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Per Martin - L&6f has developed a rather general theory of types

(cf [6],1[7]). The present paper is the result of some reflection

on the basic concepts of this theory. We define a formal system of
type theory with the intention to express these concepts as clear

as poss:.ble. Then we begin with the development and the metanathemat-—

ical investigation of this formal system.

The formal system is described in §1. It differs from Martin-L3f's
theory of types (in [7]) in a number of points. The main difference
is that we have tried to avoid any unnecessary generality. So we dis-
tinguish between types X in the usual sense ( built up ffom N, G

by -, x and + ) and formulas (better: problemé) A (built up from

r = sex’ by =,A,v,¥x€X and 3x€X ) ; any formula

equations
A has a type TA associated with it. For instance, T(VXEX)A=X-7TA
and tr = s€X =G . We derive judgements of the form re€X , r= s€X

"and r€A , to be read: r is an object of type X , r and s are

(extensionally) equal objeéts of type X, e;nd r realizes A (r
solves the problem A ) . For any form of a type / formula; there are
introduction and elimination rules. The introduction rules determine
what the objects/ realizations (solutions) of the type/ formula |
(problem) are. The elimination ru\les express that the objects/ reali-
zations (solutions) givén by the introduction rules are the only ones.
A somewhat similar restriction of Martin -LSf's system has also been

considered by Diller in [4].

Another noteworthy difference between Martin - LOf's theory of types

and ours is that we have no finite types Nn and in particular no
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N0 + which serves Martin - LGf to identify the logic coming out of his
;ystem as intuitionisﬁic. In our system, ﬁowever,»there would be no
closed term r, such that QOE NO is well-formed (the reason for
this is that any term r determines uniquely the type X such that
r€X is well-formed), and hence no judgement serving as "absurdity"

is available. Hence the logic inherent in our formulation of the

theory of types is minimal logic.

A final minor difference is that we have replaced the recursion and
induction rules by their infinitary version. This is necessary to
make our normalizaticn argument in §3 go through. To get again a
formal system of limited proof-theoretic strength (and in our case
of the strength of Heyting arithmetic HA), it is necessary to make

the usual restrictions on infinitary derivations.

In §2 we show that a number of expected derived rules are valid in our
formal system. This is done up to a point where it can be seen that
and how the usual system of Heyting arithmetic in all finite types
with extensionality and the axiom of choice can be embeddéd. The ar-

guments used here are routine.

In §3 we finally come to the metamathematical investigation of our
formal system. To éut this work into perspective let us first recall
that by work of Beeson (cf [21, [3]) it is possible to define a model
of our system in HA . Then the technique of Beeson developed in [1]
can be used to show that our system is conservative over HA (see

also [5]). Hence a gobd metamathematical analysis is already avaiiable.
However, it still seems to be of interest to get some more direct and
more informative metamathematical results. This is particularly obvious
when we view the formal system as a programming language as stressed

by Martin -LS8f in [7]. Then in a derived judgement re X the r may
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be viewed as a program which, when executed, yields an object of type
X . It suffices to look at such judgements, since from a derivation

of r€A one easily (cf Lemma 2.1 below) obtains a derivation of

r € TA , and the "computational part” of the solution r of the pro-
blem A is already captured by this derivation. Now a good metamathe-
matical analysis should give some information on possible simplifica-

tions and generally on the complexity of the pfogram r .

We will proof in §3 the following normalization theorem: Whenever we
have a derivation dF r € X° of finite rank, then we can find a normal
derivation (i.e., without properly or permutively convertible sub-
derivations) d*bk r*€X such that | r = r*€X and [d*|< the
least e -number > |d| . In particular, in the normal derivation
d*r*€X (and hence in the "program" r* ) only subtypes of the

type X occur. Also, when the usual restrictions of the infinitary
rules are made, it can be seen that the "program"” r* determines a

< ¢, -recursive object of type X (cf [8])f The method of proof for

the normalization theorem is rather standard and basically goes back

to Tait [9]. However, some care is necessary to treat the permutative

conversions.
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§1 A formal system of type theory

Types are N (the type of natural numbers) and G (consisting of
a single object v , being thought of as the only possible reali-
zation of an equation), and if X, Y are types, then so are X - Y ,

X =Y and X + Y . Our formal system will derive judgements of the

form
r€X to be read r 1is an object of type X .
r=s€X r,s are equal objects of type X .
A formula A is a formula (or, somewhat better:

A 4is a problem).

r€a r realizes A .

Judgements will be denoted by U V W . A judgement may contain free
variables; these must be bound by a context

x1Ext,...,meXm,uJEA‘,..‘,unEAn .

Here A, may contain Xy, ..erXp s Wireeo, Uy freg. In the statement
of the rules below, the same context should always be added to the
prémisses and to the conclusion. Only those parts of the context
which are either cancelled or introduced by the rule are mentioned
explicitely. In the statement of the axioms no context is shown for

brevity. More completely, the axiom N+ below should read

IL1 formula (x € X) cesen An formula (5€§,u1€A1,...,un_1EA )

n-1

LEN(ZEX, u €A nn,u €A )

1
and similarly for the other axioms. Also, the rule for an introduction‘

of an assumption below should read

A

1 formula (x € X) ceees An formula (5€§,u1€A1,...,u €A__.)

n-17""n-1

uiE{&i('{c’Eg, u, EA‘V..?,uiGAi,...,unEAn)

If in a judgement with context U(....u€A....) the variable u

‘occurs neither in U nor in other parts of the context, then we
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shall also write U(.... A true ..4..) .

Axions éndrules of the formal system

N 1eN for any numeral i
- t€EN cssas ri €X touee
N : recursion
Et<ri>€X
LtEN ceeee ri€A

E}t(ri>€A

veee. O(Te=1€eN' true) .....
induction LEN ( =

U

‘macea riex ceosn

=
N roper conversion
prop Ej_<ri> = rj €X

..compatibility i=41€N
= H . o
t =t'EN ceese Iy T EN ...
= ' '
Et<ri> Et <ri> EN .
¢t - Jee
G- t€G
t=vEG
¢” : compatibility /= /€G
; T EY(xE€X)
-* for types EEY(XEX)
AXL EX - Y
- LEX ~» Y s €X
- for types

ts €Y




=
- ¢ proper conversion

compatibility

extensionality

x 3 proper conversion

compatibility
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r€Y(Xx€X) s€X

{Axr}s = rx[s] €Y

r=r'€Y (x € X)
AXr = AXr' €X - Y

t = t'E€EX - Y s = s'€EX
ts = t's'€Y

rEX » Y
Axrx = r€X -» Y

r€X. s€Y
(r,s) €X = ¥

tEX x ¥ tEX = Y
pteX qt ey
rEX sSEY
p(z,s) = rex
r€X SEY
q(r,s) = s€Y
r=r"€xXx s = s'€Y

(r,s) = (r',s') €X = ¥

t = t'EX 2 Y
pt = pt' €X
t=t"'€EX Y
gt = gt' €Y

r€X sSEY

i¥:€X4;Y stex+y
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+7 1 definition by cases
tEX + Y r€2(u€EX) sE€zZ(vVEY)
DuvtrSEZ
r ] " -
tE€EX+Y recC(uex, t=4,u€X+Y true) SEC(VEY, t=3 T€X+Y true)
Duvtrsec
proof by cases
fad -~
teEX+Y u(uﬁx,rt=iyuex+y’true) U(VEY, t=3,vEX*Y true)
U
+ proper conversion
re€x r' € 2(u€Xx) s'€EZ(vEY)
Tt = '
Duv(iyr)r s ru[rl €2
3EY r' € Z(ue€X) s' €EZ2(VvEY)
3 tat = t
Duv(jxs)r s sv[s] €2
L]
compatibility r=r’€Xx
= 1
1Yr in €EX + Y
s = s'EY

L}
jxs:jxs €X + Y

et 7
t=t'EX+Y r=r'€7Z (u€x, t=iYu€X+Y true)

s=s'€Z (VEY, rt=j

-
XVEX+Y true)

y * Tyt ot
Duvtrs = Duvt r's' €2

[ ] r€X s€X

-
Tr = s€X formula

r ot r = s€X .
v €'r=sex
t€'r = sex?

roa- ——e

r =s€X
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- B formula (A true)
A -» B formula

-* for formulas r€B (u€A)
Aur €A -» B
-~ for formulas tEA - B s €A
ts€B
A A formula B formula
AAB formula
A+ : L EA s €B
(r,s) €EAAB
. . tEAAB tEAAB
' PLtEA . qt€B
A formula B formula
AvB formula
v+ " rea B formula
i‘,Br €EAVB
s €B A formula -
j,ms €EAVE

Here TtA is the type of A , defined by (r=5€X') =6,

1(A-B) = TA - tB , t(AAB) = TA » tB , T(AvB) = TA + 1B ,

T{((VXEX)A) = X - TA , T((IXxEX)A) = X = TA .,

v" : definition by cases

tEAVB r€z(u€a) s€Z(vEB)
Duvtrsez

N
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. - . : [ -1
tEAVB r€C(u€A,‘t=1muer(Ava) true) SEC(vEB, t=j ,vET(AvB) true)
Duvtrsec

proof by cases
r . u r N 9 .
tEAVB U(u€a, ~t=iTBu€T(AvB) true) U(ves, t=JTAv€T(AvB) true)
U

A formula (xE€ X)

Y

(vx € X)A formula
v+ : r €A {x € X)

Axr € (Vx € X)A
(' t€ (YxEX)A s€X

tsEAx[s]
A formula (x€X)
(Ix € X)A formula
r€Xx s€A_[r) A formula (x€ X)

3+ X
‘ (r,s) € (3xEX)A
'3- t€ (IXxEX)A t€ (4Xx € X)A

pte€x gt €A [pt]

Rules of permutation conversion

teEN eees T, EN ... seee SLEX coa.
NN i ]
E(Et<;i>)<sj> = E:t<Eri<sj>> €X

tEN ....riex-.y.... s€X

S>€EY

(Et<rj}>) s. = Et<ri

tEN ....riex:xy....

N x
p(Et<ri>) = Et<pri> €X
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tEN PRI r1€XxY....

Q(Et<r,>) = Et<qr,>€Y

tEN e T EX 4 Y ... r€z (ueEx) SE€EZ (VEY)
N+
Duv(Et<ri>)rs = Et<DuvrirS> €2
tEX + Y r€N (u€X) SEN (VEY) ....riez....
+N
E(Duvtrs)<ri> = Duvt(E:<ri>) (Es<ri>) €2
PN tEX + Y r€Z -» Z' (u€EX) S€Z - Z' (vEY) s'€EZ
(. ' vy '
(Duv§rs)s Duvt(rs J(ss') €2
+x tEX + ¥ r€zZ »x 2' (uEX) s€2Z x ' (veEY)
p(Duvtrs) = Duvt(pr? (ps) €X
tEX + Y r€Z x 2' (u€X) s€2 x 2' (veY)
q(Duvtrs) = Duvt(qr) {(gs) €Y
- LEX+Y r€z+2' (u€X) SEZ+Z' (VEY) '€z (u'€z) s'€z(v'€z’)
1] 1] - 1]
Du'v'(DuvtrS)r s' = Duvt(D_u.v,rr's )(Du,v,sr's') €2
Reflexivity x = x€EX (x€X)
Symmetry r=s€X
8 = r€X
Transitivity r =s€X s = t€X
r=t€e€Xx

Introduction of assumptioné

X€EX  (x€X)

A formula
WEA (uU€A)
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§2 Development of the formal system

2.1 Lemma Let a derivation of a judgement r€X or r€A be given.
Thean one can find another derivation of r€X or r€ 1A with each
part u, €A1 of the original context replaced by u, € rAi , and the

new derivation is not longer than the given one.

proof: Cancel all parts of the given derivation ending with a judge-

ment of the form r = s€X or A formula. Then replace all judgements

- or the form r €A , including those occurring in contexts, by r€ tA .

It is easy to see that this procedure yields the required derivation.

2.2 Equalitiy Lemma for Terms

br=s€EX, FtlrleY = Ftlr] = t[sley

froof: By induction on the length of the given derivation of t[r]ley ,
using Lemma 2.1. If t is just a variable to be substituted by r .,
then Y is the same as X and tr] = t(s]€Y is the same as

r = s€X . So we may exclude this case in the following. We treat some
typical cases for the last rule used to derive ¢t[rley .

y_t 1€N . We have to derive i = 1 €N , which is obtained by N

compatibility. .

N recursion: tlr]en cese. rylrlex oo...

Et[r]<ri[r]> €X

By induction hypothesis+and N compatibility we have

“tlr] = t(s]€EN cenen fi[;:]=ri{slex.....

Et[.r]<ri[r]> = Et{s]<r1[s}> €X

The second rule of N~ recursion has a conclusion E:t<ri> €A and

hence cannot have been applied.
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N" induction: tlrlen U('.t[r}-tié:bl“ true) .oe..

4]
Then U must be of the form t'[r]€Y . By induction hypothesis and

again N~ induction one gets the required derivation of t'l[rl=t'[sley,

Note that rules with equations as conclusion need not be considered.

-

For G+ ’ -t for types, -~ for types, -x+ . * +t ana +:: definition
by cases the required derivation is immediately obtained by induction
hypothesis and the corresponding compatibility rule. For +  proof by
cases one applie; again the induction hypothesis and then the same
rule. Most of the following ruies need not be considered, since their

conclusion has not the required form. It only remains to look at

. v definition by cases

t{rle€AvsB r'[rl€2 (uea) s'[rl]€Z (vEB)
Duvt[r]r'(r]s'[r] €2

Now by Lemma 2.1 we obtain from the derivations of the premisses
tlrl€ta + 1B r'lrl€z (ue€ta) s'{r]l€z (vE€1B)

The induction hypothesis and o compatibility yield the required
derivation.
3" tlr]l € 3x€X)A
ptirlex
Again by Lemma 2.1 we have a derivation of t[r] € XxtA . Now apply

the induction hypothesis and then x= compatibility.

Introduction of assumptions xE€X (x€X)

The required derivation x = x€X (x€X) 1s obtained by the reflex-

ivity axiom.
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2.3 Inversion Lemma for Formulas

b "r =sex formula = F r€X, k SEX

A -+ B formula - - B formula (A true)

A A B formula i A formula, + B formula
+ A v B formula = - A formuia, + B formula
F (Yx€X)A formula = A formula (x€X)

F (3x€X)A formula = A formula (x€X)

This is trivially seen by induction on the length of the given

derivation.

2.4 Lemma a. F r€A = P A formula

b. F U(x€X,u,€A;,..., 0 €A ) = F A, formula (5€§,u1€,A1,...,ui_1EAi_‘1)

The proof is easy, by induction on the length if the given derivation.

For a. one has to use 2.3.

2.5 Lemma Fk r =s€X < F r€X, F s€X

This is again proved by induction on the length of the given deriva-
tion, and is essentially straightforward; however, one has to make
use of all preceding Lemmas 2.1 -2.4. We just comment on some cases.

r€Y (x€X) s €X
(Axr)s = rx[51 €Y

=
- proper conversion:

To obtain a derivation of rx[s] €Y , one has to cancel in the given
derivation of re€yY (x€X) all-parts x€X of the contexts and to
substitute all free occurrences of x by s . An introduction of'
An assumption x€X (x€X) then becomes s€X ; above these nodes
one has to substitute the given derivation of s€X . For the re-
flexivitil axiom x = x€X (x€X) one needs a corrollary to the

Equality Lemma 2.2, namely that from I s€X one can conclude
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8 = s€X . Note that in this case the new derivation will.be

longer in general than any of the given ones.

+7 compatibility, third rule: Here one needs Lemma 2.1 in order to

know that in the derivations obtained by induction hypothesis the

§

<
parts e = iYuE X+ Y'x true and t = JXVE X + Y true of the

context are not needed.

L I t€rr=s€x.’
r=s€Xx

By Lemma 2.4a one has | T =se X’ formula, and by Lemma 2.3 it

follows F r€X and + s€X , as required.

2.6 Equality Lemma for Formulas

F r=s€Xx, F Alr] true = F Als] true

Here we have written | B true instead of + tE€B ; we shall do
so whenever we are not interested in the particular realization ¢t
of a formula B . Also, we shall write } B true (A true) for
 t€B (u€A) whenever we are not interested in t and'in partic-

ular in its dependence on u .

Proof: By induction on the number of logical symbols in A .

Fay, - rt[r] = t'[r] €Y true

F tlr] = t'[rley : by ~71°
Using bk r = s€X , Lemma 2.5 and the Equality Lemma 2.2 for Terms,
we obtain '

F otlr] = tlsley

B oe'{r] = t'[sl€y .
By transitivity and symmetry of equality we have

F otls] = t'[sl€Y

Ftls] = t'[s] €Y true

1é

i>

1<

Similarly,

Using v~

1<

T T v T T

T T

-

T T T 7T
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Alr] - B(r] true

Alr] true (Als] true) by induction hypothesis
Blr] true (als] true)
Bls] true (Als] true) by induction hypothesis

Als] = B[s] true

Alr] aBlr] true
Alr] true , F+ Blr] true
Als] true,  Bls] true by induction hypothesis

Afls] AB[s] true

Alr] vBlr] true
Als] true (Alr] true) by induction hypothesis
Als] vB(s] true (Alr] true)

Als]l'vBls] true ‘(B[ri true)

definition by cases one obtains

-

¥y T T .7 T T T T 7T

Als] v.Bls] true

(vx € X)Alr] true
XEX (x€X)

Alr] true (x€X)
Als] true (x€X) by induction hypothesis

(Vx € X)A[s! true

(3x € X)A[r] true, i.e. + t€ (Ix€X)Alr]
Alpt,r] true
Alpt,s] true by induction hypothesis

(3x € X)Als] true

2.7 Canonical Realization for Negative A

Let A be negative, i.e. with v, 3 only in premisses of impli-

cations. Then one can find r, without free variables such that

A
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I r€A = | rAEA.

The proof is by induction on the number of logical symbols in A .

r=sex : F t€r=sex
F r=s€X
!-A“'Grr=sEX‘

Hehce, r, :a/ for As r=s€x .

A

A+ B: b r€A - B

 ru€B (u€Aa)
- rB' €B (u€a) by .induction hypothesis
F Xu}:B €A - B

.Bence, Tpep " AurB . 4

AAB :  T€EAAB

P pr€A , F Qqr€sB
F r, €A, F r €B by induction hypothesis

F (rp.rg) €EAAB

Hence, Taap % (rA, rB).

(VX € X)A : F re€ (vx€X)A
 rx€A (x E.X)
b rAQA (x € X) by induction hypothesis
| o erAE (Vx € X)A

Hence, :® AXIr, .

T (VXEX)A) A

Remark: By 2.7 we have PrAE'A (u€A) for A negative. Hence in
any derived judgement with u€A in t;he context we xﬁay assume ‘that
u has no free occurrence in any other part of tr;e judgement, includ-
ing the rest of the context. So we may write an assﬁmptior; u€a for

A negative in the form A true .
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pemark: When we add a rule
—_— .
r€x »n Y
(pr,qr) = r€X = Y

to our formal system, then we can prove r = Ty €A .

2.8 ®=-Rule

b teN , b Ali] true , for all. i = I Alt] true

pProof: From F A[i] true we obtain by the Equality Lemma for Formulas
and the Remark following 2.7 F A[t] true (rt:=_;i_._€N-1 true) . Now

N~ induction yields kA[t] true .- -

2.9 Embedding of 4a® + AC + EXT

Let A be derivable in HA® + AC + EXT - from. “AysesesAy s With free

‘variables KyreeorXpy - We may assume that A, A?""'An are formulas

in our formal system (since there is a natural translation). Then we
can derive
A true (565,3&1 true , ..., An true , C1 true , ... 'Cn true) ,

where ﬁhe C are of the form

i
i -B
. r 7
(VXEN) x' # OEN
(Vx,yeu)(rx'=y'€N1 - rx=y€N’) .
Here 1 is a new atomic formula, =B is an abbreviation of B - L ,

and r' denotes the successor, i.e. r' :s Er<it,2,3,...> .

Proof: The rules of minimal logic are obviousiy taken care of hy our
formal system. As an example, let us consider thé rule of 3 -elimina-
tion. We can assume that we have derived

t€ (3Ix€X)A and C true (x€X,u€Ah)

when x,u do not occur free in C . Now we obtain pt€X ,

qt € Ax[pi] .

Substituting pt for x and gt for u in the second derivation,

we get C true , as required.
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" Intuitionistic logic as well as the Peano axioms except induction
are taken care of by the form of our embedding. To obtain induction
we apply the w-rule 2.8. It remains to be seen that extensionality

and the aviom of chéice can be derived.
- = - b}
EXT : (VX,yEX~Y)((VZEX) xz2=yZzEY - X=y€E€X=-Y )

We argue infofmally. So let x,y€X - Y , and xz = yz €Y for all
z€X . Then by - compatibility we have AzZxz = \zyz€X - Y . BY - ex-
tensionality we have Azxz = x€X - Y and \zyz = y€X » ¥ , and hence

x =y€X - Y, as required.
AC : (VX EX)(3Y €EY)A - (32EX~-Y) (VxEX)Ay[zx]

Again we argue informally. So let u€ (Vx€X)(3y€Y)A , and x€X .
Then wux€ (3y€Y)A and hence p(ux) €Y , gq(ux) EAyIp(ux)] .6 S0

Axp(ux) €X -» Y ,‘which is the 2z weé are looking for. To see this,

let x€X . Then (ixp(ux))x = p(ux) €Y , and from q(ux) EAY{p(ux)]
we can conclude by th.e Equality Lemma for Formulas that Ay[(lxp(ux))x]

is true.

§3 Normalization

Theorem Let a derivation 4 + r€x (x€X) of finite rank be given.
Then we can find a normal derivation d*k r*€X (X€X) such that
'k r =r*€X (x€X) and such that the length |d*| 1is ¢ the least

€ -number > |4l .

We first expléin the (standard) notions used in the stétement of the
theorem. Call the ru}.es ;dith index + “introduction rules and tho;se
with index‘ - elimination rules. A derivatio;'l is called properly
convertible if it ends with an introduction rule immediately followed
by an elimination rule. More precisely, the conclusion Ot" the intro-

duction rule must be the main Dremibss of the elimination rule, i.e.
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the leftmost premiss in the statement of the rule. A derivation.is

called permutatively convertible .if it ends with a critical elimina-

tion rule immediately followed by an elimination rule. Here an elimi-
nation rule is called critical if it is one of the rules N , +°' or
v~ ; these rules are distinguished siﬁce their side premisses (i.e.
the premisses other than the main premiss) are of the same form as
the conclusion. A derivation is called normal if it contains neither
properly nor permutatively convertible subderivations. By the rank
of a derivation we mean the least number bigger than the level of
the main premisses of all its properly convertible subderivations
(L.e., of their elimination rules at the end). These main premisses .
are of the form r€X or r€aA . Tﬁe level of such a judgement is
defined to be the level of the type X or of the type TA , where
the level LX of a type X 1is defined by IN = LG =0 , L(X=Y) =

s L(XxY) = L{X+Y) = max(LX, LY) + 1 .

The length |dl of a derivation d is defined to be the least
ordinal bilgger than the lengths of the derivations of the premisses.
Hence we have with an obvious notation for derivationé (e.é. Ed<ai>
denotes the derivation ending ‘with an application of N  recursion,

where d is the derivation of the premiss te€N and the a; are

.

derivations of the premisses riﬁx or riEA)

l2d<ai>t = sup(ldi+1, ..... la1|+1 A
Idbl = max(ldl+1, Ibl+1) '
Ipdl = 1dl + 1 '

ID  dabl ‘= max(ldl+1, lal+1, bl +1)

For the proof of the theorem first note that by the proof of Lemma 2.1

we may assume that d contains no judgements of the form r = s€ X
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or A formula or r€A ; this applies also to contexts. Hence, the

rules N~ induction and + proof by cases are not used in d .

The proof of the theorem now proceeds in 3 steps. In step 2 (which
needs a preparatory step 1) it is shown how to eliminate all per-
mutatively convertible subderivations. Step 3 describes a method to
reduce the rank of a derivation without permutatively convertible

subderivations by 1.

Séeg i Let a.derivaﬁion dF r€X be given, as described above.
Assume that the last rule in d is an elimination rule. We shall
‘define a new derivation d"F r €X with the following property.
. If immediately above the last elimination rule in d “there is a
block of critical elimination rules, then in d” the last elimina-
tion rule is permuted with all these critical elimination rulés.
Further, we have F r = r €X and

I(Ed<a;>) 7| ¢ (supla 1) + Idl + 1

(@) "1 < Ibl + 1dl + 1

Hpd) | s 1l + 1

@)™l ¢ 1dl +°1

(0, dab) "¢ max(lal, Ibl) + Idl +71

The definition of d~ is by recursion on some ordinal a(d) to be
" defined below. We let d~ be d except when d ends with a critical
elimination rule immediately followed by an elimination‘rule. In this
. case we permutg these two rules, shifting the elimination rule to the
side premis#es of the critical rule. We shall not write out all cases,
but just two typical ones:

((Ed<a;>)b)” := Ed<(a;b) ">

(E(D  dab)<a;>)" := Dy d(Ea<a;>) " (Eb<a;>) "
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- For to see that this is a well-founded recursion we define an ordinal

a(d) as follows. If d ends with an elimination rule with main pre-

miss a and side premisses bo'bl""' , then

a(d) := sup(a(bo) ,u(b1) y o) + afa) + 1,
Otherwise, a(d) is defined by the same recursion equation as 14l
e.g. a(ixa) = a(a) + 1 . With this definition of a(d) it is ob-

vious that, for instance, a((Ed<ai>)b) > a(aib) .

From the definition it is clear that d~ has the following property:
If d ends with an elimination rule, and if no immediate subderiva-
tion of d4 has a permutatively convertible part, then a” conta;ns

no permutatively convertible subderivations.

We first show that bk r = r €X , by induction on a(d) , where d
is the given derivation di r€X . For simplicity we give the proof
informally, but in such a way that it can be formalized easily. We

only treat the two cases written out above.

~ 1. We have to show

'(m-.<ri>)s = ((Etery>)s) €y , f.e.

(Et<ri>)s = Et<(zis) >SEY .

Now by'the rule N- for permutative conversion, we have
(Et<ri>)s = Et<ris>€‘¥ .

and r;s = (ris)-'EY holds by induction hypothesis.

2. We have to show

E(Duvtrs)<r = Duvt(Er<ri)) (Es<ri>) €2 .

>
By the rule +N for permutative conversion we have
E(Duvtrs)<ri> = Duvt(8r<r1>)(Es<ri>)€ Z .,

and the required equation is obtained by induction hypothesis.
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Finally we have to verify the estimates given above. These estimates
only apply if the given derivation ¢ ends with an elimination rule.
Furthermore, we may assume that its main premiss is derived by a criti-
cal elimination rule, for otherwise the estimate is trivial. We use

induction on a{c) and again shall only treat some typical cases.

MY : Recall that (E(Ed<a;>)<b>)” a Ed<(Ea;<b>) 7> . We have to show

lEd<(Eai<bj>) >l g (s;xplbjl) + (Ed<ai>l + 1
This is seen as foilows

lEd<(Eai<bj>) >
= sup(la:+1,....¢<zai<bj>)”l+1....)
€ sup(ldl +1,....(sup|bjl)+ !ail4-2....) by induction hypothesis
€ (suplb.1) + sup(ld} +1,e...la, l+1.0..) + 1
y 3 .

= (suplb.|) + lEd<aL>l + 1.
i |

N-: Recall that ((Ed<ai>)b)- ] Ed<(aib)'> . We have to show

nsd<(aib)’>| $ Ibl + [Ed<a;>1 + 1 .

This is seen as follows
:£d<(aip)‘>c
= gup(ld|+1,.... ;(aib)"1+ 1....)
g sup(idl+1,.... lbl-+!ail +2....) by induction hypothesis
$ Ibl + sup(ld!+1,....lail+1....) + 1

= Ibl + IEd<a,>| + 1 .
Nz : Recall‘that (p(Ed<ai>))- u Ed<(pai)‘> . We have to show
IBd<(pai)_>], s iEd<ai>l + 1 .
' This is seen as follows
IEd<(pa,) > |

= gup{ld|+1,.... ;(pai)“3+1....),
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< ;Up(ldi'*1,-~-- ta;l+2....) by induction hypothesis
£ supl(ldl +1,.... Iai‘i+‘1....) + 1

= lEd<ai>l + 1 .

+N: Recall that (g(uuvdab)qin’ a ouvd(Ea<ai>)'(Bb<ai>)»’.
We have to show

- - ) + ID _dabl + 1 .
D d(Ea<a;>) (Eb<a;>) | < (s;xplai ) -

this is seen as follows
lDuvd(Ea<ai>) (Eb<ai>) 1 '
= max(ldl, | (Ea<a;>) "1, I(Ebcag>) 1) + 1

by ind. hyp.

n

max(ldl , (suplail) + lal+1, (sup!ail) + bl +1) +1
R 8 i

A

(suplail) + max(ldl +1, lal+1, xpl+‘1) + 1
i B

(szplail) + IDubdab! + 1

Step 2 Let again a'derivatian dF r€X be given, as described above;
We shall define a new derivation a"+ r"€x which has no permuta-
tively convertible subderivations, and such that F ¢ = " €X and
a® < 3Idi+1
The definition of a" is by recursion on the length of d.. First
apply T to the iﬁmediate subderivations of :d . Then apply the last
rule of d again. If the last rule of d 4is not an elimination rule,
then this is already a® . if it is, then apply . of step | to cob-
tain 4" . so we have, for instance

(Bdca;>)" i (Ed<ap>)

(@)™ := (@7

(;xa)“ :  axa"

It is clear by the definition that a" contains no permutatively

convertible subderivations.
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We now show that + r =r"€X , by induction on the length of the

iven d ‘ ‘ '
given derivation dkF r€x . For ins;ance, in the case that the last step 3 Now let a derivation d r€X be given which does not con-

ru - i »
le is N recursion, we have to show tain permutatively convertible subderivations. Otherwise d should

| S
Et<r,> = (Et“<ri>) €X .

‘ be as described above; in particular, the rank of d should be finite,
Now we have t = t“Ex and r

T . .
i = ¥y €X by induction hypothesis. € k + 1 say. We shall define a new derivation d'k r'€X of rank

Using the fact that, generally, s = s  €X , we obtain the reqgzired 2|d|

Rd' < k such that + r =r'€X and Id'l <
equation. The other cases are treated similarly.
Tt is obvious that from steps 2 and 3 the theorem will follow.

3ldl+‘!

Finally, we have to verify that 1d"1 < . Let us look at some

typical cases. The definition of d' 4is by recursion on the l~ength of d . It should

« n pe clear from the definition that Rd' g k . - Case 1 The last rule
I(Ed<ai>) |
®Of - in d is an elimination with main premiss a and side premisses
= |(EQ <ai>) l. . :
b1 ’ b2 y +... . We may assume that the last rule in a 1is not an

£ (suplai“) +1a8"1 + 1 ' by step 1
. la, 1+1 assumption, for otherwise we can form d' from a and bis .- oby
i 1d1+1 .
$ (s‘ip 3 ) +3 +1 by induction hypothesis . by the same elimination rule. Case 1.1 The level La 1is <k . Let
sup(la, [+1) . d4' be obtained from a' and b!, b}, ... by the same elimination
a3 it s 3lal+r : 2

. , . -
sup(1dl+1,..... Iail+1..‘,..) rule. Since La < k we have R4A' sk . Case 1.2 Lg k . The last

<3 © 3 " . gpule of a can not be a critical elimination rule, since by assumption’

IEd<a, > [+1 e o » ,
= 3 , d does not contain permutatively convertible subderivations. Case 1.2.1

® ' - n - L The last rule of a 4is an introduction. Then the following cases are
I(db) "1 = {(d'b") | : ~
. - possible.
£ b1+ 1d 1 +1 by step 1

. . .
< 3lbl L 3ldlM + 1 by induction hypothesis & a = ).xao , hence d = (Axao)b

max (1d1+1,ibl+1) 4 Let d' :4 (al) [b'] . Then Rd' sk, since Lb <k .

€3 s
- 3ldhl+1 ae (aok, a;) , hence 4= plaj.a;) or qfaj,a;) .

Let d' :s ;é or "d' := a; .
as= i\.'a‘o or jxao , hence d = Duv(iyao)bc or Duv(jx

Let d' := bllall or ‘a' := cylall .

w w
I(xxa) " | = |ixa’ | ao)bc .

= |a®] + 1

N lal+1 y L0
g3 + 1 by induction hypothesis 3B Then Rd' < k , since Laj <k .

< 3lxxa|+1
a= jEN , hence d = Ea<bi> .

Let 4' := b .
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Case 1.2.2 The last rule of a 1is a non-critical elimination. Then
its main premiss has a level >k . Since the rank of the whole deriva-
tion is <k + 1 , the last rule of this main premiss must again be

a non-critical elimination, and so on. Finally one must end up with

the introduction of an. assumption x€X (x€X) . To form 4' , apply
the ' -operation to all side premisses of these elimination rules.

Case 1.3 La > k . Then the last rule in a qust again be a non-
critical elimination, and we can proceed as in case 1.2.2. Case 2

The last rule in d |is aﬁ introduction with premisses LTI S

Let d' be formed from -a' , ... ,a; by the same introduction rule.

1
Case 3 'd consists of an introduction of an assrumption x€X (x€X)
only. Let 4d° ::kd . We now show that + r =r'€X , , by induction
on.the length of d . In all cases except 1.2.1 this follows immediately
from the iﬁduction hypothesis and the compatibility rules for - . In
case 1.2.1, let for instance, d= (Axao)b be a derivation of (Axr)s€X.
Then 4' = (aé)x[b'] is a deriv#tion of ri[s'} €X . Now py induction
hypothesis and -5 compatibility we have (Axr)s ; (Axr')s'€X , and

by - proper conversion we have kar')s' = ri[s‘] € X . The other
subcases of case 1.2.1 are treated similarly.

Finally we show [d'l g Z’d] , again by induction on the length of

d . It suffices to look at case 1.2.1 with 4 = (Axao)b ; then other
cases are similar or trivial. We then have 4d' = (aé)x[b‘] and hgnce

1a't ¢ Ib'1 + lajl

. la_|
< abl L 770

max(lbl,laol)*1

by induction hypothesis

2l(lxao)bl

(1]

{2]

(3]

[4]

(51

[sl

{71

(8]

(9]
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