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zermelo's axioms for set formation I(except :
he axiom of choice, about which I shall have nothing
ﬁo say here) cén be thought of as instances of the

rinciple of abstraction,asserting' dx \/y(yé;ieeA(y))

for formulas A(y) of certain specified forms; and

1.1.2 allowing terms of the form {x: A('x)}' for
certain A(x), the principle of abstraction is expressed
by the following introduction and elimination rules

(Prawitz 1965):

cT) Alu) cE) u€{x:A(x)}

u € {x:a(x)] A(u)

The elimination rule is the inverse of the introduction

rule, giving rise to the following contraction:
A(u)

ue {x:a )}
A(u)

contracts to A(u)
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by which an occurrence of u é{X:A(x)} standing both
as conclusion of €l and as premise¢ of ¢E is removed
(ct. the removal of what I called maximal formulas in
1st order natural deductions or of what Gentzen called

cut formulas in his calculus of sequents) . -

1.2 Let the natural deduction system for naive set

theory be the system, whose lanquage is obtained from

a 1st order language with = and € as the only predica
tes by adding a termFbuilding'operatidn {xi...} “such
that

1.2.1 ix: A(x)} is a term,if A(a) is a formula,and
1.2.2 ueE t is a formula, if u and t are terms

(other clauses for terms and formulas as in ist orderL

and whose inference rules are, in addition

to those of 1st order predicate logic, €I and € E as

stated in 1.1.2 above and the following rules for = :
(aet) (a g u)
=1) acu aet =E) t1:t2 ‘ A(ti) i=1 or 2
t = u. CA(E) 143
J
In =T, formulas shown within parentheses indicate

as usual thét_assumptions of that form may bé dischar-
ged by the inference, and the parameﬁer a shown to
right of the inference lihe indicates that a is to

satisfy the usual restrictions of broper parameters.

1.3,

';Elause 1.2.1 is weakened

1.5,

" for the different ways
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;In =E, A(t,) is obtained by replacing some (not
1

necessarily all) occurrences of,ti in A(ti) by tj}

By a fragment of naive set theory is understood
any system that is like naive set theory except that
so that {x:A(x)}' is a term

only for A(x) of certain kinds ; it is only required

“that a weakened clause 1.2.1 is enough uniform so that

?Vt(u) is always a term, if t(a) and u are.

 &;4 The remark in 1.1 can now be formulated more pre-

cisely: Zermelo-Fraenkel's set theory (without the

1axiom of choice) can be formulated as a fragment of
 naive set theory, where clause 1.2.1 is weakened to
:fallow {X:A(X)} as a term only when A(x) has a form corre
- sponding to one of the axioms of separation, pair-

_formation, union, power set , infinity and replacement.

Alternatively, one may introduce special symbols

of generatingsets as in informal

jfset—theoretical practice , say ¢ (for the empty set),

- » t A 4
;f‘.{,{xet.A(x)} ; {t1,t2} ’ Ut G’t,‘ w,cjnd (Ry’xe_t (x,y)
;f.(for the range of values of the function

f;y=f(x) = A(x,y) from the biggest subset s of t such that

) is many-one for x¢ s; cf the axiom of replace-
ment). For each of these forms, one may then state
introduction and elimination rules, i.e. rules for

introducing and eliminating formulas sé¢ u where u has



— 360 —

one of the forms shown above (for s €@ there

is only an elimination rule)in such a way that the

ellmlpation rule is the inverse of the corresponding

introduction rule, giving rise to contractions as usual }

- For instance, for the power set Pt we have the rules

(ae s)

PI)
agt

PE)
s € Pt ues

Se& Pt ue t

and phe contraction

[aes]
D, (a)

1

_ié*t.,_;D )

2 2
S ¢ Pt ué€s contracts to [u é s‘l

@1 (u)

uet

uegt-

Such a natural deduction formulation of ZzF, the

possibility of which has probably‘occurred to many

people » 1s obviously equiValent to the fragment of
naive set theory indicated in 1.4. It will be abbre-
viated ZFND

1) To my knowledge, a formulation of Zermelo set theory
‘along ctne lines of 1.5 was studied by Per Martin-
LOf in 1970. My presentation is following Hallnis
1983, who is also exploiting the equivalence to a
fragment of naive set theory.

‘Having
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I 2. Counterexamples to full normalization theorems.

stated a contraction = for € (i.e.for eE immedia

 tely following €I) in 1.1.2, one may ask whether every

derivation U . in naive set theory reduces to a normal

(1.e. irreducible) derivation by the iterated operation

" of feplacing dny subderivation of D by its contraction

But the answer is obviously no, since naive set theory

_ is inconsistent and there is no normal proof of _L .

Indeed, the derivati@n corresponding to Russell's

- . paradox reduces in two. stages to itself by carrying out

" the only performable contractions (see Prawitz 1965).

For ZFND(or for the fragment of naive set theory indica
ted in 1.4), the answer to the similar question is
likewise no: we may now formulate a closely similar

proof J) of the fact that '{x<sa : x:¢x} ¢ a, and again

the only contractions that can be performed reduce D

2)

in two steps to itself .

Recently, in a doctoral thesis at the University of
Stockholm, Lars Hallnas has. noted that the counterexam

concern

,_ND
ples to a normalization theorem in ZF contra

ctions of open derivations, depending on assumptions.

'Z)VI first learned about this form Marcel Crabbe ' in

1974.
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tion in the case of € —contractions (and corresponding

} _ _ ND, 3)
contractions in ZF ) .

He asked what.ﬁappengif one restricts the notion of re
duction so that - contractions are only allowed for _
closed derivations, and was able to show that when ‘e then define the notions of £ -reduction, £ -redu-

the notion is restricted in this way , = all derivations “duction 'sequence, f -normal, & -normalizable, and

reduce to normal form. My communication here is in all '§E£9§ﬁlz f -normalizable as usual, except that these

essentials a presentation: of “his Wofk (Hallnis 1983) ‘notions are now based on immediate (6 -reductions

| - ‘instead of immediate reductions; e.g. &) is @ -normal
' - . < <
if there is no immediate 8 ~reduction of J), and J)

’is strongly @ -normalizable if every sequence of

)
3. t -reductions and g —normal derivations.

“immediate 6 —reductions terminates in a € -normal

For lack of time I shall  have todisregard - contractions | L .

! ~derivation.

of =E following immediately after =I (much of the : : :
. E We can now state the following result:

more difficult part of Hallnds work is concerned with '

: ND
_ o - v - Every derivation in 7zF (or in the corresponding fra-
such reductions), and shall restrict myself to the in- - . .
’ gment of naive set theory) is strongly @ -normalizable,.

tuitionistic contractions for 1st order logical constants ,
This result is a little different from that of Hallnéds

as defined in Prawitz 1965 or 1971 and to either the : -
' who. considers several notions of % -normalizability

€ —contractions defined in 1.1.2 for nai L 2 ' '
' ' ‘ ive set theory Il and € -normal, none of which are quite comparable

or the corresponding contractions exemplified in 1.5 for

ZFND,‘

to the notions used here; amdng other things, he

follows the method of Martin-Lof 1971 of considering

A . | v
A de ti i i : : - T i ,
rivation <j>2 is now said to be an immediate § - one particular reduction sequence where one reduces

reduction; of 2)1, if i) is obtained from §D1 by

2 o
replacing an initial part &) by its contraction (as | 3) Martin-L8f 1975 argued for a general and stronger
: restriction to the effect that 33 in the

e , 1 :
definition above is closed.

‘just specified),and i>does not depend on any assum-
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from below.

E -normal derivations not depending on any assumption

have the essential property common with normal derivations

not depending on assumtions that they are always in

j — form, i.e. the conclusions of such_derivatipns
are obtained by applications of introduction rules.
Thus, when the set theory is based on intuitionistic

logic, we immediately obtain as corollaries the usual

E-theorems: FAv B only if A or B, and —dx A(x)
only if  A(t) for some term t.
I shall give a very brief sketch of Hallnds' proof

below, restricting myself to the case when is left out;

in some respects, I shall follow the proof of strong

normalizability for 2nd order logic in Prawitz 1981.

4. Candidates of validity and well-founded fragments

of naive set theory.

Hallnas' proof is an extension of the proofs by Girard

1971 and Martin-L3f 1971 of a normalization theorem for
simplé.type theory, and as in all proofs of norma;izabi
lity for higher order logic, an essential step 1is to

define what Girard calls "candidat de réductibilitéhere

called candidate of validity .In the proofs mentioned for simple
type theory, this notion is-defined by induction over the type.
This induction is replaced in Hallnds' proof by aninduction

over  the provable & -relation between terms,and one thus exploits.
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the fact that this relation is well-founded in ZF, i.e.

2,..: of terms in

et,.
i

that there‘is no infinite sequence t1,t

-t

i+1
of the provable

such that for each i,

ZFND
The well-foundedness € ~-relation

turns out to be the only property needed in order that
the proof is to go through for an arbitrary fragment of

~paive set theory. Such a fragment N of naive set theory

1,t2,... of terms

&€ t, is called well-~founded,
i

where there is no infinite sequence t

isuch that for each i,kﬁ ti+1

Hallnas thus obtains the following more general

jand

rresult: In any well-founded fragment of naive set theory,

all derivations are ﬁ —normalizable‘ {and in ‘fact, one

“may add , strongly { -normalizable).

Since all the introduction and elimination rules for

the different forms that a term may assume in ZF are

subsumed under just the two rules of ¢ I and € E in

naive set theory, the proof for fragmentsof the latter

system is of course shorter to state. In the rest of

this to be any well-founded fragment

abstract, N is
of naive set theory, and all the constructions and
proofs are for such an N.

| We now define:

)

‘i;4.1, 1" ’is a candidate of validity for a formula A,

if u is a set of strdngly f -normalizable derivations

'5;fof A in N and is closed under

@ -reductions.

_ For terms we make an inductive definition as follows:
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4.2. If t is a term without eN—predecessor, i.e.

if there is no term u such that FN uet, then o is a

candidate of validity for the term t if

o = t,

4.3, If £t is a term with some ¢ y Predecessor, then

o is a candidate ofvvalidity for the term t,if. Qx is

a function whose domain contains every {%' that is a

candidate of valldlty for a term u such that FN uet,

and whose value o« (ﬂu) for such a ./3u is a candidate

of validity for the formula ue t.

If N is based upon classical logic, a candidate of

validity has to satisfy also certain other closure

conditions as in Prawitz 1981. When one includes also =
and its contractions, still other closure conditions

have to bevédded.

5. “JAI? W/;,f

We consider arbitrary assionments:

and

-cf of - candidatesof

‘validity for terms to individual parameters (free

variables), and define the notions strong validity

relative to formulas A or terms t and to assignments :

Cf . abbreviated Y _ and V
A, ¢ t,q
By Aq I denote the result of replacing certain

 respectively.
and t*,

parametefs'in A and t byrterms: namely, every parameter;

a in A and t, respectively, to which (? assigns a

candidate of validity cxu for the term u is to be

g

replaced by this term u. will be a set of deri-

function depending on whether
simultaneously with the definition of VY

formulasand terms, one has to prove that ‘V/

tethen

?ft? has no €
s,
'5£ t* has some €
eﬁfthe form {_x Al
‘:3ffor every <xu

‘F'u such that

7feis the set of derivations of the form

’wesuch that De Y.
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ations of A, 7/; will either be a term or a

r
t is as in elause 4.2

~-predecessors.
and V. ’
Z—\,({? tl“f

r 4.3, i.e. does not have or has

which proceedsby induction over the construction of

v and

A9

q/- are candidatesof validity for A9 ana t«.
t,¢

The essentially new clauses in the definition (compared

VthO the case of 2nd order logic) are:

'f;f5_1. If t is a parameter a assigned a value by P

'\/t’({) = ¢ (a).

If 5.1 does not apply and t is a term such

T ¢
«/;’? =t

If 5.1 does not apply and t is a term such that

that
“predecessor, then

-predecessor, in which case t must have

)} ; then ’qu?

that is a candidate of valldlty for a term

is a function defined

u€t, and for every such du" W/

t,%

A (a)
u € {X:A(X)}(‘F

for a parameter a

ata), ¢ (a,)

e a . 3
“ not occurring in t or wu; cf(qu) is -here to be like

? except possibly for assigning cxﬁ_to»a.

)
%y
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5.4, If A is a formula ue t and t9- has_ no EN'—

predecessor, then "\/A is the set of strongly ﬁ—-

14

normalizable derivations in N of Acf) .

5.5. If A is a formula uect and ¢t has some €N—-

ai

predecessor (i.e. ’\/t(r
P

is the set /A of derivations defined inductively by

is a function), then T,\/A

5.5.1. If D e j/ ‘\/1;,({) )',A then LDe A,

5.5.2. 1f P is a “e -normal derivation of AY and is
either not in I-form or depends on assumptions, then
De A.

5.5.3. if EY) is a derivation of.A‘P and either is not

on I-form or depends on assumptions and it holds for

all immediate € ~reductions. ' of » that D' c A,

then also @G A .

6. Validity of the €-rules.

Having verified that ’\f

and hence that J) e K 0

C’f’ is a candidate of validity
I
implies that D is strongly

g-—normalizable, it remains only to show as in the case

of 2nd order logic that all inference rules are strongly

valid, i.e. preserve validity relative to cf> . To this

end, we need the follbwing substitution lemma:

'\/ =/\/ _nd\/

A(a.),c‘a(\(-ual{) ) Afu) P

Ve

proved by induction over the definition of (\g

.

(a) ,¢ and

: "',’“?,‘TTo see that

no & N-predecessor, then since & is strongly
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\/t(a)lcr '

p;!';That the logical rules are strongly valid is then proved
| :‘:"mya‘s in 2nd order logic; in the case of \/E, one applies

l the supstitution lemma.

€¢I is strongly valid, suppose that

= {x:A(x)} and that
ay

-where @ c ’\/A(u),&f

(ue t)f

""rIf t has some ,eN—predecessor, then by applying - the

,yzé,subs’titution lemma, 5.3 and 5.5.1 in this order to (1),

:,De\/ If>t has

',,’:“we obtain immediately that wet,q .

(6 —norma

i"ff'lizable by the fact that @1 is {(in virtue of belonging

because of 5.4.

ueti |
suppose that

a candidate of validity), :OC'\/

' see that € E is strongly valid,

tla), ¢ ( Mil?)‘» £() ¢ -

{x A(x)} and that

D

,(2) @ = —El——éit?—— where j) é’\/
¥ u€t, lf

Following the patterh of proof in Prawitz 1981, it is

suffisient to verify that if there is a '6 -contraction

'aﬂl of .:D, then ;D Cv(u),

Therefore, assume that §)' is - ¥ — contraction of D.

Then ,3 has the form
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