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STRONG AXIOMS OF INFINITY

ELLIOTT MENDELSON

- The first definition of the notion of infinite

set seems to have been given by Peirce and Dede-
kind in the 1880's. Indenendentlv, they defined
a set A to be infinite if there is a one-one
mapping of A onto a proper subset of itself,

In 1908, Zermelo included in his first
~axiomatization of set theorv an axiom of infinitv:
_There is a seét which contains the empty set and

is closed under the operation x > {){} . In

many later axiomatizations, a similar assumption
is made, but with the successor oneration

x > xt/{x} replacing x }> {x% . (This probably -
originated with von Neumann.) In von Neumann's
svstem, the natural numbers are identified with

the finite ordinal numbers. 0 is the emotv set,

1=40%, 2={0,1}y, 3= {0,1,2}, and, in’
general, every natural number is the set of all

"smaller" natural numbers, This definition has
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the advantage that évery natural number n is a
set having exactly n members, A finite set can
be defined as a set which can be put into one-one
correspéndence with a natural number, and an
infinite set is simply a set which is not finite.
A set which is infinite in the Peirce-Dedekind
sense is infinite in this new sense also, but the
converse imﬁlication holds only under the
assumption of the axiom of choice.

Within Zermelo-Fraenkel set theory (2F), the
axiom of infinity (AI) is unprovable from the
other axioms (assuming the consistencv of the
theory 72F - (AI) ). Proof: Assume (AI) provable
in ZF - (AI). Thé set V,, of all sets of finite
rank (that is, the set of all hereditarily finite
sets) satisfies all axioms of ZF -

(AT). Hence,

(AI) would be provable in V,, .

(v,)

(ar) ¥
ZF-(NI)

relativization of (AI) to Ve

But, -

ZF-(AI)

More precisely,

we would have , that is, the

is provable within
(v,))

w
ZF ~ ~(AI) .

(AIL). Hence,

0 DT

" for limit ordinals A ; V =

— TT —

zF - (AI) would be inconsistent, ®

Within an alternative set theorvy, Quiﬂe's NF
(New Foundations), Specker proved in 1953 that an
axiom of infinity can be derived. NF has as
axioms only Extensionalitv and the (Class Ixistence
Schema for stratified formulas, both of which are
plausible., The fact that Specker also showed the
axiom of choice to be disprovable in NF has been
a mark against NF, But, recently, set theorists
in the ZF tradition have been flirting with.axioms
which are incompatible with the axiom of choice,
Thus, fhe

such as the axiom of determinacy.

unacceptability of NF is no longer quite so clear,
The ZF theory is based upon the cumulative
hierarchv: VO = 0, V«+1 = Jg(vx), Vg = A?&Vk
LJ) Ve . (lere,
, o{ € On
P (x) is the power set of x : {u ‘usE x} )

People in the ZF tradition think of the cumulative

 hierarchy as an intuitivelv clear justification

of ZF. Of course, the hierarchy is definable

within ZF, and one of the axioms of ZF, the axiom
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of regularity, asserts that the universe of all

U v, .

o € On

sets is identical with V =

Once (MAI) is assumed, the power set axiom (PS¥
and the replacement axiom (Rep) seem to have
imnortant consequences with regard to the "size"
of the universe,

(PS) cannot be proved in 27 -

(PS), if the

latter is consistent, If (PS)

Proof: wvere
profable in ZF - (PS), then the set H(aﬁ)
consisting of all hereditarily countable sets
(sets for which they and all members of their

transitive closure are finite or denumerable)

would be a model of %F - (PS). Within this model,
. UiQJl))
(PS) is false. Thus, "1 (PS) .
ZF-(PS)
But, if (PS) is nrovable in ZF - (PS),
(H(w,))
l_ (Ps) , and ZF - (PS) would be
27~ (PS) ’

inconsistent, #E

Similarly, the revlacement axiom (Rep) cannot

be proved in the theorv 7% obtained from ZF by

NATE R

:fails.
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replacing (Rep) by the selec tion schema

(sel): (Vz) Qy) (Vx) (xe y<=> [xez A Q()]1)

where @ is any formula. In fact, if (Rep)

could be proved in Z, then V

W would be a model

of Z in which (Rep) is false., (There is a

rmala determining within V .
fo a rmining within vV . o

But, wiwgv, -, )

a mapping from

w onto W+W , Thus, (Rep)

requires a certain ordinal "length" to the
universe (considerably mofe than w+w ).

In these three cases (infinity, power set, and
replacement), inclusion of the axiom nermits

construction of a set-model in which the axiom

In each case, the enlarged theory can

prove the consistency of the original theorv.

Thus, arithmetic is extended in each case, since
the consistency assertion can be formulated as a
seems to be

statement of arithmetic, This

characteristic of strong axioms of infinity.
Kanamori and Magidor have given a sort of

"metadefinition" of a large cardinal proverty:

satgsfaction of the pronertv impliesi (a) the



existence of a cardinal which is "large", in the
sense that it is a fixed point of reasonable
"bhinning procedures, like Mahlo's", beginning
from weaker cardinals ; (b) the strengthening
of set theory by, for example, the "emergence of
new combinatorial properties". According to
Kanamori and Magidor, "the adoption of strong
axioms is thus a theological venture, involving
basic questions of belief concerning what is true
about the universe"., We know, by the Gb&del
Incompleteness Theorem, that ZF is incomplete,
Large cardinal axioms might be the best way to
enrich 2F. Those axioms which show themselves to
be very fruitful, by giving simple derivations of
many previously'known results and by yielding
solutions of many previouslv unsolved problems,
might eventually be accepted as "true".

What is the motivation for narticular strong
axioms of infiniéy ? One motivating force comes

from consideration of the smallest infinite

ordinal w , whose existence was guaranteed by the
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original axiom of infinity. w has various
relationshins to the set of smaller ordinals,
the finite ordiﬁals. If we think it unlikely
that these relationships characterize w , then
we are led to assume that there are uncountable
ordinals which have these relationships to
smaller stdinals. (The simplest examples of such
ordinals will be the inaccessibhle ordinals.)
This process of generalization calls for, in the
words of Kanamori and Magidor, "a reasonable
induction from familiar situations to higher
orders with the concommitant confidence in the
recurring richness of the cumulative hierarchy".
The key word is "reasonable". Certain properties
of ¢ lead to inconsistency when generalized, as
we shall see later.

Another motivating force is the reflection
principle, The ordinary form of this principle,
provable in 3F, states (in part) that, for any

sentence @ , there are arbitrarily large

(Vq)
ordinals P for vhich @ P<=> CQ . So, any
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property holding in the universe already holds sequence of smaller ordinals indexed by a smaller

in some VP . It mav then seem "reasonable" to ordinal, Regularity is an obvious property of w.
) ]

assume that there are cardinals which satisfy It holds also for every successor cardinal }‘K+l

analogous downward reflection principles. (if wé assume AC): If U A, = }{ with
C ’ X<T = ¥+1

=t ! !
EARLY MATHEMATICAL EVENTS INVOLVING LARGE CARDINALS Ao( < (Sf-*-l and T <£ /\ ¥ +17 then
. C . . = = ’
Cardinal numbers were initially studied in a Ua £ i i\ :_ﬁi /\/b’ = Tr[’\/ < ;l/ . /\0, = ;\/ ,
der e K<T L LT [ 4 ¥ 4

purely mathematical, non-axiomatic setting.

. . . a contradiction, Therefore, it is naﬁural to ask
(We shall identify cardinals with initial ! :

: . ’ . - .
. . . . ) whether any cardlnal.;Lz, with A a limit ordinal,
ordinals, ordinals which are not equinumerocus with

' . is regular. Such cardinals are the weakly
any smaller ordinal. In the presence of AC, the

. . . 7 .
. . . , ] inaccessible ordinals. The ;L function enumerates
axiom of choice, every set is equinumerous with a

. s . ‘ the infinite cardinals. A fixed point of this
unicque initial ordinal.) Ilausdorff was one of the

, ’ \
s . . . function is an ordinal &k such that ,9y‘= K ,) The
best practitioners of this kind of work,., In his

. . standard definition of a weakly inaccessible
1908 paper, Grundzlige einer Theorie der geordneten

/ .
' : cardinal is that it is a regular ,\, with o« a
Mengen (Math, Annalen, Vol. 65), he considered a 9 <

/ . v
. . limit ordinal., The regularity of A, then imnlies
notion equivalent to the notion of weakly d Y ‘\“

, :
. . . that o =/, . The connection with models of
inaccessible cardinal: a regular fixed point of s

! . . . axiomatic set theory was realized only much later.
the }) function. (A cardinal & is regular <=>

. . This is also true, of course, of the fact that
kK 1s not the union of fewer than « sets of power

. the existence of weakly inaccessible cardinals is
less than K «&=> Kk is not the supremum of a '
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not provable in ZFC (that is, in 2F + (AC)), if ¥ € Y such that &« < ¥ . Define W[X] =

the latter is consistent. f}(é‘ X l XA is unbounded in K} . Then one

The notion of weakly inaccessible cardinal generates the hyper-inaccessibles by starting

admits of various generalization, for example, with the regular cardinals and iterating the

the hvperinaccessibles. Call the weakly operation W ; at limit ordinals, one takes the

inaccessible cardinals O-weakly hyperinaccessible, intersection of all the previous classes.
A cardinal is («+1)-weakly hyperinaccessible if This approach was taken much further by
it is a regular limit of &« -weaklv hvperinaccess- P. Mahlo in 1911-1913, To ﬁnderstand Mahlo's
ibles ; that is, & is (&X+1)-weakly hvperinaccess- idea, we need the notion of a normal fulnction.
ible <’::);< is regular and there are K & -weakly A function f: ¥~ K is normal on Kk 1if it is

hyperinaccessibles less than X . For limit A increasing and continuous and its range is

14

R is A -weakly hyperinaccessible if and only if ' unbounded in x ; that is, (i) o('(P< ¥ =3

Kk is o -weakly hyperinaccessible for all X< A, ) < f(lg) s (ii) for limit A < & ,

One can then prove by induction that any & -weakly £(1) =o(-l<i§ f(€) = sup 'ff(l"()lp('<2 } ;

hymnerinaccessible cardinal is also & -weakly - (iii) f"¥ is unbounded in K.

hyperinaccessible for all ¥ < o If k is such that every normal function on K
The proces's for generating weakly hvper- ' has a fixed point, then X > e and K is regular,

inaccessibles can be described in the following and conversely. Proof: There is a normal function

way. A subset Y of a cardinal A is said to be on @ without fixed points, namelv, f(n) = n+l .

unbounded in k if, for any &« < X , there exists Hence, K > & . JIssume K not regular. Then

there is a function f: ¥-> k , for some ¥ < &k .
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such that ¥ is a cardinal, f is increasing, and

lim £(&) = K . Define g&®) = ¥ + f(x) for
oLL Y

o< ¥ . Then g is a normal function on /A such
that glx) > ¥ for all « . Hence, g cannot have
a fixed point. So, & must be reqular. Converse-

lv, assume K> & and X is regqular. Let f be

any normal function on 4 . Define h(0) f(0)
and h(n+l) = f(h(n)) for n<® . Let 7T =

lim h(n) . Then T < K and o is a fixed point
he o :

of f. B (A similar proof shows that, if & >
and K is regular, then the set of fixed points of
a normal function on Kk is unbounded in & .)

Mahlo considered cardinals k& such that every
normal function on & has a regular fixed point,
Such cardinals are now called weakly P’;ahlo. By
the preceding naragrarh, a weakly Mahlo cardinal
must be > &> and regular, Moreover, every
normal function on a weakly Mahlo cardinal & not
only has a regular fixed noint, but has K&

regular fixed points. (Proof: Let f be a
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normal function on K , and let &< K .,
Define g(¥) = f(®+3) for ¥< K . Then g is a
normal function on & , and, therefore, g has a

fixed point 7. Then, f@®4+T) = g() =T £

o(i’l'é £ (®IT) . So,o(;'t' is a fixed roint ef f.

Thus, f has an unbounded in & set of fixed
points, Since K is regular, there will be &
such fixed points. B )

There is another way of describing weakly
Mahlo cardinals, We sav that a set A & K is
closed in & if every «& < K which is a supremum
of a subset of A is in A, A is said to be club
in & if A is closed and unbounded in & . Club
subsets of K correspond to normal functions on X :
the enumerating function of a club subset of Xk
is a normal functibn on K , and the l;ange of anv
normal function on & is a club subset of K .
(The enumerating function of a club subset A is
defined as follows: For X<£ Kk , define f (&)

inductively as the least member of A not in f"e« .,)
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In the definition of a weakly Mahlo cardinal &,
it suffices to assume that everv normal function
on K contains a regular ordinal in its range, or,
equivalently, that every club subset of X con-
tains regular members., Proof: Let g be a normal
functioﬁ on K . Let E be the normal function
on M that enumerates all limit ordinals ¥ K,
Then go§ is a normal function on x . Assume

T is a regular ordinal in the range of go:‘g .
Let g(§(o’)) =T with < K . Now, every
increasing function f: X-% K satisfies f(g)> ol
for all o« ., (Assume ¥ is the first ordinal in X
for which £(¥)< ¥ . Since f is increasing,
F(£(X)) < £(¥), contradicting the minimality

of ¥ .) lence, T = Q(I(O’))? E((). If
L« , then g]“:g((), the restriction of g
to }1‘(0’) ,‘ would be an increasing seaquence of
ordinalsA with domain < 7= and supremum T , contra-
dicting the reqularity of T . lHence, % (@) =T

and T = g(T). A

Tt is easy to see that every weakly Mahlo

cardinal k¢ must be weakly inaccessible. (Proof:

We already know that K> & and K is regular,

Let kK = ﬂ:l, e must show that e is a limit

, , .
ordinal., Assume o(=(5’+l., et £(¥) = /\f +

for all ¥ < K . This is a normal function on K .

But £ has no regular fixed noint, since, for

0 €« ¥ < K

14

;YﬁJva’ is not a cardinal, and,

therefore, cannot be reqular.g) Not only are

weakly Mahlo cardinals & weaklv inaccessible,

but they are also the limit of A& smaller

weakly inaccessible cardinals. (Proof: Let A

be the set of infinite limit cardinals < K .

: ’
A is club in K , since K=/}K. Hence, A

contains an unbounded set in Kk of regular

cardinals.

These are weaklv inaccessible and

their limit is & . ®) Thus, weaklv Mahlo

cardinal K

cardinals are l-weakly hyperinaccessible.

Fven more can be asserted: Evervy weakly Mahlo

is e« -weakly hvrerinaccessible for
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all « £ K . Proof: By induction on & .
Abbreviate weakly hyperinaccessible by whi, We
already know the theorem for o = 0 and o = 1,
Case 1l: of is a limit ordinal. Then the theorem
is immediate. Case 2: 0(={9+1 . Case 2a:{9=3’+l.
Then K is ¥+l-whi . So, K is a limit of X
smaller ¥ =whi ordinals. Let f enumerate the
closure of the set B of ¥ -whi ordinals < & .

(In other words, let f(0) be the least member

of B ; let f(§+1) be the least member of B greater
than f(;) ; and let f(A) be the supremum of all
£(d) for <A , when Al is a limit ordinal.)
Since f is normal on & and K is weakly Mahlo,

f has K regular fixed noints, each of which 1S FF] -
whi., (This requires:a brief verification.) So,

K is a regular limit of ¥+l-whi ordinals. There-
fore, Kk isﬁ+l-—whi. Case 2b: /g is a limit
ordinal. So, K is J\-—w’hi for all J‘<[3 .

For J</3 , let A g be the closure of

{tf< K I o is f—whi} . Since k is J+1-whi,
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- ‘
AJ = K and all regular members of Ag are)f—whi.

Now, o Ay is closed, since the intersection of

74p

closed subsets is closed. Hence, if we can show

that AJ‘ is unbounded in K , it will follow
<

that () Ay, contains K regular fixed points,

J'-f/;

each of which is P-—whi, and, therefore, X would
be B+1-whi, To see that /\ A is unbounded

/g d<p
in X , assume v“ < X . For each J\(ﬂ , let
‘YJ' be the least member of Ap - @ . Let

¥ = sup ¥p . By regularity of & , ¥ < k .

s

For J’dfg , ¥ is a limit of membhers of Ag .

(For, if f<'r</3 . sz_gh‘{«.) Hence, ¥ € Ap .

Thus,}’gd{;]\f and ¥ >g . &

The weakly Mahlo cardinals can be viewed in
still another way. A subset X rof a cardinal kK
3% said to be stationarv in k if X intersects
everv club subset of x . Bv the cofinality
cf(&K) of K we mean the least ordinal/S such that

there is an increasing /3 ~-sequence of ordinals
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with limit & . (Clearly, cf(k)S Kk . XK is
regular if and only if cf(X) =K .) By a final
segment of K is meant a set {X! < ?)’ZK}
for some o4 < K

If cf(Kx) =¢0, th’en X is stationarv in K

if and only if X includes a final segment of K.

Proof: «&= 1is obvious. =—=£>: MAssume X stationary

in k . Let lim e _ = K . Assume X includes no
N to

final segment of & . Define {30 = least element

of M - X which is > o(o : (gn+l = least element

of K&K - X which is > max((gn, ‘xn+l)‘ Then,

iirz) fgn= K o, {Fn( n'-(w} is club in g , but

{/511 l n<w}' N X = , which is a contra-
diction. &

Consider the case now where cf(k) > ¢ .
Notice that the intersection of two club subsets
of x is again club in k& . (Proof: TLet C, and

C. be club in K . It is obvious that Cl(‘\ C

2 2
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is closed in K . Assume &< K . Define

("O=o(;ﬂ(

> o i Foxan

Tkl = the least member of C; which is

the least member of C2 which is

) = 14 < K. i )
> it 'menp viin;»&“ K,Feclnc2,

P>0< . llence, Cl/‘) C, is unbounded in XK . ®8)

Therefore, every club subset of K is stationary
in kX . liowever, the converse is false ; every
stationary subset of K is unboundéd in X but not
neéessarily closed in & . (Examnle: Let A be

a limit ordinal < k . Then K - 42} is stationary
but not cloéed in K.)

By a nrevious theorem, we know that X is
weakly Mahlo if and only if {o( < }(1 o is regular}
is stationary in K . Now, consider the so-called
Mahlo operation M[X] = {K € X l XAK is stat;ion—
ary in K} . If X is the class of reqular
cardinals, M[X] is the class of weaklv Mahlo
cardinals, This operation can bevtransfinitely

iterated: Mahlo, = the class of weakly Mahlo
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cardinals ; Mahlo‘K+l = M[Mahlqd] :

!

Mahlo, = /\ Mahqu for limit A |
<A

The reason for the term "stationary" is the
following, Let A< K . A function f: A3 K
is said to be regressive if f(X)< o for o # 0,
and £(0) = 0, The following theorem was proved in
essence by Alexandroff and Urysohn in 1929 and
rediscovered by Fodor in 1956: If f is a
regressive function on a stationarv subset of a
regular cardinal jx , then there exists somefﬁ in K
’such that f—l[ﬂB}] is unbounded in k (in fact,
even stationary).

STRONG FORMS,

A strongly inaacessible (brieflv, inaccessible)
cardinal is defined to be a regular cardinal Kk
such that & < K => 2“-4 &< . Every inaccessible
cardinal is easily seen to be weaklv inaccessible.
Given the generalized continuum hvpothesis GCH,
the classes In and WIn of inaccessible and weakly

inaccessible cardinals are the same. The
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inaccessible cardinals are identical with the
regular fixed points of the heth function:
A, =N, A =2, Ax- Jin P
for limit A .

A strongly Mahlo (brieflv, Mahlo) cardinal
is a cardinal K such that every normal function
on K has an inaccessible fixed point. . (equiva-
Yently, every normal function on X has an
iﬁéccessible cardinal in its frange, or every club
subset of & contains an inaccessible cardinal).
As before, if K 1is Mahlo, every normal function
on KX has an unbounded in XK class of inaccessible
fixed points. Every Mhhlo cardinal is weakly
Mahlo, and is, therefore, weakly inaccessible, It
follows easily that every Mahlo cardinal is
inaccessible, since it is the limit of inaccessible
cardinals. The class of Mahlo cardinals is the
class M[In] = {,K € In l Inn K is stationary
in H_}'. The class of weakl? Mahlo cardinals

could have been defined as M[WIn] = {’k:e WInI



WIn NV K is stationary in K,} .

Drake has remarked that postulating the exist-
ence of Mahlo"cardinals "can be regarded as saying
that the class of strdngly inaccessible cardinals
is so rich that there are members k of the class
such that no normal function on x can avoid this
class ; however we climb through X , provided we

are continuous at limits, we shall eventually

have to hit a strongly inaccessible cardinal”.
MEASURE THEORY.

A measure on a set x is a mapning
/M: & (x) —> [0,1] such that: (a) /u(x) =1 ;
(b) /u,is countably additive. (Countable

additivity means that, if {Uh,l r1<¢0}- is a

sequence of pairwise-disjoint subsets of x, then
/X(UU

n<w
properties hold for measures,

n The following

) = Z gl )

n<«w

(i) | If uS}.v,‘then‘/lL(u) < /l(v) .
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(ii) If ul_‘i u, < u3_‘£ .2 , then

( u ) = lim (u )
pU L ) = i ey

If u, 2 u

(iii) 1=

//1( /ﬂ\ un) = lim (u ) .
n

< W n<w

(iv) /u(;f) =0 ,

A measure/ﬂ‘ on X is said to be non-trivial
if /u({é}) = 0 for all a€¢ x. By countable
additivity, if /uAis non-trivial, /u(y) = 0 for
every countable y & x. Therefore, there is no
non~trivial measure on a countable set,.

A measure W is two-valued if the range of/u,

is 40,1%.

easily define many two-valued measures: /L(y) = 1

If we allow trivial measures, we can
if aey and /Ll(y) =0 if agy , where a is some
fixed element,
w
Example: The set 2 of all functions from w
into 2 =

fO,l}' hgs no non~trivial measure.

. LD
Proof: Define a sequence ‘{un} in 2 as follows:



given UgeUgreee /U g such that
%)
pifse 2] £(0)=uy AL A F(n-D)=u
W
={re2 |

—{re®2 | £(0)=ugn cooA £0-D)=u A

f(0)=uOA e A f(n—1)=un_l

YO/\ Yl
llence, either /M(YO) = 1 Or./d(Yl) = 1., Let

u, = 0 if‘/L(YO) = 1 and u, = 1 if /u(Yl) = 1

oy =1, let
A f(n)=0}',

£F(n)=1F%.

=@ , and, by hvnothesis,‘/i(YO\)Yl) = 1,

So, there is a sequence W, 2 WlE? ... such that

/u(wi) = 1 and Wi

ﬂw

n<w

But,

Then/u( /h\ W ) = lim /M(Wn) = 1,
n<w

n<w

consists of a single point, Hence,

- {ee"2 [ =ugn ..oA £l =0 T

/t( /\ W ) = 0, which vields a contradiction. @

n<w

This result has an obvious generalization:
If there is no non-trivial two-valued measure

. K
on K , there is no such measure on 2 .,

4} denotes the
Proof: Let A =

vial two-valued measure on A. For each «& < K

(In ceneral,

set of all mappings from a into b.)

2 , and assume/;l is a non-tri-

’
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let 20 = {fen|£60=0} and Al

{féA’fo() 1}
0 1 _ 0 1 _
Ao(/\Ao(—,@' and]\ uA’<-A. Choose n, so
N
1 A
t.lat/M.(]\o()

(Otherwise, one can define a non-trivial two-

*
valued measure/m.

let //L* (B) =

n
= 1. Then/&(/\]\d = .

o< K

on X as follows:

T
k,} Axd) .) But //\ A
dEﬁB

for B= K ,

4

<=k K
. . . K
consists of a single point of 2, So,
/u. ([\A = 0, which is a contradiction, &
(< K

ORIGIN OF THE NOTION OF MEASURE,

Lebesgue measure is a non-trivial countably

additive "measure" on a certain set of subsets of

the real number system, the Lebesgue~measurable

sets, G, Vitali proved in 1905 that not all sets

of real numbers could he Lebesque-measurable,

Vitali's Theorem, There is no non-trivial
translation-invariant countablv additive measure
on all sets of real numhers,

Proof., Assume such a measurg/Mvexists and
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consider only its restriction to subsets of
[0,1]. (The original measure did not satisfy

our definition, since the measure of the entire
set of real numbers is +e0. However,//L([O,l])=l.
In addition, the meaning of translation invariance
is that//i(A) =//L(-{a+ri ae‘A} ) for everv
constant r.) Define an equivalence relation:
X~y if and onlv if x-y is rational. Each
equivalence class is countable. (If we assume AC,
the number of eauivalence classes has the power

of the continuum.) By AC, let Y be a set which

contains exactly one element from each eguivalence

class. TFor each rational g with 05 g < 1, let

¥q=Y+lq={y+lq{yEY}. (Here, +lis

addition modulo 1l: vy tLa=y+qify+ qf 1,
and vy tpqa =y +q- 1 if vy +g>1.) It follows

from translation invariance that /u(Yq) i/L(Y).

It is easy to verify that [0,1] = U Y and
0<£q<1 9
that Y ~NY = for d . lence
a," Yq, 2 a; # g, ’

1 =//L([O,l]) = Ezj /MJYq). Since all the
0=qg<l1
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//L(Yq) are equal, it follows that /u(Yq))= 0

for all q. Then 1 = ;Zj 0 = 0, which is a
0£g< 1
contradiction. ®

AC was used in this proof in a form in which
it yields a choice function on the set of ecqui-
valence classes., The strength of the form of
NC required has important consequences for the

axiomatics of set theory. Let DC (the Principle
of Dependent Choice) assert that, if r is a non-

empty relation whose range is included in its
domain, then there is a denumerable sequence

{anl n<¥0} such that, for all n< W,

<a_,a >€ r . Solovay [1970] has shown that,
n’ " n+l

if the existence of a non-Lebesgue measurable set

can be proved in ZF + DC, then there are no
inaccessible cardinals., Shelah has proved the

converse, llence, "ZFC + There is an inaccessible

cardinal" is eauiconsistent with "ZF + DC +
All sets of reals are Lebesgue ‘measurable”,

Long after Vitali's proof, in 1929, Banach and
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Kuratowski raised the question of the existence ‘ partition of wo(+l into ﬂo( sets of measure 0.
- 13 : / '
of a non-trivial countably additive measure on lience, every partition of W +1 into ;\“ sets has
the reals (and other sets), without imposing a at least one component with non-zero measure.
P . a .

property like translation invariance. Substan- - TForm an infinite matrix (A_) with the column
tial results were obtained by Ulam in 1930, We index ¢~ ranging over W, S "“)‘,H,,r and the
shall outline some of his work. From now on, we row index T ranging over 0 = T <W, ., Tor
shall assume that the word measure refers to a |

. each 4 with w, = d < e 4y, pick an & -
non-trivial countablv additive measure.

(Ul) If Kk =°}2{:Ax , where the A_'s are pair-

s
enumeration of d : f={/30f/3{..,/9z,--~ }T<&)°( .

Hse disdoint  and if 4 . . th . z
wise i1sjoint, an if there is no measure on each For an arbl{_rary T row, put into the get A’T

A_,or on T , then there is no measure on K. .
al ’ in the {Af column, and into no .other set in

Proof. Assume/d is a measure on X . Then . . ' . .
this row,. Then the sets in each row are palrwise

e :

A = 0 f 11 . Otherwis i # s . .
/a( o<) or all « (Othervise, if /“l(AK)7O' disjoint. Consider the (rth column. TFor each

then/u would induce a measure on A, .) Define a J> - o = (qaf for some T < O Hence f& Ad/
’ =rr - o ° ' T

measure on T as follows: for B< T let ¢ a
! So U A = WJ - (07+1). Thus, U A is a
"rew. T <+l T<w
v (B) =/,L( U A). & o ’ ' o o
e B "( set of power wo(+l which is partitioned into J.

(U2) If there is no measure on o then there h

' . t
oc 1 sets. Therefore, at least one set in the o

is no measure on .

<+l column has positive measure., Ilence, there are

’/‘\/

o+l
So, there must be a row with uncountably many

Proof. MAssume there is a measure on « . . By entries in the matrix with positive measure,

the proof of (Ul), we know that there is no
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entries of positive measure. Since these entries
are pairwise disjoint, we obtain a contradiction.
(In fact, assume there exist uncountably many
pairwise disjoint sets of positive measure. For
n<w , let C?n be the set of all such sets of
measure 2 L Since everv set it

5 - YV 5 of nositive measure
is in at least one Cln' there must be some Czn
containing uncountably many sets. Hence, such an
Cln contains denumerably many pairwise disjoint

sets Zirloreee ,Thenl/l( k/j Zi) = :ET /M(Zi)

i<eo i<w

1 . . . .
z jzj = = + 00  ywhich is impossible.) &
j< W ’

(U3) It follows from (Ul)-(U2) that all
cardinals less than the first weakly inaccessible
cardinal (if such a cardinal exists) do not have

/

. Yo .

a measure, Hence, if 2 is less than the first
weakly inaccessible cardinal, then there is no

measure on the reals, and, therefore, there exists

a non-Lebesgue measurahle set.
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(u4d) If/u_ is a measure on K , then a
subset B < K is called a/a—-atom if /J(FB),> 0
and every subset of B has measure either equal
to 0 or to /u(B)o

(a) Assume thatd/l is a measure on K for
vhich there are no/L~atoms° Then, for every
£ >0, there exist sets El,...,En for which
/u(Ei)£ € for all i, and K = ElL/...L/En, with
the Ei pairwise disjoint.

Proof., It suffices to prove the theorem for

£ = , for it can then be iterated to %, %, etc,

Assume the result false, We shall derive the
consequence that there is a =2 -descending

wl—sequence {Pd ] o < wl} such that

>4 = /4(1’7,,) < /U(PJ) and/u.(}’,() > %, for

all « , and this is impossible. (Otherwise,

{~P« - gx+l{ o<<:cul} wvould form a non-denumerable

~collection of pairwise disjoint sets of positive

meaéure.) Let PO = K , Assume Px defined for
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Let B = /w P

¥ < 51 . .
all yed ¥

We may assume

/u(B) z % . (Otherwise, consider

P, - B (P -P,)u (P,=P )u_uu/n}’,\~§)>l//f;"§“>u.“ .
0 071 172 o

This is a countable partition of P, - B into sets

0

1
N 2as < - 2 d - -
of measure 5. Rearrange so that /u(PO B)

is the infinite sum of measures of these partition

sets, Go far enough into the series so that the
. . 1 . .

sum of the remaining measures is < =5 This vields

a finite partition of PO into sets of measure < %.

If /u(B) = l, then ¥ = (X - B)uv B, with/u(B)':

1 1
/LL(K - B) = . So, we may assume /N (B) > .
Since B cannot be an atom, there exist Bl’ B2 such

= >
that B Blnj B, and /u(Bl)_/ /u(B2)2> 0 . Then

/u(Bl)>- % ; otherwise, K = (K - B)uv B,wv B, would

1 2

Now let P, = B Then

d 1°

flTp) = pBy) < @) = s ((1p) £ (py)

for ¥ < & . B

vield the theorem,

(b) I%/Lis a measure on K , but there is no

two-valued measure on k , then, for every positive

)
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integer n, K can be partitioned into finitely
< 1 7

many sets, each of measure =< oo

Proof., By (a), it suffices to prove that
there are no/u —~atoms. Assume there is a subset A
of positive measure such that every subset of A
has measure 0 or//4(A). Let v (C) = /M(CKWAX/chUU
for all ¢ £ K , Then v would be a two-valued
measure on K . B

(U5) Assume there is no weakly inaccessible

%,
cardinal < 2 .
(I) If there is a measure on XK , then there is a
two-valued measure on X .
(I1) If there is no measure on k , there is no
K

measure on 2 .
(III) Every cardinal less than the first strongly
inaccessible cardinal has no measure,

Proof. (1) Assume

Let//l be a measure on &K .
there is no two-valued measure on K . Bv (b) of
(U4), for each n there is a vartition

—— n n n 71 n ( _]:_ Lol
K=2l UM U ... U Ak(n) vlth‘/U(Aj)N‘ = . Then
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k(n)
k=) VA’}.‘= \J A arAc..AAr AL
n=1 j=1 jn:é k(n) J1 I In

Each term on the right has measure 0, and there
are a continuum of them. By hvpothesis and (U3),
’,

there is no measure on Zno . By the method of
proof of (Ul), we obtain a contradiction., ®

(II) It suffices to prove that there is no two-
valued measure on ZK . But this has been proved
earlier,

(ITI) Let Kk be the least cardinal less than
the first strongly inaccessible cardinal on which
there is a measure. DBy (U1l), K cannot be
singular. So, there is a cardinal T < K for
which 21:25 K . Bv (II), there is no measure
on 21-. But this contradicts the fact that, if
x < y and there is a measure on x, then there is
an exteﬁsion of this measure to a measure on y.
(In fact, if x = y.and/}L is a measure on X,

define Y (n) = M (x/A) for all A Sy. Then

~ 1s a measure on y, and 2 (A) =/L( () for A= x.)@
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(U6) If Kk is the smallest cardinal on which
;1/

there is a measure, then either K £ 2 ’or there
is a two-valued measure on K (but not both).
Proof. By the method of proof of (I) of (US),

if there is no two-valued measure on K , then

I ’
. o ~ 4 Ye
there is a measure on 2 . So, K £ 2 . B

A measure/AL is said to be K ~additive if,
for any collection {-xx L%<’t’}* of rairwise
disjoint subsets with T < &k ,

/L(lu} X,0) = = /“(Xx) . (lotice that every

LL T o< T

measure is automatically Lol—additive.)

Theorem, Let & bhe the least gardinal

~having a measure., Then the measure/ﬁL on K

is K -additive,

Proof. Observe first that, for any T <k , if
f.xa:]o<<TU} is a collection of pairwise dis=-
joint subsets of K of measure 0, then
L,’xx'has measure 0, If not, let b = /u.(kj Kot

x<T T

> 0, and define a measure ¥ on T as follows:
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forzgz‘,v(z)=i/u(ux) This
b L€ z
would contradict the minimality of Kk . Now,

l<T?}, £<x

assumne {){x , is a pairwise

disjoint collection of subsets of Kk . As we

have proved before, the set W = {;(<'r’/}L(gx)>-Oi}
is countable.

Let Y = C - W, Then, for

X, has measure 0, and

o -/*(m V)

( ) (U
/l MEY e 4‘/“ dEV]Y
o+ Z p = Z gt . B

XEW

all £ €Y,

it

(A similar proof shows that the least cardinal
with a two-valued measure is -additive,)
Corollary. The least cardinal K with a
measure must be regular.

Proof. By the minimality of k , every subset

of X of cardinality < K has measure 0,
(Otherwise, one could define a measure on such a

subset,) If k¥ were the union of T subsets

{xd’o(ét’}‘ with —;x( K
then/u(f() :/L

Similarly, the least cardinal with a two-
valued measure is regular,

A cardinal Kk is said to be real-valued

_measurable if there is a K -additive measure

on K . A cardinal X is said to be measurable
if there is a two-valued Kk -additive measure on K.
Notice that the properfy of being real-
valued measurable or measurable is stronger than
just having a measure or two-valued measure.
It ensures, for one thing, that the measure is
not just an inessential extension of a measure
on a smaller cardinal,
Theorem (Ulam). If x 1is measurable, then
K is strongly inaccessible,.
Proof. The regularity of')< follows by a proof
similar to that of the Corollary immediately above.

T
Now, assume T < K and 2 2> K , Let/AL be a
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two~-valued K -additive measure on K , This
extends to a two-valued K -additive measure‘/i*
on 2 . Dhefine a T -sequence f € Té in the
following manner. Assume that /3‘:75 and that
ffy@ has been defined so that the set U(f?‘ﬁ ) =
Igq e 2 lf(x) = g(x) for xwf(ﬁl' has measure 1.
Let U0 = {ggu(frﬁ ) ]g%) -0} ana

gl = {geu(ft\(&)l a(p) = 1} . et F(8) =i

.
M (U') = 1. (For limit ordinals B, UENB) =

*
/] U(f P ). Since//L is K ~additive and

o(<f5
p< Kk ,/t{*(U(f f‘[i) =1 .) [In general, if

< K and a -sequence {7\ X < is
& & ==

¥ v * * .
increasing, then//k OA%;A“) =_sup /M,(Ax), while,
*
i f N vl is decreasi =
i { o{l <(5} is ‘eoroasnng,/u‘ g{{(\g}\o()
*
inf /L (Aa() .] Hence,/lL*({f}) =

o((p

*
%25_/u,(U(f PA)) = 1. But, by non-triviality,

A {5t} =0. &

Corollary. If ZFC is consistent, the existence

of a measurable cardinal is unnrovable in ZFrcC,.
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For a long time, it was not known whether the
smallest inaccessible cardinal is measurable,
The negative answer obtained by Tarski and Hanf
will be presented later,

In the theory of filters, a filter is said
to be K -complete if the intersection of fewer
than & members of the filter is also a member
of the filter. It is easv to see that X is
measurable if and only if K >« and there exists
a K -complete non-principal ultrafilter on K .
(Notice that, by the Prime Ideal Theorem, there
exists a non-principal ul—additive ultrafilter
on «w . In this perspective, measurability is a

generalization of a property of «.)

Exercise., Every real-valued measurable cardinal
is weakly inaccessible.

Scott proved in 1961 that the existence of
measurable (or real-valued measurable) cardinals
is incompatible with V = L, We shall sketch the

ideas used in his proof.
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Assume that‘/L is a two-valued K -additive : Theorem. %M' is well-founded.
K . . . C s ’
measure on K . For any f and g in v (that is, Proof. Assume there is an infinitely descending
f and g are k -sequences), define %u =sequence '([fi]] i4<u1} , with
= = q (X = , = f
£~ g ml Lo < | £iw) = ge)} ) =1 . (£541) Bu 1651 . Let Ay = {wen [ £, (<) er, )}

It is easy to see that ~ is an equivalence /M(Ai) = 1. Nence,/uv( N A,) = 1. Let

relation. Scott devised a trick of forming the 1w
.. £, 14 .

"equivalence-set" of a given K -sequence f , d’EiC:L Al Then 1+l( )€ fl«{)' and

sisti g - 'hi I . . .. .
consisting of all K -seauences which have the {fi(x)] 1<JO} would be an infinitely descending

least rank amon ~-sequences eaquivalent to f. . . . : .
as € g K-seq € -sequence, contradicting the axiom of regularity. ®

(The equivalence classes of K -sequences would
Now we can prove a special case of Lod's
be proper classes and could not be elements of a
Theorem on ultraproducts.
model.)

, Loé's Theorem. If @ is anv formula of ZF

[f] = -{glgm f A (Vh)(hrvf = rk(g) £ rk(h))}.

with free variables among x

F (Ve

l""’xn’

Here, rk is the rank function: rk(x) is the K
' K <\I;ﬁ_,n >
f.€ MVl

/Lt
Lreeer (tg0,..,06. )

<> pu({aer [@r e, 8 «nl) =1,

least « such that x€ VvV, . The kev promerty of

equivalence classes holds: [f] = [g]l<&> £ ~ g .

~Proof. Bv induction on the comnlexity of @ .

Let VK//LL = -{ [£f] ‘ fe KV} . Now define a

nembership relation %M_ on V’{&h . ~The theorem is clear for atomic @ , and the

(f] E induction step for 11 and v is easy. So,

e [g] <~=:>/A( £ <k | fFl)e qg)} ) =1,

ssume that @ is (HXO)WV . NMAssume first that
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. K
Q([£71,...,[f 1) holds in <V @ ,x;u> )

kK
Then (39;6 V) WV([g]'[fl],...,[fn]) holds in
K
<V éu '?/;> . By inductive hypothesis,
O | gl , £ 60,00, £ (N} ) = 1,
and, therefore,

p({ xen | ) P g, £ oo, e @) =1,

Conversely, assume the last equation. TFor

« < K , choose glX) so that

ﬁk(q(d),fl(«),...,fn(«)) if there is such a glex)
otherwise, let g(x) = 0. Then, by inductive
hypothesis, }P([g],[fl],,,,,[fn]) holds in
<VK/u. ,E/u> . Hence, on)ﬁ,l/ also holds. ®

We shall define an isomorphic embedding of V
into vk /. . For any x€V, define c_e "V b
setting ;:kd) = x for all << K , th i(x)yz [cxl .

Then x€ y &> i (%) %M i(y) and x = y<= i(x) = ily).

Embedding Theorem. For every formula @ ,
<v"//u +Eu >
Fola (10x) eenyi(x))]

<= CQ(Xl,...,xn) .
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Proof.

{o(AKldz (cxl(é(),...,cX (x))} =

n
K if cQ(xl,...,xn), and 0 if ‘I(Q(xl,...,xn).
Now use Lo¢'s Theorem, H
We shall assume familiarity with the
following well-known result,
Mostowski's Collapsing Theorem., If R is an

extensional and well-founded relation on a

class A, then there is a transitive class M and

an isomorphism T of « A,R> onto < M,E(M)>,

where E(M) is the membership relation restricted

to M.

Hence, there is an isomorphism i of
<VK/ ,E/w> onto a transitive class M. In
particular, T ((£1) = { (gD | [a] Ej £1} .
We can take the composition of i and T :

Jx) = W(i(x)).

j is an elementary embedding of Vinto M:

Ea™ GO 3t e @b x).
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Theorem. (a) o< Kk =D j«) =« .
b)) J(k)> K .  (¢) P(r)< .

(@ X

M M.
Proof. (a) Since j is an elementary embedding,
j(®) is an ordinal and j is strictlv increasing
on On. Hence, j(x)2 o .« DMssume j)> &<
For @ < j (), (9 € M by transitivity of M. So,
(9 = T ([f]) for some f € *V such that

[£] E/u (e, ] . IIence,/A,({_J‘(Klf(rf)Gd})

For y<o , let A= Lo | £ =5} . so,

1l

1.

/u( U AB’) = 1, By K —additivity, /A(Aa,) =1

F<x
for some ¥< « . lence, [f] = [Cb’] and

[g= T ([eyl) = W (1 (X)) = j(¥). Thus,

i

j )

3 (e¢)

i

X -
(b) Let I, Pe the identity mapping on k .

For ¥ < Kk, [c,] E/L (T l. Hence, o € ([T, 1),

since “IT([CO(]) =« . Now, [I,]E

Pu e 1.

llence, 71 ([I,]) € T(lc, 1) e on. so,

T ([Ix])€ On. Therefore, K £ Tr([IK]) and

-{j ¥) ]| ¥ < o(} + By inductive hypothesis,
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(I, 1) < 3(K). Thus, k < j(k) .

(c) Since Kk < j(k)e M, kK € M and there exists
g, € “V such that T ([g, 1) = ® . Since

T (lgel) =« £ mw([1, 1), we can choose

g, so that g, )€ « for all x< & . (Let
A={ o<k | g, ()€ I, (« =} . Then
u(a) = 1. For « ¢ A, change g, (%) to 0.) MNow,
assume x & K , Let f(x) = x Vg, (x) for < Kk .
Let us prove I ([f]) = x. (i) Assume d < k& ,

leg) E, (116> p({p<n | Fe xnawn () = 1.
1f &¢dx, pB) =0, If §ex,

e (B) = mu{{p<r | Seay }5)}) = 1. (ror,

L« k= T(lg,l). lence, T ([cp1)< TW(lg, )

and [c‘f] E/,,_ g 1+) Thus,

4= M (lepl) e WL <D [eyp) By [£] &> ore.x :
Therefore, TI([f]l) K = x, (ii) Now assume

(9] Eu [£]. then m( { p<u 1gyf)exng,(<(s)})= 1
and so, m( { p<x |apre g, (p)}) = 1. llence,
9] E, [gyl. So, 7r(lgl)e x, and, therefore,

/( —

11 ([f]) € x . This proves that T ([f]) = x ,
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(d) Assume {W([S,,(])I“(K}S M. Let

9, :#<—=7 K be such that T(lg, ]) = K

For each {} < k , let h YZ) be a function with
domain g ,(F) such that (h%)) () = s“Sﬂ) for

X EQg, (Ig) . Therefore, in M,

T ([h]) is a function with domain 'TT([gK]) = K
&> [h] is a function with domain [gw ] (in VKéu)
(x}/u({ﬁé K {]1 YJ) is a function with domain

I <(5)?r)

domain k . We must show, for &« < k , that

It

1 . So, m([h]) is a function with

(T (1)) ) = T ([s,]). This is equivalent to:
(7 (1)) (M ([c, 1)) = T (Ls,1) <=>

([h]) (Lekl) = [s,] <=>

AU e<r|mEn o (p)) = sea}) =1 &>
/q( e ﬂ4K1<11y9)>(x> = sd(/;)}) = 1.

One must verify here that « is in the domain of
]1((4) for a set of F's of measure 1. But, since
T ([c,]) =« < Kk = 71“([(_],;,]), [c ) Eu la, 1.

/Ll
Therefore,/&({{)—dK ',(( gk(ﬁ)}) =1 ., H®
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Tarski-Hanf Theorem, Let K Dbe measurable,
Let /( (x) be any T]—?PC formula (that is, ’any
formula eaquivalent in ZFC to a formula of the
form Vul,...,un K3 (x,ul,...,un) , where P s
built up from atomic formulas by nropositional
connectives and bounded quantifiers). Assume l
/‘4 (K)., Then there are K ordinals < kK for
which /4 holds.

Proof, Form VKéu and M as above. Sin;gCM is
a transitive model of ZFC, and ,)4 is 'Trl ’
M !:—‘- /24 (k). ZLet g, be as above. Since I is
an ‘isomorphism, VK&L #‘—’—‘ /4([{],( 1). By Log's
Theoremn, /M ({a(_z K| /a¢(g,C (o<))}v ) = 1. Then
{gK «) <k A ;4—(9’( (o<))} is unbounded

in k . (If not, assume the set is bounded by
T < K . Then [g,] E, [c

/LL

K = Vf([g,c])e’rr([cf]) = 1 , contradicting -

T ]. So,
T <K .) By regularitv of x , ,4 holds for
k ordinals < K

Corollary. Let ik be measurable. Then there
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are Kk 1inaccessible cardinals < K , and there
are kg Mahlo cardinals < K , (The nronerties

of being inaccessible and ‘of being Mahlo are

Z2F . . .
TT Fe .) Hence, the least inaccessible cardinal

1
cannot be measurable,

Scott's Theorem, V = L is incompatible with
the existence of a real-valued measurable cardinal.
Proof. We assume familiarity with the basic
properties of the class L of constructible sets.
Lét K he the least real-valued measurable
cardinal. By (U6), either x is two-valued
measurable or there is a real-valued measure

/'\'/ A/o

on 2°°° ., But, by V=1, 2 = N\ By (U2),

1I
] . 7

there is no measure on ;Ll‘ Hence, K has a two-
valued measure u . Construct "Kéﬂn . It is an
elementary extension of V under the embedding

_ K : o
X 3 [cX] = i(x). Hence, Vv 4“ is a well
founded model of ZFC. Mostowski's collapse T

maps Vjcé;p isomorphically onto a transitive

model M. Hence, since V = L holds in the original
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universe, it holds in V’°4>L , and, therefore,

also in M., But, L(M) = L, Hence,

(M) _ (M)

M=V =L =V, We know that, for

any formula @ ,

Fa™Gog), i) & @by, x).

llence, since M = V,
) G e, I N E @ (Xy,eeeyx)

We already know that &< kK => jk) = , and
jlk)> K . We shall obtain a contradiction by
proving that j(k) = K ., Let @ (x) be a formula
asserting that x is the least measurable cardinal,
By (*),  @(j(k))<D> @(x) . But, b (k) .
llence,  a&@(j(K)) . Since @ (x) = x =K ,

we obtain b j(k) = . A

"Converse" of Scott's Theorem. If there is an
elementary embedding j: V ~> M, where M is someTfin-
3itive model and j is not the identitv, then there

exists a measurable cardinal.
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Proof. Let x be a set of minimal rank such that
jx) # x. Now, ue x = j(u)€ j(x)= uejlx) ,
since j(u) = u. Hence, x € j(x). So,

rk(x) £ rk(j(x)). Assume rk(x) = rk(j(x)).
Assume z € j(x). Then rk(z) <« rk(x), Hence,

j(z) = z. So, j(z)€ j(x). Then ze x. Thus,

j(x) € x . Therefore, x = j(x), contradicting
j(x) # x. Hence, rk(x) < rk(j(x)) = j(rk(x)).

(The fact that rk(j(x)) = j(rk(x)) follows from
the absoluteness of "rk" for transitive models:
f=kE i@ = ™G e = ko).
Hence, j(rk(x)) = rk(j(x)). ) HNow, let

K= rk(x). Then K < j(k ), Let F be the set
{x,xSK A KE j(x)}‘ . Then F is a k -complete
non-principal ultrafilter on k , and, therefore,
# is measurable. . (To show that F is a

K —complete non-principal ultrafilter, the hard
part is the kK -completeness. So, assume f is a

function with domain T < k and range < F. Let
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z = /\ f) . We must prove z€ F. Clearly,'

o< T ’ : .
z € K . We want to prove k € j(z). It
suffices to prove: (%) (\ (5(f)) &) & j(z).
(For, since j is an embedding and j(T) =T |,
j(f) is a function with domain T . Tor x<7T ,
<o, £x)> € f. Hence, since j(x) =« ,
<X, j(f(x))> € j(£f), that is,
(F(£)) (¢) = j(f(x)). DBy hypothesis, k € j(fix)).
llence, kK € (j(f)) (¢). Therefore,
ke TGE) &) . By (38), ke j(z). )

X<
(%) follows from the fact that j is an embedding.
In Vv, we have: (Yu) [ (Vi) (<t => u€fix))=>ucezl.
ence, in M, (Y (V) (¢<T = u € (5(£)) ()
= u€jl(z)]l. (lere, we use j(T) = 7T .) Hence,

MNGE) ) < 5(2) . @
o<T

AXIPDMATIC CONSIDERATIONS,

Let (In) stand for the assértion that there
exists an inaccessible cardinal.

Theorem, If ZF 1is consistent, then

ZFC + -~ (In) is consistent, that is, the existence
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of inaccessible cardinals cannot be proved in Zrc,
Froof. Assume (In) provable in 2ZFC. Let x be
the least inaccessible cardinal. V& is a model

of ZrC. But, for any K € VvV

(Vi)
<=> « is inaccessible.

K

(¢ is inaccessible)
(Ve )

Hence, - (In) . But, if (In) is provable
(Vi )

in ZrC, (In) . llence, Z2FC would be

inconsistent., %

Strong axioms of infinity usually are pre-
served in standard inderendence proofs.
Examples., (1) If 2ZF + (In) is consistent, so is

ZF + (In) + V= L , Proof: K is inaccessible =>

{ K is inaccessible)(L). 7

(2) If 2F + (dkx)Mahlo(k) is consistent, so is

2F + (HK)thlo(ic) + V=1L , Proof: Assume

A=K , ReL, and (A is club in K )(L) . Then

A is club in k . Bv Mahlo(k ), A contains an

inaccessible cardinal T . Then,

(Te A A T is inaccessible)(L) . H
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Whether (In) is consistent with ZFC is an
open problem. (If ZFC is w-consistent, then the
relative consistency of ZFC + (In) is not provable

in ZFC, For, assume Con C*%> Con

ZF ZFC + (In)

provable in ZFC. Since V, 1is a model of ZFC

when K 1is inaccessible, Con, is nrovable in

Z¥C

ZzFC + (In)., Hence, Con " is provable in

ZFC + (In)
ZFC + (In). By Gb&del's Second Incomnleteness
Theorem, ZFC + (In) would be inconsistent. So,
1 (In) would be provable in ZFC, Then,

-1 Con would be provable in ZFC, and,

ZFC + (In)

therefore, so would n Con But then, by part

ZFC. "
of G&del's TFirst Incompleteness Theorem, ZFC
would be w -inconsistent.) Solovay proved in

1970 that, if the existence of non-Lebesgue

measurable sets is provable in ZF + DC, then (In)

-

is disprovable in ZFC. The converse has been.

recently nroved by Shelah.

REFLECTION PRINCIPLES.

Strong axioms of infinity often are related to
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reflection principles of one sort or another,

A naive reflection principle would state that
whatever holds for the universe of all sets must
also hold for some set. For example, the universe
is infinite; therefore, there must be an infinite
set. The universe satisfies the standard set-
theoretic axioms. Hence, there mus t be a set
with the same property., Such a setthust be of

the form VvV, , where x« is an inaccessible
cardinal. (This is not duite the whole story.

If the axioms are those of the theory NEG, it is
accurate; but it is not correct if the axioms are
those of ZF,) Hence, there must exist inaccessible
cardinals. This way of obtaining large cardinals
has been made more precise by Lévv[1960] and
Bernays [1961]. The argument can be extended
further, The class On of all ordinals is an
"inaccessible" greater than any given ordinal « ;
hence, there must be an inaccessible cardinal

> & . Therefore, there are arbitrarilv large
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inaccessible cardinals. Moreover, since there
are "On-many" inaccessibles < On, there mus t
be an inaccessible cardinal K preceded by
K inaccessibles (that is, a hyperinaccessible).
Further, assume F is a normal function from On
into On. Then F{x)2 « for all x . We can
imagine that F(On) is defined. Then F(On) 2 On
and F(On) £ on, Hence, F(On) = oOn, that is,
On is a fixed point of everv normal function,
So, there must be an ordinal K with the same
property (relative to normal functions on k ):
every normal function on & has an inaccessible
fixed point. Then k would be a Mahlo cardinal,
A reflection principle can be proved for a
finite number of formulas: There are arbitrarily
large WG'S for which a given finite number of
formulas are absolute, Let us make this more
precise,
Tarski-Vaught Lemma. Let M., and M, be classes

1 2

such that M, = M and let c(l,...,cln be a list

1 27
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of formulas closed under taking of subformulas.

17 M2 if and

only if, for any formula in the list of the

- Then dl,...,<fn are absolute for M

form (3u)(2i(u,xl,;..,xk),

(M
(Vxl,.. <Xy € Ml) [(guéMz) Qi
(Mz)
(u,xl,...,xk)] .

)

2
(u,xl,...,xk)

= Guem) @,

(A formula CQ(Xl""'Xr) is said to be absolute

M if

for Ml’ 5

(M M)

)
Vryroexen)iq *

Proof. =» is obvious. <= follows easily bv
induction on the number of connectives and
aquantifiers in the formula, ®

Reflection Principle for ZF, Let cfl,..., c?n

be any formulas whose variables occur among

the list of variables KiresorX

k*
Fop (B0 (Fp>e) (Vi e vp)
(A (v,)

D
Gty peeerx ) & 02 %))
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Proof., We follow the argument in Kunen[1980],
We may assume the list @ q1/,.., cfn closed with
respect to taking of subformulas.. (If not, add

to the list all subformulas of formulas in it.)
FFor each @ ,, define a function EEi: On = On

in the following manner. If ®; is not an

existential formula, let Zfi(d) = 0 for all &« ,
If @ is (du @ (%, o), let
fPi(xl,...,xk) be the least 7T such that

(V)
(u,Xl,...,xk), or let it be 0

Jue v )Qj
if there is no such T . Let_g;i(d) =
sup{j??&(xl,...,xk) ! XKireeorX € Va.} . If we

can find a limit ordinallﬂ for which

(Vo((ﬁ ) ( Ei ) < ¢ ), then the Tarski-vaught

Lemma imnlies that cpl,...,an are absolute

for Vﬂ . Define a denumerable seaquence
fﬁrfr<w} as follows: ‘30 =« and

Fr+l = max ( ﬁr+l, El(fr)""'}fn(f{r))' Let

ﬁ::an: PI' . If d<ﬁ5 ’ a’<¥4r for some r.
r< -

Then F; 60 £ & (B LB 1< . m
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The Peflection Princinle can be extended in
various ways. (1) 1Instead of using the natural

models VP , one can use any continuous, increasing

secquence S’Ap.} and then one obtains

ﬂ € On

absoluteness for (A, \wj Ad) instead of
ﬁ s<€ On

(Vo , V). An examnle would be the constructible
hierarchv {-Lﬁ}~. (2) One can assume that VP
is chosen to contain anv given finite number of

sets uU,,...,u_ . Simplv take reater than o€
l 4 14 m ! ) g

and the maximum of the ranks of u;,...,u .

Observe that the Reflection Princinle implies
that no consistent extension of ZF (including
ZFP itself) is finitelv axiomatizable,

The Reflection Principle vields some of the
axioms of ZF if applied to weaker theories. Tor

example, if we assume the Peflection Princinle

for the theory 2ZrFr - (nI), then (AI) is derivable,
(Use the formula x€ On =§’(95)(f€(h1/\><eéw.‘)
Likewise, the Replacement Schema can be derived
from a Peflection Princinle for the theory
obtained from ZF by substituting the Selection

Schema for the Renlacement Schema. (Given a
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functional relation Y (x,y) and a set z, let

o = rk(z)., NAonly the Reflection Principie to
the formulas ¥ (x,v) and (ay)qy(x,v). One can
prove (3{5) [z & Vg A (Vx) (xe z A Av) ¥ i(x,y) =>
dye Wg)yu(x,y))], and then one uses the
Selection Schema. Since the existence of the
vp's depends unon the Renlacement Schema, one
has to include within the Reflection Principle
a description of Vv

/5 - )

The Peflection Princinle for ZF suggested to
Lévy the possibility of strengthening the
principle so as to obtain strong axioms of

infinity., Let sem?”

(u) assert that u is a
transitive model of ZF with the Peplacement

Schema replaced by a "second-order" axiom:

(Vz) (Vf) [(‘V/t,v,w) (<t,v>€e fALt,w>E Ff =2 v=w)
= Ay) V%) (xe y <= (t) (te z A< t, x> € £))].

/
Levy's Schema (N). Tor anv formula @ with

free variables among x %
N l'o-o, k,

(Hu) (sem”’ (u) A (Vxl,. e X ) (X x €U =>

(@ = @M.

(This can be shown to be equivalent to a



— 134 —

principle in which there may be several cyi's

and in which u is required to contain a given set.)
Lévy's Schema (N) is equivalent to each of

the féllowinq.

(neere) (gx)(ScmZF(V&)A (VQl'Z"ka)
\%

() eee i3y € Ve = (@ <= @ 7 1)),

2F
(Note that, in the presence of (AC), Scm (V)
is equivalent to « heing inaccessible,)
(M) (Mahlo's Schema) Everv normal function on On

has inaccessible cardinals in its range.

From (M) one can nrove the existence of Mahlo

cardinals of everv order,

Bernays [1961] simplified Lévy's approach, e

adopted a partial reflection schema:

*) A = dy) (Transy) 4 AT,

where A is allowed to have class quantifiers.
From (*), together with Extensionality, Selection,

Regularitv, and Chojce, he derived all of Morse-
Kelly set theorv nlus Mahlo's Schema (M).
INFINITARY LANGUAGES.

Let « and p be infinite cardinals. Let gtzgp

be the ordinary language of ZI' set theorv,
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augmented by additional variables and relation,
function, and constant symbols, and permitting
formation of infinite conjunctions and dis-

junctions and prefixing of infinitelv many quanti-

fiers of the same type. More precisely, for anv

T <, we allow conjunctions /\ @, and
T<T

~e

disjunctions ;Z/ @, of a sequence of T formulas
T

for any J~<‘6 , we can prefix -to any formula

a d -sequence of all universal quantifiers or

all existential cguantifiers, obtaining formulas

%<J‘Q - In

of the form (VQr)z<J‘Q and (Byr
narticular, the language wew 1s the ordinarv
’

first-order language, with only finite con-

junctions and disjunctions and finite sequences

of quantifiers,

It is well—known.that the language e satis-
fies the Comnactness Theorem: If everv finite.
subset of a set 4& of sentences/has a model,

then »& has a model. (This is a direct con-

sequence of the Completeness Theorem: Lverv

consistent theory has a model,) It is natural
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to wonder to what extent the Compactness

Theorem generalizes to infinitary languages.

(Proof.

Let WO
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stand for the formula

¢ N\

(Vx,y) (X<€yVy<s xV¥x=y)aA 1 an)n

Let K be a non-denumecrable cardinal, Then

<w

n <

(Xn+l

< xn)).

K is said to be weakly compact if, for anv

set 4£ of sentences of ;{;CK such that J& < k
/

k4

if everv subset of .4 of cardinality < K has a
model, then 4§ has a model, K 1is said to be

strongly compact if, for anv set.&g of sentences
of ka3f< , 1f everv subset of-éf-of cardinal-
ity < K has a model, then-<£ has a model.
Clearly, strong implies weak compactness.

. 4 .
o cardinal }\ is weakly compact,.

/ /
Proof. Let o’==}\1- and T= 5 . Add to &i:t
7

¥+1

individual constants (a,)u<T and (b %g((' .

ﬁ

Consider the following set 4 of T formulas.
4.—_{\/%‘:1?3 | <z} v

Io(l # o ;O/l,o(2<7:} .
Every subset of AQ of cardinality <7T has a

model, but .QV has no model. & )

No singular cardinal K is weaklv comnact.

WO holds in a model when and only when < is

a well-ordering of the model, Let A (x) stand for

Q) A A, expa Vo) zex = Miz=x1.
VALK o sk £ ¥ z)lz< X >J<o<(7 xg)1]
If < well-orders the model, A_/(x) holds when

th

and only when x is the e element in the well-

ordering,

’<=va,

I<T

Since k is singulay, we can write

T < K

2r< K, Let B be a new

monadic predicate letter, Consider the following
set Ag of k formulas,

froud M 3xp, Y (o) B2 => J%X(z:x;) )14

U 1 dz2) (B(z) A Ad(Z))IM{K} .

A£ has no model, but everv subset of ég of
cardinality < & has a model. ®m )

Thus, every weakly compact cardinal is
weakly inaccessible,

Here are some of the most important properties
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of weakly and strongly compact cardinals,

1) Every weaklv compact cardinal is weakly
Mahlo, weakly hyperMahlo, etc,

2) (llanf) Every weaklvy compact cardinél
which is inaccessible also is Mahlo. The first
strongly inaccessible cardinal is not weakly
compact,

3) Every measurable cardinal x is weakly
compact (and, in fact, there are i weakly

compact cardinals <« K ).
4) For regular cardinals k , Kk is strongly

compact if and only if any k‘~cdmplete filter on
a set can be extended to a X -complete ultrafilter

on that set,.

Corollary of 4), 1If k is strongly comnact,

K 1s measurable. (Proof. Let F be the filter

of all subsets of kx with compgements of

nowver < K , Extend F to a k‘~complete ultra-
filter F' op K. 7 is clearly non-principal
and determines a two-valued measure on K , @& )

On the other hand, if the existence of measurable

— 139 —

cardinals is consistent with 7ZFC, then it is con-
sistent with ZrC to assume the existence of a
measurable cardinal which is not stronglv commact,
So, strong commactness is stronger than measura-
bilitv, UNevertheless, contrary to what usuallv
happens with large cardinals, Maqgidor has shown
that it is possible for the least measurable
cardinal to be strengly compact.

5) (Solovav) If g is stronqglv compact, then
2 VN

°‘/d+l for everv sinqular stronag limit

cardinal f(« > K . (p cardinal T is said to
be a strong limit cardinal if ¢ < T ==> e T )
llence, the existence of a stronaglv compact
cardinal imnlies the existence of a propner class
of cardinals for which the gencralized continuum
hvpothesis hblds. This seems to be the onlv
known case in which a strong axiom Ofvinfinitv has
some effect on the gCIl (cf, Drake[1974], pp. 306-
310).

6) If xk is strongly inaccessible, then weak
compactness of Kk imnlies that every totally
ordered set of cardinality k& has a subset of

power & such that either it has order tvpe k

or order tyne the inverse of & . Conversely,
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this property imnlies that Kk is strongly

inaccessible and weakly compact,

7) Weak comnactness does not contradict V = L,
In fact, if K is weaklv comnact, then kK 1is

weakly compact in L (cf. Jech[1978], bp. 389),

INFINITE COMBINATORICS,

Much of the most interesting work on large
cardinals revolves around the notions of
partition relations and trees,

For any set X of ordinals and any ordinal ¥ ,
et [X]“r = {TY = XI Y has order type 3}‘ . The
basic partition relation o< »%79322 asserts
that, if f: [«]'—>d
(16

, then there exists W in
which is homogeneous for f, that is, f takes

the same value on everv memnber of [fo
The classical result is due to Ramseyvy (1929),
Remember that [X]n stands for all n-element
subsets of X,
Ramsey's Theorem. If X is infinite and [X]'
is partitioned into k subsets Dl""'Dk' then
X contains an infinite subset Y such that
v1" < Di for some i
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Proof. It suffices to nrove this for k = 2 ,

The proof is by induction on n. It is obvious

for n = 1, by the infinite nigeon-hole principke,

Now assume the theorem is true for n and for any
+
Assume [X]" . DL

infinite X. () DR with

For each a in X, define

DLn DR=/@( R
x (a) = fwex1™ | wu{a}e DL} and

I

Xp (a) {wemx)” | wu {ale DR} . Then

[x - {al 1" = XL(a)Lj XR(a) and XL(a)f\ XR(§3:=}5

Bv inductive hvpothesis, there exists an infinite
set 2 &€ X —-{a}- for which either [2]" <= XL(a)

or (217 = x (a) .

Process L. Define a sequence of infinite sets

L, = ;=2 ... and a sequence of elements
2y Aqrese, @S follows: TFirst, let LO = X.

Given Lj, Choose (if nossible) ay in L. for

which there exists-an infinite 72 & Li such that

71" = p = 72, If this nrocess
2] = XL(ai). Let L, 4

continues for all i<w , let Y = {—ai‘ i<fu>}-.

Then [Y]n+l < D

1, If process L comes to a halt
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with some set Lm’ begin the following new process.

Process R. Choose a sequence of infinite sets

R - Ry 2 ... and a sequence of elements

bg bl,... in the following manner, Let Ry = L

Given Rj' choose bjé Rj such that there exists an

infinite gset z2 < Rj for which [Z]rlSE XR(bj),
and let Rﬁ+l = 27, (There alwavs exists such a
set 2, In fact, stz L, and Rﬁ is infinite.

n
1 € R.., . - . = . { .
Chbose any bj€ Ry (R {b]}J Xp (b5 Xp (bs) .
Bv inductive hypothesis, there exists infinite

7 < Rj for which either [Z]n — IXL(bj) or
n )
(2] &= XR(bj). Since process L broke off at L

: n .
and RjEE Ihﬂ vve must have [Z2] 7 < kR(bj).) Nowr,

let Y = {bj | j<w} . Then m" < D, . 1@

A snecial case of Ramsev's Theorem is the
nartition relation (J.)"‘“>((A.)); for all positive

integers n and k.

Exercises, 1. The countable AC imvlies
Pamsey's Theorem. 2. Ramsey's Thedrem imnlies

the following weak axiom of choice:r TFor anv
infinite set of finite non-emnty sets, there is a

choice function that selects one element from each
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of infinitely manv of the finite sets.
Now let us look for a moment at trees., A tree
is a partially ordered set < T, <, > such that,

for each t in T, the initial segment
{~S€ T ls 4Tt'} is well-ordered. Tor each t

in T, the tree rank r,,(t) is the order tyne of

T
{se Tl s <’T't} . For any ordinal o , the

™M 1evel of T is the set of all elements of T

of rank « , and we set T_ = -{téTl rT(t) <°<} .

By the height of T we mean the least o« such that

m

T = T, . A branch of T is a maximal chain in T,
(Its length is its order tvme,) »7An antichain of T

is a set of pairwise incommarable elements.

(Everv level is an antichain.) T is finitarv if
everv element of T has only finitely many

immediate successors and T has only finitely many
minimal elements,

N classical result about trees is due to
W¥nig (1927).

K¥nig's Lemma. Anvy infinite finitarv tree

has an infinite branch,
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Proof. It follows easilv by induction that all
finite levels have onlv finitely many elements,
Chbose tO in T, so that tO has infinifely many
successors, Choose t; to be an immediate

sucgessor of to vith infinitelv many successors,

etc. Thus, t < . <

0 o *1 T ..» o IExtend this

&7 -chain to a brénch, bv Zorn's Lemma, H&

A special case of K¥nig's Lemma is that any
infinite tree all of whose finite levels are
finite has an infinite branch, This snecial case
was the original form of the lemma.

Kbnig's Lemma is equivalent to the axiom of
choice for a countable‘set of non-emnty finite
sets. Kbnig's Lemma also enables us to give
another proof of Pamsey's Theorem, which we shall

give here because the technique will be useful

elsewhere,

Ramsey's Theorem Again. Assume f: [X]n—%> k ,

wvhere X is infinite and 0 € k, n<«w ., Then

there exists a homogeneous infinite subset of X
for £, that is, a subset Y & X for which

n . .
£ Y] consists of a sinale element,
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Proof. (Drake) Well-order X: ‘{XF lf" d'} .
We shall define a relation < on X for which
< X, £ > is a tree. Iet x_ £ x_ mean: U’<(3

L

and, for any ¥_ < ,.. < rn

0 such that

X 4 e & 0 4 X ‘4 X r4

-2

f(x ere X X.) = f(x e X yXo) .
xOf ' Kn—Z’ ¥ XOI ' 36—2 ﬁ

< is obviously a partial order, To prove that

‘every initial segment {.XT,‘ X L Xp} is well-

ordered, it suffices to show that, if xf-< X

¢

and xv»< x and 4 < ¥ , then Xgp <L x, . [Use

¢
induction on § . Assume Xp P4 x[), and £ < 4

implv that X is comparable with anv other

predecessor of x4, . Assume ¥. < ,..< ¥ and
’ Jis 0 n-2
Xy < e X X, < X, . By inductive hynothesis,
0 n-2
x L X_ . So, f(X_ ,eee,X P X)) =
,ﬁ—Z ¥ Ub Xﬁ—Z g
FXoy seee,X yX,) and fx, ,...,X% P Xy) =
% T2 B 75 -2
FXy peee,X ;X.) e Therefore, x.<4L x_.]
%0 Bhon B g v

Thus, < X,< > 1is a tree., Notice that

~e

XO( xp for all &> 0, xlX x o for all d>1

oo xn_2—< x, for all 4 > n-2. Hence,

4
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Xy £ xl-< X2'< oo L X _, are the first n-1 levels,

Assume now that Xy is at level ¢ , ¢ > n-2,

Assume Xﬁ , ﬁe are distinct immediate successors
2 .

1
of x_ , with /3l<f/62. Assume also that

X%)K eee X Xy L X, . Then

n-2.

f(XU IO"IXF =f(Xa¢ rcoorX IXZ)”‘

X, )
0 n-2 1 0 J=2

FUX_ yeee,X X _ ). But, x fé X . Hence
%o T2’ 2 e A2 '

t] .:-b- t LI ) A
here exis va,< L X3£-3'4 X such that

f(xr '.."Xa’

Xy X ) 7‘{ f(X
0 n-3 ¥ F 4

ree X P Xy r X ).
O! ' X£—3 ﬁé

5y < e < X5 < X o

The number of sequences x
‘ 0 n-3

. -2
is at most [¢o 1" . lence, the numher of

possible wvalues of f(xX ree e Xy P Xy 1 X ) is
0 n-3 A

n-2.
k (o] ) . This is the maximum number of

immediate successors of Xy o When ¢ is finite,

this is finite, and, therefore, all finite levels

are finite,
Apply K8nig's Lemma to the tree <X, ,< >

(just all finite levels),., Ilence, there is an
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infinite branch B in < Xco"< > . For any

x, L ...<L X o

let g(x ) =
» ’ x,-..,xa‘
0 n-2 0 n-2
L O +Xy) for any x,€B with
0 n-2
Xy £ Xy Thus, g: [B]n“l»<> k . By
n-2

induction on n, there is an infinite Y < B which
is homogeneous for g, Then Y is also homogeneous

L L..4 X in Y
y r
Zb n-1

for f£f. ¥For, if we assume X

then f(x, ,...,X ) = q{Xy, ,eee,X ),
0 LA % L

wvhich is constant on y., =2

Other applications of trees to nartition relations:

1) N,—> (@+ D]} for 0<n, k <,

(Outline of nroof: Assume f: [X1"— k with

7
X=/R .

1
above of Ramsev's Theorem, Since all finite

Form a tree < X,< > as in the proof

levels are finite, X _ff X . Let Y = {u [ u< y}‘,

where y is some element of X of tree rank 2«
< u in vy,
2 1

For u < ...< u
0 n

f(uo""'un—Z'un—l) = f(uo,...,un_z,y), since

f(uO, L} ,un_zly)

un—l‘i y. Let Q(UO""'un~2)
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. . n-1
if uo‘< e K u 5 in Y. So, g: [Y] —> k .

By Ramsey's Theorem, there exists Y' & Y which

is homogeneous for g.
Y'u{y%

geneous for f,

Then Y' has order tvpe = &
has order type = «+ 1 and is homo-

For, if u0«< .. L1 and
n

) ==

. .
V< eee < Vo1 in ¥Y', then £(uy,...,u 4

fugreceru _5ey) = glug,eee,u o) = glvg,coe,v o)

= f(VO,.a.,vn’_Z,y) f(vo,...lvn"’z",n;l).)
2) Erdos— Rado Theorem: For 7 an infinite

+,n+l

cardinal and n<w , ( A ()" —»> (. )1 .
n

llere, k' denotes the next card®nal after K , and

the relative beth secuence is_ defined bwv:
' RALT)
QA () =T, :]b,+l(‘t) = 2 , and, for
0

limie 2, Ax(7) = YL (1), (er. prake(1974,

ZA U
p. 207)

n
o ~9'(p )y is usually abbreviated

Hotation:
bv o« ~$’(ﬁ’)n, that is, we omit the subscrint 2.
One of the most interesting partition
2
K —=>(K)" .,

properties is To studv it, we

neced a preliminarv result,

.
17
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K
Theorem. The lexicographically ordered set 2

+ .
has no increasing or decreasing K -secquences.

. + .
Proof. Assume that Y = {-XK, < < K } is an

increasing )<+—sequence in %2, Let ¥ £ K be the
least ¥ such that the set of restrictions

 x, b7 | < k*} nas pover Kt et Y = v

oty

*
be chosen so that Y = K& and ud¥ # vPY for

* *
u# vin Y . We mav assume that Y = Y, For

+
< < K , let J; be the least ordinal where x,

differs from x (Then XK(J;) = (O and

+1°
) =1 .

Obviously, Jg < ¥ . So, by a

X
o+1

pigeonhole argument, there exists ¢ < ¥ such that

4'=<£( for k¥ members x _, of Y, But, if

X, PO = x, M@ for « and # such that(:‘fx =‘!‘;'

é

then x{g < X and x < X

<+l = A+’ which imnlies that

Xo(’-:X(g.

contradicting the minimality of & .

So, [xdf‘o’ | «< K+} has nower }<+,
A similar
proof holds for decreasing sequences., ®
K-——-—>(K)2, then

Theorem, If K>« and

K is inaccessible,

Proof. (a) k is regular. (Assume kK = L/{~D117<I},
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where the D, are nairwise disjoint, Dy < K for

. 2
all ¥<T , and T< K , Let f: [r] —> {O,l}

be defined by setting f({af,(ﬁ} ) = 0 vhen & andﬁ

belong to the same Dy . There is clearly no homo-
geneous set of power K .) °

‘C .
(b) DNssume T < K and K £ 2 . Since

K — (K )2, K —> ('ZJr)2 and, therefore,

14
T T
2 - ('L’+)2. How, let {g,( | x <2 }» be an

enumeration of T2, and let < denote the

T

lexicographic ordering on 2, Define

T
£: (27 12 —» 2 by setting £({e,t) = 1 vhen

(°<€(9<'—‘> Toe < g{s ). DBy 2T-> (T*)? , let

Yy < 21. be a homogeneous set for f of order
tvpe 7?+, Then {}g« I»(é}f} would be an increas-
ing or decreasing 't+—sequence in the lexico-
graphically ordered set rr2, contradicting the
theorem above., H

Let us consider some related concents

involving trees. DBv a K -trece we mean a tree of

height Kk such that everv level has cardinality < K,

k is said to have the tree property if every
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K ~tree has a branch of length & , Kdnig's
Lemma tells us that & has the tree propérty.
Aronszajn proved that cdl does not have the
tree propertv,

Theorem, If K —> (K)2 then K has the

14
tree property.,
Proof. Assume that < T, <T> is a tree of
height k swch that every level has power < K .

- We may assume that T = & , Extend <«,, to a total

T
order < on & as follows: if « and ﬁ are not

< -comparable, let 4 be the first level at
T

vhich the vnredecessors o(J,‘&o(‘ differ, and set
0(4(4 when o<J,<‘ ﬁc{‘, Now define f: [K]z——>_ 2
bv letting f(4{ « ,{9}) = 1 when < agrees with <
on {o(,(s} - Since Kk —> (K )2, there is a set

Y = K of power K which is homogeneous for f.

Let B be the set of all ¢ < K such that

s

{x€ Y| (41,"(} = K . Since all levels have
pover < K , B intersects every level., To show

that B is a bhranch of length Kk , it remains to

show that any two eléments o and T of B are

< =—-comparable. Assume that & and T are
rlj .
incomparable and ¢ < T . ¢ and T have
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K successors in B, Hence, there are d(ﬂ < YO - {0( ,tn(éB and t, Y {(f,(,o >} € B}, "and
in Y such that ¢ <, of T < a < 5, ' |
T r T(A . T Yl={o(]to(eIBandtKU{<Ju,l>}€ B}- Then
Then o 4 (3 and ¥ < ﬂ . Therefore, : .
Y0 and Yl are homogeneous for f. Since YOU Yl = K ,

f({x,ﬁ}) =1 and £(§¥,87) =0,

at least one of Y, or Yy has powver K. B
contradicting the homogeneity of B, ™

. . K —>(kK )2 also turns out to be equivalent to
N partial converse is alsp true,

Theorem. TIf K is inaccessible and has the ~ the following interesting property: every totally
tree property, then K —> (i{)2 . ordered set of nower K has a subset of power K
Proof, Assume f: [K]2 — 2'. Construct the which is well-ordered or inverselv well-ordered by
following tree < T, < > , where T consists of , the giveﬁ ordering. (The imnlication in one
{O,l} -sequences with domains < K , Construct T ; direction is very easy. Assume < totallv orders K .

by induction: T = '{-tO'tl""’ tlg,...} . FPirst, nefine f£: [K]2~"P 2 as follows: f({x,y}) = 0

tO =/@’ . Mssume that « < K and tﬂ has been con- if (xEy <D x<Ly). By k—> ()<)2, let C be a
ted f 111 < . =t
structed for al (3 < Assume that the homogeneous subset of k of nower &« . On C,

sequence t, has been defined for all <7 .

. . i s i) es with the
If to(rb’ is not equal to some t(3 with @ < < either < agrees with € or < agrees wi

let toc:t‘,(l\b’. If t“rb’:t(; for some(:'<o( , " converse of € .) .

let td(a’) = f( {(3 ,o(} ). '7'1: = K , Bv inaccessi- Another remarkable connection is the fact that
bilitv of K , everv level of T has prover < K ; ' the tree property is equivalent to weak compact-
so, the height of T is. K . By the tree propertv, ‘ ness, Let us show that weak compactness imnlies
"let B be a branch of T of length £ . TFor any the tree propertv. Assume <T, (T> is a K-tree,.

. . ¢ C i i t :
ta(é B, let Cg( = the domajn of t_ . Define | For each t€ T, let P, be a monadic predicate
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letter, Let /g be the following set of sentences,

{\/ Axrp, 00 | < K} U

t € level X

(x)) l tl and t. are

2

not <q;comparable}.

Every subset of A& of power < k has a model,

{ﬁﬂ((gx)Ptl(x) A (EX)Pt2

Since K 1is weakly compact,,Ay has a model 772 ,
which yields a branch {—té'T{ TYZ}:(BX)Pt(X)}
of length K , ® "

In an earlier discussion of the motivation for
strong axioms of infinitv, one of the basic
intuitions mentioned was that whahever holds for )
should also hold for some larger cardinals.
Naturally, this cannot be understood literallv ;
some restriction would have to be placed on the
kinds of properties of ¢ we are referring to. .

In fact, there is an imnortant nroperty of ¢« that
one might bhelieve should extend to higher cardinals
and which, as we shall now show, does not do so.

‘ ol
Ramsey's Theorem tells us that & —> () for

*
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every £ <« ¢ . But, when K> w ,

}<w—7(!<)a> is false. 1In fact, let us Erove
that K7f-§ (w)w for K>2t> ., Proof., Let the
relation R well-order the set [K]uJ . Define
f: [k fo-—y 2 by letting, for every denumerable
subset D of x , £(D) = 0 when D precedes all
dénumerable proper subsets of D with respect to
the ordering R. MAssume there ié a denumerable
subset Y of & which is homogeneous for f., Let
D, be the least member of [Y]A7 with respect to
the well-ordering R, Then f(DO) = 0., By the
homogeneity of Y, £(D)= 0 for all E)e[Y]u).
Since Y is denumerable, we can enumerate Y:

Y={ynln<w}. LetE={y2n,n<w},and
- T < <
Yn—EU{yl’YB”"'YZn-Fl}‘ Then YO7“ Yl’f“ .o

Since f(Yn) = 0 for all n, we have:

eee ROY, R Y, R Yo o contradicting the fact

that R is a well-ordering. g

There has been .an exnlosion in recent vears
of tvpes of large cardinals. We mav soon exhaust

the supnly of adjectives available to name these
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concepts. Here is a short list of a few of the
more important notions.

(A) Ramsey and Rowbottom Cardinals. Let

<
[ k] = Lj [k 1" , the set of all finite su
n< w
< W
sets of k . Let K.—D'UK)T: mean that, for

< w

any partition f: [k ] - T , there exists

Y < Kk such that Y has order tvpe ¢ and, for
n<d, f is constant on [Y]n .

k is called a Ramsey cardinal if K ~>‘(K)z

Specker gave a clever example to show that
&) is not a Ramsey cardinal. TFor any finite
subset x pfca , let f£f(x) =0 if X€ x and let
f(x) = 1 otherwise. MAssume Y is a denumerable
subset of & which is "homogeneous" for f. Let
n<e., If f(x) =0 for all x & Y such that x =
then n€ x for all such x. Since:§ =W , this is
impossible. lence, f(x) = 1 for all n-element
subsets of Y. Ilence, ngfx for all such subsets,
Therefore, nﬁ!Y. This imnlies that Y = ﬁﬁ .

which is a contradiction,

H—-

>

n,
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It can be shown that all measurable cardinals
are Ramsey cardinals and that all Ramsey
cardinals are weakly compact.

A cardinal K is said to be a Rowbottom

/ < W
‘cardinal if K > ;\l and, for any f: [k] —-> T

with T < Kk , there must exist Y = K such that

= < W
Y = Kk and the range of f restricted to [Y]

is countable.

It turns out that everv PRamsey cardinal is a
rowbottom cardinal. Moreover, the existence of
Rowbottom cardinals‘imp}ies that (W) L is
denumerable, Hence, V = L is incompatible with
large cardinal assumptions that are weaker than

the existence of a measurable cardinal.

Let X be a countable first-order language

with a designated monadic predicate P. In a

, the set of elements satisfying P is

yeee> of Xf

is daid to have type <K ,T> if M =Kk and

e
P

pH =T,

model 2L

p. =
denoted FJL . Amodel U = <M, P

It can be proved that a cardinal k
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. . . . /
is a Rowbottom cardinal if and onlv if kK > ;\l

and, for ;{l,< T <K, everv model of type

<k ,T> has an eleﬁentary submodel of type

< K ”/O> . Another result is that everv Row-
bottom cardinal is either inaccessible or has
cofinality « .

(B) Universal Algebra. An algebra is a
structure consisting of a set A and finitarv
operations én A, An algebra ié said to be a
Jonsson algebra if it has no proper subalgebras
of the same cardinalitv, A cardinal K is a
Jonsson cardinal if there is no Jonsson algebra

of power k¥ . It is easv to see that «) is not a

Jonsson cardinal. (Take < w ,f> with f(n) = n-1

for n> 0.) Everv Rowbottom cardinal is also a

Jonsson cardinal, Jonsson .cardinals have a more

general model-theoretic characterization: K is a

Jonsson cardinal if and onlv if evary model with

countable signature and nower k¥ has a nroner

elementarv substructure of power K ., It has heen
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, + .
shown that, if K is a Jonsson cardinal, then

. o /
K is also a Jonsson cardinal,., Illence, no })n

/
with n<@w is a Jonsson cardinal. Whether ;QJ is
a Jonsson cardinal still seems to bhe omen,
(C) 1Indescribabilitv, A cardinal &K is said to

be TTg—indescribable if, for any A € V,_ and any

.

”H?n—-sentence ® such that <Vp ,€, 2> EQ,

there exists T < K for which < V_,€, AnV > EQ@.

(Similarly for 52:1.) Some of the lower levels

of indescribabiiity éorresnond to well-known

large cardinal w»nroperties, For examnple, K 1is
inaccessible if and onlv if K is ng-indescribable
for all m, and k is weaklv compact if and onlv if
K is 7T}—indescribable. Lvery measurable cardinal
is 7T§—indescribable ; but the least measurable

cardinal is Zfi-desciibable.

Other important classes are theAsunercompact
and huge cardinals. (See Kanamori-Magidor [1978]
and Jech [1978].)

We have sampled onlv the most elementary parts
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of the study of large cardinals. There is at the
present time no general theorv of large cardinals.
Some first steps in the direction of such a tﬁeory
have been suggested by Reinhardt [1974],

The relation of large cardinals and strong
axioms of infinity to the ‘foundations of mathematics
is still problematical. At first,Athere seem to
be strong reasons for rejecting large cardinals
“entirely (for example, bv denying tﬁe existence of
inaccessible cardinals). One such reason is
simplicity ; all the large cardinal properties
would be false for all cardinals, A second
apparent reason is that the universe of sets should
be unique ; the existence of an inaccessible
cardinal Would vield a set which is a model of ZF
set theorv (gnd even of the class theorv of
Bernays-G&del). But these reasons are not at 511

conclusive, In his book, From Mathematics to

Philosophyv , Hao Wang describes (on pp. 189-190)

some of GBdel's views on strong axioms of infinity
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and, in particular, on reflection principles,
G8del believed, according to Wang, that "the
universe of sets cannot be unicuelv characterized
(i.e. distinguished from all its initial segments)
by any internal structural nroperty of the
€ -relation in it, expressible in anv logic of
finite or transfinite tvné, including infinitary
logics of any cardinal number". c8del's
Incompleteness Theorem is one of the prime pieces
of evidence for this standpoint. According to
this view, any particular collection of
properties of the universe which we can formulate
does not complgtely describe the universe and
must also be satisfied bv some part of the uni-
verse, This is.the main theological basis for the
faiFh in large cardinals.
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