Estratto da

C. Bernardi e P. Pagli (a cura di), *Atti degli incontri di logica matematica* Volume 2, Siena 5-8 gennaio 1983, 6-9 aprile 1983, 9-12 gennaio 1984, 25-28 aprile 1984.

Disponibile in rete su http://www.ailalogica.it

The Veblen Hierarchy and the Stability Theorem for L

Andrea Cantini

Let $PRS(\omega)$ ($PRO(\omega)$) be the class of primitive recursive set(ordinal) functions (see [JK]), expanded with a constant function whose value is ω . The Stability theorem for L states:

for every $F \in PRS(\omega)$, there is a $G_F \in PRO(\omega)$, which stabilizes F in L.i.e. for every ordinal β , a $\in L_{\beta}$, $F(a) \in L_{G_F}(\beta)$.

We prove some uniform versions of the theorem, showing that G_F has a familiar form. Let φ be the classical Veblen Hierarchy of ordinal functions starting with exponential in base ω (see [Sc]). As typical corollaries, we have:

A. we can find a primitive recursive function g on ω such that $F(a) \in L$ $\varphi g(\hat{\mathbf{F}})(\beta+1)$, for every $F \in PRS(\omega)$ with index $\hat{\mathbf{F}}$, every $\beta > 0$, a $\in L_{\beta}$. Let $PRS(\varphi \omega_n : n \in \omega)$ be the extension of $PRS(\omega)$ with $\varphi \omega_n$ as new initial function, for every $n \in \omega$, where $\omega_0 = \omega$, $\omega_{n+1} = \omega^{\omega_n}$. Then we have:

B.we can find a primitive recursive function g which assigns to the index \hat{F} of every F in PRS($\varphi\omega_n:n\epsilon\omega$)the code of an ordinal $g(\hat{F})<\epsilon_o$ so that $\varphi g(\hat{F})$ already stabilizes F in L .

Let KPN_1 be the theory of admissible sets above the

natural numbers, which includes 1) the existence of the set of natural numbers and standard Peano axioms; 2) extensionality, pairing, union, Δ_o —separation and Δ_o —collection, Ξ_1 —dependent choice; 3) ϵ —induction restricted to Ξ_1 —formulas. KPN $_1$ is KPN $_1$ plus full number—theoretic induction; remark that KPN $_1$ already proves Π_1 — ϵ —induction.

Lemma 1. If $F \in PRS(\omega)$ ($PRS(\varphi\omega_k;n\omega)$), we can find uniformly and primitive recursively in F,a proof in KPN_1 (KPN_1^+) of $\forall x \exists y \Delta_F(x,y)$, where Δ_F is the Ξ -formula defining the graph of F.

This is mainly because $\Delta_{\rm o}$ -collection and ϵ -induction for $\mathcal{H}_{\rm l}$ -and $\mathcal{Z}_{\rm l}$ -formulas are sufficient to prove a form of the recursion theorem.

Now we apply cut -elimination tecniques; we reformulate KPN₁ as a sequent calculus a la Tait(see [Schw]), where sets Γ of formulas are derived. Due to the form of the rules corresponding to Δ_0 -collection, Σ_1 -DC and Σ_1 -induction, we cannot eliminate all the cuts; however:

Lemma 2. (Weak Normalization). If Γ is derivable in KPN₁, then Γ is derivable using cuts only on Π_1 — and \mathcal{E}_1 —formulas. The procedure is primitive recursive.

In the case of KPN_1^+ , in order to get an analogue of 2, we embed the theory in a semiformal system with ω -rule; derivations (of finite cut-rank) will be

weakly normalized as in 2, but their length will increase up to any $0 < \xi_o$. The main step is to read off bounding functions directly from weakly normalized proofs of \mathcal{H}_{\circ} -statements, thus avoiding both functional interpretation (see[Ca]) and full formalized cut elimination . We produce an "asymmetric "interpretation which is suggested by the proof of the stability theorem itself (but see [Gi]). Theorem 3.Let f be a weakly normalized proof of length $k < \omega$ in KPN, ending with the set Γ , where each formula in Γ is ξ' or Π . Then $\models \Gamma \rightarrow [\beta, \varphi \kappa (\beta + |\vec{\gamma}| + 1)]$, for every $\beta > 0$, every $\vec{r} = r_0, ..., r_j \in L_{\beta}$ (parameters are in the list \vec{r}). true whenever the domain of unrestricted $\forall (\exists)$ is L_{β} ($L_{\varphi K}(\beta + |\vec{\gamma}|_{H_{1}})$ and parameters are arbitrary sets in L_{β} , ϵ , N are interpreted in the standard way ", IT = E | Til and Itil= order of ti in L. If we deal with KPN_1^+ , just replace k by $q < \xi_0$. As a special case it follows: 3.1. if $KPN_1 \vdash \forall x \exists y \ A(x,y) \ (A \in \Delta_0)$, then it is true for every $\beta > 0$, (+) $\forall x \in L_{\beta} \exists y \in L_{\varphi k(\beta+1)} A(x,y)$, where k is primitive recursively found in the given proof. Indeed if

 $\beta < \varphi wo$,(+) can be proven in KPN, An analogue holds

for KPN₁.Propositions 3-1 yield A-B.

By similar methods, but applying Ω_{1} -rule of [BFPS], we can give bounding theorems for set-theoretic Σ_{1} -definable functions, which are total provably in KPN_p,(p>1),KPN_p being the fragment of the full admissible set theory above N, where ε -induction is restricted to Σ_{p}' and Π_{p} conditions. For p>1, we use, instead of Veblen hierarchy, Bachmann hierarchy up to any $\alpha < \Omega^{-1}$ p-times.

References

Jensen-Karp [JK]: Primitive recursive set functions, Axiomatic Set Theory I(ed.D.Scott), PSPM XIII, 1971. Schuette [Sc]: Proof Theory, 1977

Schwichtenberg [SChw]: the paper in: Handbook of mathematical Logic(ed. Barwise), 1977.

Barwise [Ba]: Admissible sets and Structures, 1975 Girard [Gi]: A survey of II_2 -logic, Hannover 1979, to appear.

Buchholz-Feferman-Pohlers-Sieg [BFPs]: Iterated inductive definitions and Subsystems of Analysis, 1981 Cantini [Ca]: A note on the theory of admissible sets with ϵ -induction restricted to one quantifier, to appear, Bollettino U.M.I.