&

}

scotian chains of_
card ¢n + 1

- <ntl

m . .
{Scotlan'm+4}
+ SFotian partial | finite scotian partial
‘ orders of lengthe | orders of length gntl
z? £n + 1
m scotian partial | finite scotian partial
orders of length | orders of length n+i
n+1
= socotian partial finite scotian partial
A, orders of width ¢ | orders of width¢ntl-
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Logic Classes of scotian Classes of finite
partial orders scotian partial orders
T§ finite scotian partial
m orders of local width <
£ n+1
ﬁ(ﬁj finite scotian partial
‘ orders of Kreisel-Putnam
scotian directed finite scotian directed
partial orders partial orders

]
finite scotian partial
orders with maximum

scotian partial
orderswith maximmm

scotian partial finite scotian partial

orders with;n orders with: n
ke Vv Y vex | Ixpex Vy Vvex,

(i.e. maximal top.
width n)

Femarks:

(1) 7T is P+nvaix
(2) KIPis ?F+(wa.9(zvzr>—9<n«.u@) v (= y)
(3) @, —\ﬁ“ and IKIP are prime; an other logics

in the list are not prime.
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From the preceding tables it is immediate to deduce :

1. There are Kripke-Complete Logics.
2. There are finitary logics.

3. There are tabular logics.
But also:

4.'There are logics which are finitary but not tabular.
It is then important to stress:

5. There are logics which are not finitary
(Fine,1970; Kuznezov - Gercin, 1970; see Gabbay
[1981]) op. 103-105).

7. There are logics which are not Kripke - complete

(Shechtmann, 1977).

After this brief survey of some particular
intermediate propositional logics we go over to
consider one example of investigations of a more

general kind.

8. HOMOMORPHISMS AND SUBORDERS.

A homomorphism between (special) partial orders
is a map which preserves order (as well as normality

and non-normality) i.e.

Def. 1 f is an homomorphism from<P <4 Q> into
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C¢P' 2' Q's iff (1) £:P—P'; (2)

d£(3); (3) Vi(ieooegn. I

i€P

Def. 2. A homomorphism f is an epimorphism iff it

is onto and it is a monomorphism iff it is

injective. If A¢ P then <At ,0n A> is

a suborder of ¢<P¢ Q> .

It turns out that all these notions are too general
to show interesting results in relational semantics.
The right specialization seems to be that obtain“e“d
by imposing to the involved maps to be open i.e.

preserving openess.

Def. 3 A homomorphism (epimorphism, monomorphism)
f from <P ¢ QY intc<P' ¢' Q'> is open iff
for all A¢ P, if A is open in P then £(A) = ’
= [f(i)[iéA] is open in P'. |

Openess of a homomorphism can be elementary

characterized:

Theor. 1 A homomorphism f from <P < Q> into

¢P' ¢' Q'> is open iff Vi VI (£(1)g'i'w
. . . . . ‘éP L 3 P‘ B
— Jj(igi A£(3) = 3")) * 1e
Jep
Proof: (=P) Let f£f(i) €' j' with ieP and j'€P'.
Consider f£([i>d) (with [i) = [j |1<3] ). as [

is open in P, £([i))" is open in P' by hypothesis.

Vijiz 55 e
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As,however,f (i) € £([1)) and £(i)s'J' so j'e £([D)
i.e. j' = £(3j) for some je[i) i.e. for some j such
that isj.

=) Let A be open in P and consider f£(a). Let

i'€ £(A) and i' &' j'. As i'€ £(a), then i'=f(i) for
some 1€ A. Thus £(i) €' j'. Thus,by hypothesis; ] '=£ (3)
for some j &P such that i<£j. But A is open and then
from i €A and i ¢3j it follows: j€A. But then £(j) €
ef,(A), i.e. j'ef(n). ‘

Theor. 2 (Open homomorphism lemma). If £ is an oven

homomorphism from ¢P £ Q> into <P'«<' Q'>
and if g is a realization on<P ¢ Q> and
‘ 9' a realization on<P' £' Q' such that
for all variables p, | i 657(9) iff £(i)é
6?' (p) (for all i €P), then, for all
formulas o and all ié& P:
P e)FY
Proof: by induction on® . For &= p, &=@n ¥
o(=($\/x , trivial. For0(=(3—-92{: let frlzf(&—-ax
Then,.for some j&P: i ¢Jj and ijz(ﬁ and Yj Y
Thus, by ind. hyp., ?,f(j)k:@ and ?,f(j)’lz/x .
But i< j=2£(i) ' £(j). Thus F'f(i)/bé (5-—-)5/.
On the other side, let g)'f(i)_;xf'(s_»g. Then, for
some j'€P': ?'j'[_-:.@. and ?‘jlp/z(and £(1) £'3".

Yil:: o 1iff

But f is open , thus, by theor.1, £(j) = J for some

j &P such that i<j and so ??f("j)‘:@ and S)'f(jfb{x‘
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Then, by ind.hypothesis and
' P AL Y-

A , = .
But i <3j, thus ? ltf (5—‘-32{ - For ’o( ~'1($ : let
?i;;/«,(g ; then, for some j such that jf/Q and iéj:'

.k . Then, by ind. hyp. ) i ]
.?J‘;(L , by in VP -, ﬁf(j)p@.From;éj
it follows f£(i) g' £(j) and from j£Q it follows
f(j)ﬁ Q'. But then: ?’f(i)):/‘l({. On the other side,
let ?'f(i)/%-‘(% . Then,’ for some j'f/Q‘, it is
£(i) «' ' and S;'j‘l:(é . But £ is open, and thus
from £(i) €' j' it follows that for some j €P:i g j
and f() - ,'. Thus . o ‘ PRy A '
' ], ] ¢ f(j)-t:@ and f(j)/e{Q . By
ind. hyp., g)jg:(; and from £ (j) %Q' it follows
J'%Q- Being i ¢ j, we have then: f?/-l(i

i

Theor. 3 (Open epimorphism theorem). If there is an

open epimorphism from <P ¢ Q% onto<P'<2'Q'>, -

then :
. .
C<pe0y) < B(<p ¢ Q'>)
Proof. Let o € [[*(P) but suppose o(ﬁ/ﬂf(P'). Then
There is a realization ?' on (P' ¢' Q'> and an i'e P’

such that -?'i,;z/o( . Let £ by any epimorphism from

<P <Q> onto <i>' <' Q'> an@ define ?(p):[j‘ﬁ(j)é S)'(p)] .

g] (p) is open in P (f is indeed continous -exercise)
and so g’ is a realization-on <P £ Q> . Moreover it
satisfies the hypotheses of Theor.2: Thus ?J:c( iff
. , , ) J
Y'f(j)’:o( for all jeP.‘"]?ut f is epi ; then, for
the i'¢& P' such that e'i‘,;c/o( , there is i€ P such
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that f(i)=1i'.And so, from S) f(i);z{of,lt follows fi;éoc
But then ?}:40( and also: o(;é\lﬁ({?g %) .

Theor. 4 (Open monomorphism theorem). If there is

an open monomorphism from <P ¢ Q> into

<P' ¢«' Q'> then:
I*<p' 2 o)< Lrpgor)

Proof. Let & L¥(P") butis“ﬁpéo‘éeﬁi o(«?f *(p) . Then there
is a} realization SD on .{Pj‘énQ> andhan i € P such that
: S)J,y_(og . Let f be a monomorphism from <P & Q> into
LP' 2' 0'> and define, for all p, 6 y‘(p)= [f(i)tie
é—.?(p)] . As ?(p) is open in P and f is open so
?' (p) is open in P' and thus 39' is a realization
on <P'«'Q's . Moreover, as f is mono, for all je&P:
j & ?(p) iff £(3j) € 57' (p) . Then, by Theor.2, for all
jJEP: ?jk:o( iff ?'f(j)‘:\x . As , however for the
given i &€ P: ?i;éo(so ?'f(i)?/o(° But then g)‘;/o( and
so o(;zf Ber' s' Q'>) ' .

[N

Def. 4 A suborder <P' ' Q'> of <P <£Q>is principal
iff it is [i) = P'.for some i&P.

Remark that every principal suborder is an open sub-
order and that the identity is an open monomorphism

from it into.the order.
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Theor. 5 (Principal suborder theorem) .

Ewreo» =N [Crrreos)

<P' £' Q'> principal suborder in<pg Q>] .

"Proof. (=p) If«L€ (<P« Q> and <P'<' Q'sis any
principal suborder in <P < Q) then Xél*(<P'<'Q'>)
by Theor. 4. |

(¢=) If%},/Uf(lPsQw then, for some ? and 1 € P:

?i#p( . Consider <[i), s>, o n [

This is an open suborder of <P ¢ Q» and the identity
is an dpen homomorphism from it into <P ¢Q> . Define
P' (p)= ?(p)ﬂ [i> . such a set is open in [_i) and

so ?'iS a realization. Moreover, for j €& [i) ’ jef'(p)
iff j e ?(p) . Thus, by theor.2, for all je[i). ,

and also in particular for i: S"i}zu iff fit: X .

But S)i[;éo(. So not f‘ihoﬁ and then KX f{llf(<[i) ’ 5}‘[1},
on[i> ) i.e. « does not belong to the logic of a

principal suborder of <P<Q>.

Def. 5 The disjoint union \/ of a family ©=

= P 3 :
{< n énQn>} nel of partial ordersis
the partial order <P £Q>» with :
= .
P nerl Pn® {nk !
2) Q= nLe)I 2, ® [n}

3) <1 ny <<¢j my iff n=maAi énj;
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~ Theor. 6 (Disjoint union theory).

@) = WWwe)

- Proof. By repeated uses of theor.5.

Remark that W ¢ does not in general preserve properties
of elements of @ (e .g. principality, linearity or
finiteness).

From Theor. 5 and Theor. 6 we immediately gets

Theor. 7 (Composition and decomposition theorem) .

(1) For every partial order P there is a
family (P of principal partial orders

such that
— 1% —_ n % Gy
@ = () = RS = ()

(2) For every family @ of partial orders

there is a partial order' P such that

O 1ty = (I ot
RN NES LE®) = L@

As the only homomorphisms, epimorphisms, monomorphisms, - -

and suborders which we need in what follows are all
open we will omit this specification. From now on,
therefore , 'epimorphism', for example, will always‘

mean 'open epimorphism'. . .
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Remark: it .can be proved

(1) each Jaskowski tree is epimorphic image
of the 'full binary tree.
(2) each finite tree is epimorphic image of

some Jaskowski tree .
From Theor. 3 and Theor. 4it immediately follows:

Theor. 8 If < P¢Q>» is an epimorphic¢ image of a
principal suborues of a partial. order

<P' 2" Q's, then W(¢p'e'g's)e L<p<0>)

From a deep result of Jankov, to be soon discussed,
it follows that at least for finite principal scotian
partial orders, the above statement can be reversed

i.e.

Theor. 9 If < Pg¢ @> is a finite principal scotian
partial order and < P'¢'@g)> is any scotian
partial order then:
<P <@> is an epimorphic image of a principal
suborder of <P' ¢' ¢g> iff E(¢p'sc'g>) c
Sl «pep>).

Theor. 10 (Jankov's lemma). To every principal finite

scotian partial order ¢ P< @> it is possible

- to associate in an effective way a formula
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qx)such that for every scotian partial

order <P'4'g> the following conditions

are equivalent:

(I) < P<¢@>is an epimorphic image of
a principal suborder of<£P’é'¢:$.

(rm W «rp'e'gs) ¢ Licpegs)

(IID) &, é»ﬂf(zP’é'¢>)

Proof. (Sketch)

1. Construction, for given finite principal scotian

partial order <P <¢@>, ofcxp

(1) to the finitely many elements of P we associate
different propositional variables: let po be
aSsociated to the first element of < PL P> .

(2) for each ACP we define a formula XA by

{fkpi*ﬁ;z;pj , if @#A#P

= Vb . if A=Q
fa 1€pPi ’
1 Ap: if A=P
{epPT !

(3) Letting O.=[?£]liéé] , we define:

VAN v o \/
“p ~ AfR XAA i/-‘>i( xzji—? Xé_i] ) Ko = iep K(i]

‘and then : & = & — "
P P X P



2.
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It is shown Pp:/o(p. To this aim we first define

‘a realization p on <P<@> by:

(i , ifp = p, and i€Pp
f(p) =

] ; otherwise.

and then show that, for O initial element in

(P<£@> , it holds:

S)Ot: “'p and yotié o("p

It is shown that if 4P'¢' @) is any principal

scotian partial order and ¢ ' any realisation
1

on it such that (0" being its first element)

both ! ! ! o <
o Sao,g:o(pand P o "“P' then <pP<«¢@>

is an epimorphic image of <P'¢4' @> .

To this alm it is first shown that for each

k €P' there is one ‘(and only one) i€ P such

that [jéP{ f'kt= pj]'= (1] , and then shown

that the £, which to every k€ P' associates the
only one i€ P for which [j € Plf‘k;—; pj] =<i]
holds, is an epimorphism from {P'<4' @> onto LP <4 Fy.

From 3. it follows that if {P'¢' @g> is any scotian

worders goes epimorphically onto (P £L@ >y, then P 'ho(p .

If, indeed O(p woula‘ not be valid en (P’ 5,'_' @>
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~ then, by Theor. 5, it would be also invalid in some

of its principal suborders which however, by 3) would

go epimorphically onto (P& @> .

5. The equivalences (I)¢«=»(II)¢é—(III) are now proved:

(I) —» (II) Theor. 8.
(II) — (III) As seen under 2), P %xp so if [5(P') ¢
4 '
~QU..(P), then P lfdf.
(II1)— (1)  If o f L(2'), then, by 4., there is
a principal suborder of LP'<4£ ' g>

which goes epimorphically onto <P« @S.

It is useful to note:

Theor. 10 If <P <&@P> is a finite principal scotian

partial order different from 1=¢fof=g> ,
then its Jankov formula 0(06% (i.e. is

a classical tautology).

Proof. If, indeed, {P<& @> is a finite principal
scotian partial order different from <4l then it
cannot be epimorphic image of principal suborders

of 4 . Then, by Jankov's Lemma,o(pé ﬁf(ﬂ).

We now make two main applications of Jankov's Lemma.



- 274 -

Theor. 11 (Splitting theorem). Let LO be any semantical

socotian logic and [F_(LO) be the set of ' all
semantical scotian logics L such that LOQL-. let
<Ps@># Y be a finite principal scotian partial
order such that [{(®)e (L) and let L, be .
Then there is one and only one semantical scotian
logic L such that, for each semantical logic

Le F(L ): either L L or LS L and not both.

1 v
[F(L ) and (P £¢> be as in the hypothe-

ses with L ‘U_"(<P<¢>) and assume L1 € fF(L ). Let

Proof Let L

p
be the Jankov s formula for <«P¢ @>. Cons:tder L + &,
jof

This is a logic although not necessarily + g semantlcal
one. Define L2 as the least semantical logic which

| estends LO+ Up- (Remark that this definition has sense
begause intersection over semantical logics is a seman
tical logic and, by Theor. 10, L + (xP is in any case B
contained .Hf(:ﬂ_) = clas:ical logic). Now:

let L€ F(L)). Then either ¢_eLorw dL. 1fv er
° P P p

then, Lo+c(p§_. L and so ng L. If O(p#L' then, by

Jankov's lemma, LESL.. So if LéH:(L ), then:LsL1

1° v
or L2__ L. But not both, because ofo{ . Moreover

. 2 i3 p
this logic L2 is unlquely determined. Let, indeed,
he L;3 a semantical logic such that L ‘é [F(L ) and
L.C.-L1 or Lye L (but not both) for all Lé(F(L . As

LB-C-LB' it must be L37¢‘L1. On the other smde, from
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< . L _<L_. But
above we know L3~,:_.L1 or Lz_L3 So L€

if for all L: either L§L1or L3¢_-‘_- Lq’ ~then

25 L1 (which is impossible) or L3_C_ L2. So

again,
either L

L2 = L‘3.

Remark that, as L, containg o(p which is not in L,

it is L2¢L1, but it is possible that L, &L,. If,

however, L1QL£-L2then L1 = L or L2 = I, because in
: < L .¢L,.
anv case I_,,_,L1 or 5 1

W The second application of Jankov's lemma is as follows.

£

It is possible to define a denumerable sequence {Kn}‘neN
of finite scotian principal partial orders such that

any two members of the sequence are not epimorphic

 image of any principal suborder of’the other.The

sequence is as follows:
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Let d»n, be the Jankov's formula for K

. n

By Jankov's lemma we have o(hélf(Kn) and uné (lf(Km) for m#n .

For M a set of natural numbersdefine: L =[*((K } )
M in nﬁM

From preceding remarks we have, for all ne N: « & LM
n

iff ne M. So if M and M' are two different sets

. 14
of natural numbers then LM# L , . As there are 27

different sets of natural numbers, we have:

Theor. j2 (Jankov's Theorem) .

There are 2°° different (semantical')logics.

Many refinements and strengthenings of this theorem .

are possible.

Part. II: PREDICATE LOGICS

A. PRELIMINAIRES

1. Positive, minimal and intuitionistic predicate

logics.

Let '} be the set of formulas built up from the

. individual variables: x

o,x1, ...; for each n» 0, the
. . n n
the n-ary predicate wvariables: P, P1,‘; ..; the con-
nectives : Y, A, Vv,— and the quantifiers: \7/, 3 .

, + o ,
Further let 3 be the set of negation-free formulas.
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() (the positive (predicate) logic) is the smallest
gubset of <y which contains A1.1-A3.3 as well as the

Q1

closed under modus ponens (MP), individual substitu-

formulas : ‘V’x Px —» Px and Q2 Px-»dxpPx and is

tion (MV), predicate substitution (MS), alphabetical .
hange of bound variables (RC), posterior generalization

q«—R(x), x not free in & and anterior

o:—-r?&Vx (¢ (x)
(PA)

(GP) :

particularization o(x)— {£, x not free in\ﬂ .

dxox (}::)-—-%(’:o

m (the minimal (predicate) logic) and ﬁ;@»(the
intuitionistic (prédicate)' logic) are defined
analogously. |

In subsequent discussions it will be useful to

. remember that following formulas are in {PQ

1.1 3 x(PxaQ)e=>TxPxAQ  1.2Vx (PxAQ) > VxPxAQ

2.1 ax(PXvQ)e—>3xPxVQ 2.2 Vx (PxvQ)é— VxvaQ} not ~—»
3.1 Vx(Px=0K— AxPx—=0) 3.2 Vx(P—0x)é (P Vx0x)
4.1 Ix(Px—0)— (YxPx— Q)

} e o
4.2 Jx (P—0x)—5P->Ix0x)

2. Relational predicate semantics (Kripke-semantics).

A Kripke- frame is a family of non empty sets
indexed by a partial order and monotonic with respect

tc this order i.e.
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Def. 1 A Kripke- frame is a system <Pgv>, where.
{P¢)y 1is a non empty partial order and V
an homomorphism (with respecf to £« and set-
theoretical inclusion) from P into the
class of non empty sets. (V is sometimes

called the domain 'function of the frame).

Def. 2 A realization f of L on a Kripke - frame

«P<V> 1is a family of maps {fi-gieP

indexed by P such that for every n-ary pre-

: . n
dicate variable P

(1) for all iep: § (") C V]  (we define:
o
v, = {trutn]); )
(2) for all i,jeP: if i<¢3j, then ?i(P ) &
n
(P
<y
Def. 3 If <P¢< V> is a Kripke- frameand i €P an i-
interpretation on <P ¢V> is a map from the
individual variables of £ into Vi' The set
of all i-interpretations will be denoted
by V..
]
Remark that if O’évi and i £ j, then o’é'\-i'j and that
if G'é.\}'i, i ¢3j and ~(e Vj then there is one and
only one T e'\?j such that:

g(y) if v # x
T (y) =

“? otherwise i

o= 279 -
, o )
.uch a t© will be denoted by G ( ¢ ) .

The preceding notions can be obviously extended

3, to thé case of special Kripke-frames i.e. Kripke-

frames indexed by special partial orders.

pef. 4 If <Pg¢V> (KP¢Q V>) is a Kripke-frame

(a special Kripke-frame), f= {P;% a rgali‘zg
tion on it and G an i-interpretation, then

: o
the relation S’;t:c( (the valuation fi forces

® ) is so defined by recursion on & :

‘ 8
(M 9Tk p° iff fi(Po)= truth;
¢ _n . n
: sva x1..xn‘lff <G’(X1) ,.,G’(xn)é S’i(P- )
(2) f’:" At if_f. f;‘px and r;’;..-(;
(3) y;'_r.: wv(> LEE f:‘f:x—-u or ¢ G T w
(4) plra—>p 1£E Ai\z’jj (fgﬁﬂéfg"(‘) _
. (¥
) ¢l Ixaiff “(’QIV? SR .
. Ty
(6) g;ﬁ'—*on( iff ii\}rjf 3 L?Yv“‘.’ Py EX
M gl iff (Vi (ra=ic0) j

Theor. 1 1If Y is a realization on <P < Q V> then:

(1) for all «,i,j and T¢V, : if i3,
then S’?‘PD(%)?Tbg(
. 1 ‘ 3 . V,
(2) i£ <P <4Q V> is scotian, then: S)i#'ﬂx
. Vo1 o7
e, Yo e
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. o . (%)
. i i, =V ., then iff ¥
(3) if,for all i,3eP, V, 5 ‘SDiF Vi che P i,

¢

Def. 5 (1) yholds inp (pea) iff Vi

s 4
ieP X%'i ?i%m
(2) % is valid in <P¢Vv> (P,Ve«) iff, for allf -on
<PgV>, ?k « .
(3) If X is a class of Kripke-frames, thenfi=x iff,
' for all <PeV>eR,P,Ved. '
(4) d is absolutely valid in <pe> iff & is valid in
<pgV> for all damain functions V.
Theor.2 (1) forde¥ :we PQiff x is absolutely valid in all
partial orders.
(2) forwed :(a)oePQiff ¢ is absolutely valid in all
special partial orders. (b)xePQ iff x is absolutely

valid ir: all scotian partial orders.

B. INTERMEDIATE PREDICATE LOGICS.

1. Syntactical characterization.

Def. 1 A negation—free intermediate predicate logic is a subset
of 4" which contains P® and is closed under MP,MV,MS,RG,GP

and PA.

Negative intermediate predicate logics and intermediate predicate

logics are defined analogously starting fromﬂ—;@ andﬁ@respectively.

Remark. Classical propositional logic (as well as

D
H
8

»Yxpx (1-element logic) is not inconsistent.

If one wants to exclude such logics from interme

diate logics one has only to modify in an obvious

~ way preceding. definition. As we are not interested
| here in general ‘'structural' properties of the system

~ of intermediate logics, but in the study of some

particular examples of them, this question is irrelevant.
Our main concern will be with negation-free intermediate

lbgics (briefly:logics) which arise by some "natural"

" strengthenings of the assumptions about connectives and/

or quantifiers.

Let X be some of the propositional logics considered
up to now. By),(@ we then denote the predicate lo'gic
obtained by{P@ by adjoining the axioms of X . Thus
B@ and TQwill be respectively the negation-free

reducts of Dummett's logic and of classical logic.

'~ We now consider a first group of formulas which are

"not inP@
s Vx(PxvQ) — Vx PxvQ
q (P->Ix 9x)—>3Ix (P -0x)
, " (VxPx—>Q) — Ax (Px—->Q)
: (VxPx—-?Enyy)-—»]x Iy (Px—0Qy)
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and call (for given basis ¥ )¥D ,XM1,X1H2,X\H the
logics which are obtained by XQ by adjoining respe

_ctively all instances of D, H1, HZ' H. If, moreover,

we adjoin, for example, both (all instances of) D and

H1, then we write X D \H1 . For sake of simplicity we
go over to schematic formulations (for example,
VX(O((X) v(l ) — Vx (x)v@ for Vx(PxvQ)— VxPxvQ)
and omit the obvious limitations about the occurrences
of free variables.

We collect some simple facts:
(1) PH=PMH,H,.
(2) PH=P@+Jy @xu(x)—a(y))zPQ+
| Hy\/x (¥ (x)—=a(y))
(3) PH_zPQ+Ix(a(x) =Wy  (v))zPQ+
AxVy (x (x)—aly))
(4) PD<PH,

Theor. 1

thus the inclusion diagram is as follows:

P M
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t can also be proved :

Theor. 2 (1) All arrows in the diagram are proper

(2) Up to transitivity there is no
other arrow.

(3) The diagram remains unchanged
(with properties (1) and (2)) if
is strengthened to /An or to Bn(nzo);

in particular to B .

The situation changes when, from B, we go over

to Tn’ Indeed:

Theor. 3 1 T H, €T D
— n 1 n
2y T H_ T D
n 2 n
—_ = = 1"
and so (3) Tn D = Tn\H_'Wan 1\H2 Tn\DI \1
@ T @ F4 T H,

Thus the diagram is as follows:

T.D
(where —» indicates an in-
T H, . .
T clusion of Whlch we do:not
T Q know whether it is proper).

Remarks: (1) of course: ‘TOD ETO @ .

(2) in PH every negation free formula has

a prenex normal form.
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Define: I'x o (x) = Vy (Vx(a(x)— a(y))—s x(y)) and -

PHePH , and thus : &)M?E‘PIH:EMH1

let E be the schema:

CPM2 . PH =PH? (the
I X (x)—3x« (remark that in PQit is (4) ‘P‘Hz'\sz’ and thus: 2 2

* k3
provable le § (x)—Ix & (x)) It 2-property has so an equivalent

a'free formulation)

‘Theor. 4 PH.;=z PQ+E. N
1 (5) POPU) ana PHIEPHID ; enusP W =

i.e. assuming schema {H1 is equivalent to assume

definability of 3 by means of ¥V and — throuch:

= 6]
-—XPMZ(D.

. _ .
v Vy (Vx (& (x)2x(y)) >x(y)) . 6) P, SPHH | ana thus PH = PHOH,

We now consider a second group of schembta which

I

are weakings of the H-schemata:

PHY H S D.

2
H) Vx((axo0)—p — ((Vx £x5p)—5 ) |
o  fhe resulting diagram is as follows:
By V(X (9 B )1—sp o ((Vx & (1)) —5p) e
Hy V(K 05Yy o (9) )oYy o (9)) Wy o ()
1 .
o (@xdoop)5p) -5 (0 () ) /‘f“
B (Gx ) of- xR 0= 0) @) | !

0
is already provable in PQ. . PHID > °

Remark: Jy X (y)—Tx(( X (x)— Ty ¥ (v))—Ty X (y)) , wib/7

| P
Theor. 5 (1) PlHiéPlH;‘SFPIHESlP}HZ e .
Oc¢ 1 c
(2) PMVPIHIJPIH‘?
P
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Tucor. 6 (1) all arrows (with the possible

exceptions of —») are proper

(2) up to transitivity, there is no
other arrow 0
Tmez )

(3) the diagram is not changed (witﬁ
properties (1) and (2)) if [P is

strengthened to an or /A for n>0.
n

Besides the two main groups of schemata about which
However: we spoke, some other group has been investigated;
: 1 i articular weakenings of D (see later) and so -
Theor. 7 (1) BH, =BH, and thus BH'=BH? =gp T oper 7 ( )
2 2 2 called "strong schemata" i.e. schemata whose "finite
1
(2) BfH1 ‘_:_fBlH? and thus {B{H?E {B}H} version" is already an axiomatization for T . To make
7’
0, _mul an example: X o (x) > (v)) —~>d=x(e (x) —>(5(x))
BH) =BH!D ple: (V Jy P w))—>3» > (3.(x)
whose "finite wversion" ((p/\q —~rvys) =>(p—=>r) VvV (g->s))

| 0 o - :
(3) B[H1 < Bﬁs and thus BH?BS‘—:-%H”}&EIB[B 4 | adjoined to P gives .

The resulting diagram is as follows (with all

arrows proper). ) . . ) .
‘ 2. Relational semantics for intermediate predicate

BH .
° logics.
o BH, D ,
i
\Bob//) The whole terminological and notational apparatus
T which has been introduced under the corresponding
B’ ' /%H heading in the propositional case can be in an obvious
L \ o 0 i ) .
. 0_//785‘{1 o ~ way restated and;efoxmulated for the new situation
Ba One point, however, should be stressed: whereas
-Going over to the Tn -the ,diaqrAam becomes as follows in the propositional case the main tool at disposal

(for n>0, of course). - for the identification of semantically determined
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logics was classification of partial orders by means (5) /A @ is absolutelv valid in all
N p’

of order-theoretical properties (e.q.: linearity, partial orders of width < n+1(..finite..)

maximal height, maximal width, and so on) in the (6) B @Q is absclutely valid in all
n

new case we can also consider properties of domain finite partial orders of local width

functions (e.g.: constance, almost constance, and < n+1 ( but not in all partial orders

so on).
of local width < n+1).

The first problem which arises in relational seman-

tics for intermediate predicate logics is, of course s for as the "completeness part" is concerned,

that about the extendibility to the predicate logic wever, the situation is very different. At present

XﬂQ of those characterizations which are known for ime the only completely satisfactory results are

the propositional logic X. 1t turns out that the situa till the well-known facts:

tion is not so simple as one could at first glance

expect Theor. 2 (1) PQ is complete for the class of all

partial orders.

Indeed, it is in general rather easy to see that the
(2) TQ is complete for {fﬂ.} .

"validity part" of propositional1characterizations

cai be translated int " ity " ‘
nto a “validity theorem" for the To illustrate the kind of difficulties one faces

cgrresponding predicate logic. Thus, in particular it When trying to adapt to the predicational case those

can be seen that: . . .
procedures which are successful in getting completeness

Pheor. 1 (1)‘P¢l is absolutely valid in all partial for the propositional case we briefly discuss the most

orders (and,a fortiori, in all finite simple case: that of BQ.

partial orders); In the propositional case one goes out from the

o . . 1t .
2) BQ is absolutely valid in all chains canonical partial order built up from the prime

(all finite chains); extensions (on thg same language) of a given prime

(3) TQ is absolutely valid in 1 ;
fqtallrno (4)}(}51 is absQLptely valid in all partial as follows. If for some Sq, 82(805581,82) in this

theory SO. That this order is a chain is inferred

orders of héiéht&é n+1 (;..finite...);
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ord it d S
order it were 319‘;82 an Szgé ,r then, for some

o¢ and ﬁlt should be: 04681 - 82 1;

but then (the underlying logic being ) (d~?(3)v

and [3 € Sz—s

v ((5-90() ESO and, as SO is prime, either o(-:;(?eso

or (3~mxeso.-1n the first case, however,(%é S1 and

in the second, ¥€ S against our hypothesis. This

i
kind of argument cannot be replayed in the case of

the canonical Kripke frame built up from the prime

and rich extensions of a given prime and rich theory

SO on a tower of denumerably . many languages each
of which contains a denumerable set of individual
consﬁﬂﬁswhijlarezxm in the preceding.. language;
the point is that it may well be cxeS1—S2 and"

(%é 82_51 without that this implies (because of the
-linguistical levels) that (q;>ﬁ)V*(ﬁ—wx)e 8- Some
natural modifications do not better the situation -
(at least as for as we know).

Nevertheless we have some interesting negative
informations about completeness of X @ which follow
from the following '

Theor.3 Hg

~valid in all dually well-founded partial

(i.e. all instances of) is absolutely

orders (i.e. partial orders without infinite

ascending chains).

As all finite partial orders are obviously dualily
o]

well-founded, from Theor. 3 it folloWs that.H2

is
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in any case absolutely valid in all finite partial

orders and thus:

" Test for finitariness: If an intermediate predicate

logic is finitary then it must
s

prove '(any instance of) H 5

But it can be proved:

Theor. 4

B,&{; is a proper extension of BQ.

Thus, using some obvious inclusions:

Theor. 5 PQ, BQ and, for all n,An@ and [Bn@ are

not finiﬁafy.

Three remarks:

(1)

(2)

(3)

As we do not know whether the inclusion ’Wh(} c
1rn W{g (n>0) is proper we do not know whether
i t finit .
ﬂ"n(D is not finitary
HBnQQ (n>0) is surely not complete for the only

class of frames for which we have a validity

theorem (finite partial orders of local widthsn+1)

Quite independently of the fact to be reversible
in a completeness theorem a validity theorem may
be wuseful in proving independence results; for

proving not inclusion of a certain schema S in a
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logic L, indeed, it is sufficient to construct
a countermodel = to an instance of S on a Kripke~

frame for which validity of L is known. , )
finitariness we have, in any case:

A second problem which arises in relational semantibé
for intermediate predicate logics is connected with eor. 8 b &5 ’ B ms and, for all n>0, A\n&5 and

those frames which have a constant domain function. @)nﬁ5 are not finitary.

Already 1965 Kripke remarked that schema D is valid us, in particular, the characterizations of PD ana

in all frames having a constant domain function cannot be sharpened to the corresponding classes

(briefly: frames with constant domains). It is easy finite partial orders with constant domains..

to transform all preceding validity results about ¥ @ natural question which arises in this context is that

(S. Theor.1) in validity results forXﬂbwith respect out those logics which are determined by frames whose

to the corresponding classes of frames with constant- main function has only two, three, 3different values.

domains. Minari has found a sequence of schemata Do'D1""
End of the sixties S. GOrnemann , D. Klemke and D. h that (1) D = D; (2) for all n>0: D is valid
: : o) n

Gabbay proved independently 11 chains with at most n+1 different domains but

Theor. 6 [PD is characterized by the class of all

frames with constant domains.
Modifying Klemke's construction, P. Minari

(1981) has also proved:

or. 9 (1) HO is absolutely valid in all dually
Theor. 7 (1) BN is characterized by the class of

well-founded frames (Theor. 3).
all chains with constant domains.

(2) }% is valid in all well-ordered frames

(2) T I is characterized (for n>0) by
n with constant domain.

the class of all chains of cardinality

< n+1 with constant domains. ‘this, easily
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o]
Theor. 10 (1) P}HZ is absolutely valid in all

dually well foundea frames.

(2) IPH‘(; (5 {F{Hgﬁl) is valid in all dually

well-founded frames with constant
domains.

_ |
BHz (-‘-‘IBHz'f‘—fBH; N ) is valid in all

dually well-ordered frames

(3)

with con-
stant domains.

(4) B !H18> is valid in all well-ordered

frames with constant domains.

(5)

Bl is valid in all finite chains.

We do not know if some or all of these statements

can be sharpened into a characterization.

About H1, however, we have a rather surprising result:u‘

Th .

eor. 11 IP(H1, B H, and, for all n >0, An}HVBnW
are not semantically characterizakle (i.e.

there is no class of frames whose logics

coincides with them).

We can indeed show that in every frame with non con-

stant domain function, there is an instance of H1

which is not wvalid in it. [If < P<Vy»is not with

constant domain function, then, for some i> 0,

there is dfe Vi_ VO. For P a monadic variable de-

fine a realization ¢ = {?j% by :

jeP
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g, if 331
0. (?) =

J
{<f§, otherwise.

It is easy to see: QO#HX(ByPy—an) } . It follows
that a characterizing class of frames for FH{1(B}H1
and so on) can only contain frames with constant
domains. As already remarked, however, D holds in all
frames with constant domains;~thus, if‘? characterizes
P ﬁi1(E)&41,...) (all instances of) D must be provablé
in !P&%(IBQ{1,...). Already 1959, however, Umezawa

has proved, by algebraic means, R [H1 ?(BIE (and so,

a fortiori, m&}% PD and so on).

Thus Kripke semantics reveals in the case of the
predicate logics a really surprising weakness : it
cannot characterize so a "natural" logic as WH{1:
the logic of " E—expositioh“, the logic of "indepen-
dence of premises", the logic of
Recently P. Minari has remarked that frnqp (n>0), if
characterizable, must be finitary; thus, by test of
finitariness, if H;@pdoes not prove Hz (what, however,
we do not know) then TTJQ is not chatacterizable.

Up to now we have spoken only of what we properly
named negﬁtionffree logics. When negation is taken
into account, disregarding some obvious tranferrings

and trivial corollaries only the followings results

are known to us:

"existence definability".



- 296 -

Theor. 12 (1) PQ}+~VX'T1¢—VU%<& is characterized
by the class of all <P £ ¢ > such that

<{Pg¢y»is a tree for which:

Vi 35 (1<¢3 ana Wk (3=x))

ieP jé€P jsk
o (Gabbay 1972-81).
(2) m +7vxo(f> JdxA« is characterized
by the class of all <P< @> such that
V is constant and P is linear and has
E_yaximum (Minari, 1982).
(3) Eﬂ& +1an—¢3xﬂd<+1andis chafacterized
by the class of all <Ps @ > such that
V is constant and P has a maximum |

(Minari, 1982).

Gabbay (1969; 1981) states that Eﬁﬁ +”7¥V11dis‘
characterized by the class of frames with directed
partial order. 1969 it calls it a triviality; 1981
it calls'it a difficult exercise; unfortunately wup

to now we did nat solve the exercise.
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After these lectures were held and written down we
have been informed by the kindness of Prof. H. ONO
of important results in the field of intermediate
predicate logics. We mention only:

[1] H. ONO, Model extension theorem and Craig's

interpolation theorem for intermediate

predicate logics.
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[21 H. ONO, Some problems of intermediate predicate

logics.

[3} Y. KOMORI, Some results on the superintuitioni-

stic predicate logics.

[4] T. NAKAMURA, The disjunction property of some

intermediate predicate logics.

‘ [1}, [3] and [4] will appear in Repocts on Mathema~{

tical Logic;

[2] will appear in the Proceedings of the Bronwer-

Conference.

As for as problems discussed in the last lecture,

at least the following results should be mentioned.
Discussing Vx-rﬂPx-—>ﬂ7VxPx, ONO introduces in [ﬁ]
an algebraic model which he attributes to A. Wrdnski.
It is easy to verify that such a model fournishes
the desired proof that 'WHQ is properly contained

in '[1&42 . So by preceding remarks we get :
Theor.: for all n >0, F}f} is Kripke-incomplete.

Such a theorem follcws however easily from a more

general theorem in [1] (Theor.3.2),from which also

it follows,in particular,

Theor.: for all n, (ISQ is Kripke-inclomplete.
Komori proves (Theor. 5.5)

Theor.: IPwB is K:ipke—incomplete.




