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COMPLEXITY OF REDUCTION TREES IN PREDICATE CALCULUS

Carlo Cellucci

1. The strong normalization theorem for predicate
calculus asserts that any reduction sequence starting
From a derivation 2 stops at a normal derivation 9°'.
The most intuitive proof of this result uses Prawitz's
concept of valid derivation [47]. By Kgnig's lemma and
a choice principle the strong normalization theorem is
equivalent Lo the stronger assertion: there exists a
function [ such that the length of any reduction se-
gquence starting from a derivation %2 is < f(%). However
the standard proof of strong normalization does not
provide information about such a function [. On the
other hand Minc's proof [ 3] for the (2,V)-fragment or
Schwichtenberg's proof [57] for the = ~fragment yield a
primitive recursive and an & bounding lunction [,
respectively. In this note we give a more explicit f
in 54 Tor the full (A4,7,V)-based classical predicate
calculus using Gandy's method [17] as formulated in
Girard [27. Proofs are omitted for lack of space.

2. We consider formulae of predicate calculus built

R , variables x ,
1)
xL,..., constants m ,ml,..., n-ary function symbols
e} i

up I'rom arbitrary parameters a ,a
o

f“,Fn,..., n-ary relation symbols R”,Rn,... and logical

s?mbéls 1,2,9v. The length of a formala'A, Lh(A), is the
nunber of atomic lormulae and logical symbols in A.

The (natural deduction) rules for predicate calculus
include =[,=E,V1l,VE and Lthe classical falsity rule:

[=A)]
2+
J'c A

for arbitrary A. The length of a derivation 2, 1h(9),
is the number of inferences in 9.

Proper redundant formulae in a derivation £ are con-
clusions of I-inferences which are major premises of


Rossella
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E-inferences. Improper redundant formulae are conclu-
sionsg of L -inferences which are non-atomic or of Lhe
form L . Ngrmal derivations are derivalions containing
no redundant formulae. The reduction rules ineclude

(A) proper reductions: the usual - -reductions and
V-reductions; (B) improper reductions: 1-> ~reductions
and 1V-reductions for i —inferences with non-atomic
conclusions (see [47]) and L1 -reductions (%ugUGngd by
P. Martin-Lof) :

(401 (1)
L
? L (= L) (1)
R \ s -1
ic N red P
n

We wr1Lc,j>> 17/ Q?immediateiy reduces to @', and
D>D D roduc es Lo @'. The length of a reduction se-
quence is its number of eiements.

3. We extend the rules of predicate calculus by in-

troducing the following new axiom schemata:
n
(Ax1) A = v¥yx . Vx (R (x yeeasyX ) PR (X ,o.0,x ))
1 1 n 1 1 n
(Ax2) A= (1)
n

(Ax3) ¥x_ ...¥x (R (x_ ,...,x ) = R (x ceax )
' 1 n i 1 ] n
(Ax4) L =» L

. . n
for arbitrary A and R,. In derivations instances of
axiom schema A are dcnotgd by A7 . L-derivations are de-

rivations in this extended sense. Clearly any E-deri-
vation can be translormed into a derivation in the
usual sense.

For arbitrary A and atomic P we introduce E-deriva—
tions: (2)

(A)
H
%y p P
PP , P> P

as follows, where assumption class (A) contains a sin-
gle element.

By C -
A I{iA( t 1’7 ’ ‘rx)
" " ) > r(x x )
A A > Vxl...’v/xn(llj‘(xi,...,xn G (XX
7k N n ')
< - e e ey - R.(x e e, X
VX ...Vxn(Hi(xl, Kn) l( 1 X
vE
sz v’\< (R(L ,...,x)—*R(L ,...,xn))
(e L) - Rt € )
li 17T it 1 "n
B n =
jR.(t ’ :t
i 1 n
O AX3
n )
' .. 2> R.(x e, X))
Vxl"'dxn(ﬂi(xl" ~’Xn) i( 1’ "n
VI
Vxe...VX (R (L y .,X ) -3 R (( 5 .,Xn))
n n
R (L L) > RU(E ot
Ri(Lly.' ’Ln) Ri( 1’ ""n
(2)
Ax2
P S A A (L~ 1)
7 - ;
AL L2
Ax4
(@_L = _L“?_l_ x

For arbitrary A and B

the expanders:



are defined inductively as follows,
classes (A)
elements,

(i)

AP

R

&

(ii)

(ry  (2) (1)
(B) , (A) (B)
A A

A5 B B

B , B
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respecltively.

is atomic, then:
B
(1) » AP P
sp P P> p AP
P PP AP
>
P P - p
gy
P
B
(1) P P
P P - P p
-E 2
P P = P P
>z
P P - p
e O
P
(3) (1)
. C C =D (2)
= -
(D) (A)
g4
A;D
21 (3)
= CcC - D

where assumption
and (B) contain a single element and three

'%;xc(x)

>
'M =
C.=» D
(iii)
VE

QQ;VXC(X)

YE

VI

(1)

VxC(x) (2)

(cla)) , (A)

&Q;C(a)
C(a)
VxC(x)

vI

(1)

¥xC{x)

(C(a))

Ja?,C(a)

C(a)

VxC(x)

The E-reduction rules include:

(A) proper E-reductions

(i) » -E-red
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(1] ,
2, )
LB 2, 9
A A > B ~1 2 1
-5 '—"T— E-red (B) , (A)
K4
A B
B
(ii) v -E-red
2, (a) 2,(¢)
L. Al (aCt))
VEM E-red ‘MA(t)
AlL) .
A(t)

(B) improper E-reductions

Exactly like impr*oper‘ reductions in the usual sense.
We write .27 9
and @ > D': D E-reduces to @'.

2 immediately E-reduces to @',

4. The rank ol a formula A, 0(A), is delined by:
P(A) = max{ n R_r_] occurs in /\} = 0O 1f no R_r,1 occurs
in A. The rank 01" a derivation or E-derivat LOTL‘Q D is
defined by: 0(2) = max § 0(A)
proper) redundant formula in @} .

A is a (proper or im-

Lemma. For all formulac A and B,

3 <1 ' ] .
]h(ﬂB) < J‘h(iﬁi\.B) <€ 2 1h(B) +30(B) +'4

y

| - B
Lemma. 1f @ >-1 P', then 1h(9D) < 1h(@').

Theorem. Suppose that 2 is an E-derivation such that if
A i's the conclusion of any hLC—infer’ence, then 1h(A) <

m. Then Lthere is an E-derivation @' containing no im-
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£
proper redundant [ormula such Lhat @> 9" and

P
2 =1 p
1h(Z2") < Zp Lh(@) + -?—2——— , where p = (m-1)-2(1h(Z2)-1)
2 -1

The order ol an E-derivation @, 0(2), is deflined by:
0(2) = max{ Lh(A) A is a (proper or improper) redun-
dant formula in @} , = 1L if & is normal.

Theorem. For any E-derivation 9P containing no improper
redundant ior’mula, there is a normal E-derivation @

such that @ > Q' and

lh(.Z) V(D) +(0(D)-2) - (V(D)-1)

NP < 2o(g)-1

0(@D)+ 30 (.@‘) +
2

where v (.@).

Corollary. For any E-deriva Llon % there is a normal

>- P' and 1lh(D") <

i-derivation 2' such that

23 max $ 1h(2),0(2),0(D) 3 2
0(D) +2

, ~ g g ar ‘hen there e
Lemma. 1Ff 92 }.— Jl and @} @2, then there is an
D E
E-derivation @' such that @1> %' and .@2> D
Theorem. For any E-derivalion 2, all E-reduction se-
quences starting [rom 2 are of length

,)3 max §{ 1h(2), 0(9), 0(D) }

< 20(@) 12

5. An expansion of a derivation %9 is an E-deri-
vation @' which differs f{rom £ at most [or contain-

ing a partl
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(1) F (1)
(B) , (A) (B)
ﬂ%;B w%

B or B

in place of some occurrence of lormula B.

LLemma . I[‘Q5>>l‘@‘ and & is an expansion of %, then
there is an expansion &' of 9' such that ﬁ;zEzg'

Theorem. For any derivation 2, all reduction sequences
starting from 2 are of length

,3 max { 1h(D), 0(D), (D) } ¢
0(D)+2
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