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’ T shall introduce here a new notion of ‘abstract recursion

theory, designed to admit new examples as well as the old ones
and, to that end, to describe in the simplest possible way what
dt is-that provides the distinctive character of recursion
theory. The context is that of categorical algebra: recursive
functions are replaced by morphisms in a category, so that thefe
are no underlying sets. An ultimate goal is to bring together
,this theory with algebraic logic (e.g. the polyadié algebras of
,P.R. Halmos) in such a way as to realize the program of Halmos
;of providing a burely algebraic treatment of incompleteness
theorems. This rapprochement, however, is still in its
initial‘phases.

1 begin by déscribiné the kind of category in which partial
functions, with their attendant domains, are the primary motion.
These are the "dominical categories" discussed in §1. Dominical
/éategories with an additional property, viz. the existence of a
'Tﬁring morphism,(§2) are ''recursive' categories. The name is
justified by showing that some of the elementary theorems of
‘récursion theory hold in such categories (83), and, of course,
thét they include the classical examples. Finally, I describe
1Briefly some nonstandard examples and indicate how they differ in
important respects from the .classical ones.

| I am indebted to R. di Paola for his encouragement to a
kneWcomer to the subject and, more specifically, for Theorem 2
“below. '

“§1., ‘Dominical categories

The adjective "dominical" derives from the English noun
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"domain." A dominical category is like a category of partial maps;
a morphism ¢: X + Y will be supplied with a domain "within" its
source X. The definition which follows is motivated by the
simplest example, viz. the category P of sets and partial maps.
Recall first that a pointed category C is one such that for

each X,Y there is a 0: X -+ Y such that for any ¢: W > X or

Y: Y>> Z, 06 =0, YO0 = 0. In ¥, 0 is the empty partial map.

A morphism f is total if f¢ = O implies ¢ = 0. The total morphisms

form a subcategory CT'

A dominical category is a poiﬁted category C supplied with a

functor x: C x C~» C (the near-product) with the following
properties. .

(0) if & X = 0 then ¢ = 0 or ¥ = O

(i) % restricts to XT:
product, éupplied with projections X égl~ XXy ~Eg>,Y,

(ii) the associativity and commutativity isomorphisms of XT
are natural on Cx C x C, C x C, ,
(didi) if ¢: X > X" then p1(¢ X Y) = ¢pl and (¢ X ¢)AX = Ag,¢

where AX’ A, are the diagonals in CT.

X'
The essential point is that (diii) asserts a good deal less
than the naturality of the prdjections on C X C.-
1f C is a dominical category and ¢: X » Y the domain dom h
of ¢ is the endomorphism of X provided by the composition
X —fﬁs} X XX ;ESjijL>~X X Y —51L> X.
It is not difficult to see that the operation dom.has the
following properties:
(i) dom(dom ¢) = dom ¢3 .
(ii) (dom ¢) (dom ) (dom ¥) (dom ¢) =‘dom((dom ¢) (dom ¥)) ;.
(iii) (dom ¢) (dom ¢) dom ¢ 1
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Thus the dom ¢, for ¢ with source X, form (with respect to compo-
sition) a A-semilattice Dom X with infimum 0 and supremum IX. For
later use I record the additional property

(iv) dom(yPd) = dom((dom P)¢P).

If ¢: X > Y then € > dom(ed) defines a semilattice morphism
¢*: Dom Y - Dom X preserving 0; if f 1is total £* preserves 1

as well.

% P ) .
CI GT -+ CT where it is a categqucal

§2, The classical recursive semigroupoid; Turing morphisms
We presuppose the classical theory of recursive functions

and define a recursive structure on a set X as an equivalence

class of bijective maps x: X ® N, with x ~ x' whenever

|—]-. . . E . ) ..,7 .
x'x is a recursive function. The classical recursive category

T has as objects such sets provided with recursive structures.

1f X,Y are object of T then T(X,Y) consists of all partial maps

¢:?X + Y such that y¢x—1: N - N is a partial recursive function,
where x,y represent the recursive structures on X and Y.

In fact T is a semigroupoid, i.e. a category in which any
“two objects are isomorphic. Our recursion theories will all be
~supposed to haﬁe this property.

. The near-product in T is defined in the following way. Any
one of the standard pairing functions b: N X N * N defines a
jfecursive structure on N X N; they are all equivalent. If X and Y
 haVe recursive structures‘represented by x and y then b(x X y)
defines a recursive structure on the cartesian product X X Y.
this makes T a dominical category. For an X € T, Dom X’stands for
fhéf"recursively enumerable" subsets of X in the sense that an

€ € Dom X is a subjunction of the identity defined on a subset
f‘X isomorphic under a structure map to an r.e. subset of N.
Those properties of T that seem to be attached to the notion

of recursiveness are centered about one which we shall now

haracterize.
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In any dominical semigroupoid C a Turing morphism

is a morphism 7: X X X =+ X with the propérty that, given any
$: X X X + X, there is a total g: X + X such that (g x X) = ¢.
Theorem 0: T possesses a Tﬁring morphism,

Let T: N X N >~ N be the partial function defined by the
universal Turing machine, so that the domain of T consists of
those pairs (m,n) for which Fhe Turing machine with index m halts
when provided with input n, and the value T(m,n) is the output.

Then T is a Turing morphism, the defining property being, in
. R . m 7
essence, a translation of the "Sn theorem."

§3. Recursive. semigroupoids: some classical theorems

I propose to call a recursive semigroupoid any dominical

semigroupoid whigh has a Turing morphism. To justify this I shall
show that in any such éategory‘some of the prototypical facts of
recursion theory are valid. Among these perhaps the most notable
is the existence of nonrecursive r.e. sets. We may translate
"r.e. set" by "domain" but not "recursive r.e. set" by
"complemented domain," since our domains form only a semilattice.
A satisfactory substitute is the following. A domain € € Dom X is
decidable if it has a quasi-complement, i.e. a domain €' € Dom X
with ee" = 0 such that e€p = "¢ = 0 implies ¢ = 0.
Theorem 1: If T: X x X > X is a Turing morphism then K = dom(TAX)
is undecidable. ' ‘

This is in fact a corollary of a more interesting statement.
We shall show that « is in fact "creative." To interpret this we
need first the notion of an index. Since the objects of C lack

elements we define an index, relative to T, of a ¢: X > X as a

total g: X - X such that ¢p2 = T(g X X). A domain € is creative

if there is a total f: X > X such that for any domain €' disjoint

from £ and ény index g of €', efg = ¢'fg = 0. If € is creative
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,’then it is of course undecidable.

Theorem 2: K is creative.

We take f = 1. If g is an index of some K' disjoint from

x*

Kk then

theg = T(g X ) (X x g)by = K'g

'dom(TAxg) = dom(k'g) = g*k'.

ﬂBut also

dom(TAXg) = dom((dom~TAX)g) = g*K,

Thus gk = g¥k' = 0.

We may also prove the recursion theorem.

Theorem 3: If f: X - X is total then there is a total g: X » X

such that T(fg X X) = 1(g % X). |
Let h satisfy T(h X X) = T(T X X)(AX % X) and let w be an

index of fh. Then

T(h x X)(w X' X)

i

T(hw %X X)

T(T ¥ X) ((w % W)AX x X)

T(T(w xX) (X X% w)AX x X)

T(fhw X X)

so that g = hw is the morphism required.

84. Nonstandard examples

To indicate how this abstract recursion theory differs from

the classical one I adduce first the notion of constant.

"A constant of a dominical category is a total morphism c: X > Y

such that for any total f,g: W ~ X, cf = cg. The constant total
functions in P or in T are of course constants, and they generate,
i.e. if ¢c = ¢'c for all constants c then ¢ = ¢'T Another

criterion is that of choice: a dominigal category C satisfies the

axiom of choice if for any morphism ¢ there is a section 0 of ¢,



i.e. a morplhism such that ¢o = dom o, $0d = ¢. It is easy to see

that T satisfies the axiom of choice.

- G
Now let G be a finite group and let T  be the category of
G-objects in T, i.e. of sets X with recursive structure on which
G operates via morphisms in T, together with equivariant maps

in T. If the near products are supplied with the diagonal action
of G then it is evident that TG is a dominical category.
Let T? be the full subcategory of TG containing those X in

which the operation of G is free, and Tg 1 the full subcategory

in which all orbits are either free or trivial, and in which
there are infinitely many of both. We shall omit the proof of the

following theorem, which isg tedious rather than difficult.

Theorem 4: Tg and Tg ] are recursive semigroupoids. Tg satisfies

. : G ; .
the axiom of choice but has no constants. TO 1 fails to satisfy
. b

the axiom of choice. It has constants but they do not generate.
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