Estratto da

C. Bernardi e P. Pagli (a cura di), *Atti degli incontri di logica matematica* Volume 2, Siena 5-8 gennaio 1983, 6-9 aprile 1983, 9-12 gennaio 1984, 25-28 aprile 1984.

Disponibile in rete su http://www.ailalogica.it

PROVABILITY AND INTERPRETABILITY IN THEORIES CONTAINING ARITHMETIC:

Per Lindström

In the following we give a survey of some recent work on provability and interpretability in theories containing P (Peano arithmetic). §1 is devoted mainly to the theory of partially conservative sentences. A sentence φ is X-conservative over a theory T, where X is a set of sentences, if for every $\psi \in X$, if $I + \varphi \vdash \psi$, then $\mathbb{T} dash \psi$. This concept was introduced by Guaspari [2] and the basic existence theorems were established by him and Solovay (cf. [2]). The first result of this type is, however, due to Kreisel (cf. [15]) who observed that if Con_p is a "natural" formalization of "P is consistent", then - Con_p is Π_1^U -conservative over P. Related results have also been obtained by Jensen and Ehrenfeucht [7] and Kreisel and Lévy [8]. In §2 results from §1 are applied to prove results on interpretability using the fact that if S and T are r.e. reflexive extensions of P. then S is interpretable in T iff every Π_1^0 sentence provable in S is provable in T. (For example, combining this with the above mentioned result of Kreisel we get the result of Feferman [1] that P + - Con is interpretable in P. Similarly the second Gödel unprovability theorem implies that P + Con_p is not interpretable in P as was first shown by Feferman [1].) Finally §3 contains a presentation of the main results on the lattice of degrees of interpretability introduced by Lindström

[9, 11] and Švejdar [17]. Most proofs are omitted or only briefly outlined.

O. Notation and terminology. In the following S, T, A, B, C are elementary theories (sets of sentences). We shall only be interested in r.e. theories. But then, by Craig's theorem, we may and shall assume that S etc. are primitive recursive. Th(T) is the set of theorems of T. We write $T \vdash X$ or $X \vdash T$, where X is a set of sentences, to mean that $X \subseteq Th(T)$. Thus $S \vdash T$ iff S is a subtheory of T. S is an X-subtheory of T, $S \vdash_X T$, if $Th(S) \cap X \subseteq Th(T)$. φ^i is φ if i = 0 and $\neg \varphi$ if i = 1. In the following Γ is either Σ^0_{n+1} or T^0_{n+1} and T is the dual of T. T-true(x) is a T partial truth definition for T sentences, i.e. for every T sentence φ ,

 $P \vdash \varphi \leftrightarrow \Gamma - true(\bar{\varphi})$.

For notation and terminology not explained here see [1].

1. Partially conservative sentences. Let T be a fixed primitive recursive but otherwise arbitrary consistent extension of P and let $\tau(x)$ be a PR binumeration of T. Let $\{\Gamma\}(x,y)$ be the formula

 $\forall uv \leq y (u \text{ is } \Gamma \land \Pr f_{\tau(z) \lor z = x}(u,v) \to \Gamma \text{-true}(u)).$ The following lemma is then easily verified.

LEMMA 1. $\{\Gamma\}(x,y)$ is a Γ formula s. t.

- (i) $P \vdash \{\Gamma\}(x,y) \land y' < y \rightarrow \{\Gamma\}(x,y'),$
- (ii) $\Gamma + \varphi \vdash \{\Gamma\}(\bar{\varphi}, \bar{m})$ for all φ and m,
- (iii) if ψ is Γ and $\Gamma+\phi \models \psi$, then there is a q s. t. $P+\{\Gamma\}(\bar{\phi},\bar{q}) \models \psi.$

In fact these are the only properties of $\{T\}(x,y)$ that will be used in the sequel.

Using Lemma 1 we can now prove two lemmas which serve to unify the proofs of a number of results stated in

what follows (cf. [10]).

LEMMA 2. Suppose $\chi(x,y)$ is $\Gamma.$ Then there is a Γ formula $\xi(x)$ s. t.

(i) $T + \xi(\bar{k}) - \chi(\bar{k}, \bar{m}),$

(ii) T + $\xi(\bar{k})$ $-|_{\Upsilon}$ T $\cup \{\chi(\bar{k},\bar{q}): q \in \omega\}.$

PROOF. Case 1. $\Gamma = \prod_{n=1}^{0}$. Let $\xi(x)$ be s. t.

$$P \vdash \xi(\bar{k}) \leftrightarrow \forall y (\{\Sigma_{n+1}^{0}\}(\overline{\xi(\bar{k})}, y) \rightarrow \chi(\bar{k}, y)).$$

Then (i) follows at once from Lemma 1 (ii). To prove (ii), suppose ψ is Σ_{n+1}^0 and T + $\xi(\bar{k}) \models \psi$. By Lemma 1 (iii), there is a q s. t.

$$P + \{\Sigma_{n+1}^{0}\}(\overline{\xi(\bar{k})}, \bar{q}) \vdash \psi.$$

Hence, by Lemma 1 (i),

$$P + \forall y \leq \bar{q} \chi(\bar{k}, y) + \neg \psi \vdash \xi(\bar{k}).$$

But then, since T + $\xi(\bar{k}) \vdash \psi$, it follows that T + $\forall y \leq \bar{q} \ \chi(\bar{k},y) \vdash \psi$. This proves (ii).

Case 2. $\Gamma = \sum_{n+1}^{0}$. Let $\xi(x)$ be s. t.

$$P \models \xi(\bar{k}) \leftrightarrow \exists y (\neg \{\Pi_{n+1}^{0}\}(\overline{\xi(\bar{k})}, y) \land \forall z \leq y \ \chi(\bar{k}, z)).$$

LEMMA3. Suppose $\neg \chi_0(x,y)$ and $\chi_1(x,y)$ are Γ . Then there is a Γ formula $\xi(x)$ s. t. for i = 0,1,

 $\chi(i)$ $T + \xi^{i}(\bar{k}) \models \forall y \leq \bar{m} \chi_{i}(\bar{k}, y) \rightarrow \chi_{1-i}(\bar{k}, \bar{m}),$

(ii) if ψ is $\check{\Gamma}$ and $\Gamma + \xi^{\dot{i}}(\bar{k}) \models \psi^{\dot{i}}$, then $\Gamma \cup \{\chi_{1-\dot{i}}(\bar{k},\bar{q}): q \in \omega\} \models \psi^{\dot{i}}$.

Our first result on the existence of partially conservative sentences is the following theorem due to Guaspari [2] (cf. also [4,10,14]). Let $Cons(\Gamma,\Gamma)$ be the set of sentences Γ -conservative over Γ .

THEOREM 1. Let X be any r.e. set. There is then a Γ formula $\xi(x)$ s. t.

(i) if $k \in X$, then $T \vdash \neg \xi(\bar{k})$,

(ii) if k $\not\in$ X, then $\xi(\bar{k}) \in Cons(\tilde{r}, T)$.

PROOF. Let $\rho(x,y)$ be a PR binumeration of a relation R(k,m) s. t. $X = \{k: \exists mR(k,m)\}$ and let $\xi(x)$ be as in Lemma 2 with $\chi(x,y) = \neg \rho(x,y)$.

A set X of sentences will be said to be monoconsistent with S if S + ϕ is consistent for every ϕ \in X.

COROLLARY 1. If \boldsymbol{X} is r.e. and monoconsistent with \boldsymbol{T} , then

 Γ \cap Cons $(\widecheck{\Gamma}, T) - \chi \neq \emptyset$.

PROOF. Let $\xi(x)$ be as in Theorem 1 and let φ be s. t. $P \models \varphi \leftrightarrow \xi(\bar{\varphi})$. If $\varphi \in X$, then $T \models \neg \xi(\bar{\varphi})$, whence $T \models \neg \varphi$. But this is impossible and so $\varphi \notin X$. Hence, by Theorem 1 (ii), φ is as desired.

Let

 $NX = \{\varphi \colon \neg \varphi \in X\},\$

 $DCons(\Gamma, T) = Cons(\Gamma, T) \cap NCons(\Gamma, T).$

We then have the following result essentially due to Solovay [16] (cf. also [2,10,14]).

THEOREM 2. Suppose X is r.e. and monoconsistent with T . Then

 $\Gamma \cap DCons(\tilde{\Gamma}, T) - (X \cup NX) \neq \emptyset.$

The proof is an application of Lemma 3 and is similar to the proof of Theorem 1 followed by that of Corollary 1.

Let $B(\Sigma_k^0)$ be the set of Boolean combinations of Σ_k^0 sentences. By a similar construction we can then prove the following result due to Hájek [4].

THEOREM 3. Δ_{k+2}^0 \cap Cons(B(Σ_{k+1}^0),T) \cap NCons(Π_{k+1}^0 ,T) - NCons(Σ_{k+1}^0 ,T) \neq \emptyset .

Combining Lemma 3 and Theorem 2 (with $X=\emptyset$) and using some additional tricks we can also prove the

following result which will be applied later to answer a question on interpretability raised by Orey [12].

THEOREM 4 ([10]). There are sentences φ_i s. t. φ_i , $\neg(\varphi_0 \land \varphi_1) \in \text{Cons}(\Gamma, \Gamma) - \text{NCons}(\Pi_1^0, \Gamma)$.

The following interesting result has recently been proved by \mathbb{C} . Bennet.

THEOREM 5. There are Σ_{n+1}^0 sentences Θ_i s. t. $T \not\models \Theta_0 \lor \Theta_1$ and for i=0,1,

 $\theta_i \in Cons(\Pi_{n+1}^0, T + \neg \theta_{1-i}).$

PROOF. Let $\xi_i(x)$ be s. t.

$$P \models \xi_{i}(\bar{k}) \leftrightarrow \exists z(\neg \{\Pi_{n+1}^{0}\}(\overline{\eta_{i}(\bar{k})},z) \land \forall u \leq z \neg Prf_{\tau}(\bar{k},u))$$

where $\eta_i(x)$ is

$$\exists z (\rho_i(x,z) \land \forall u \leq_i z \neg \rho_{1-i}(x,u))$$

 $(\leq_0 \text{ is } \leq \text{ and } \leq_1 \text{ is } <) \text{ where in turn } \rho_i(x,y) \text{ is PR and s.t.}$ $P \models \xi_i(x) \leftrightarrow \exists z \rho_i(x,z).$

Using Lemma 1 it can be shown that

(1) if $T \models \varphi$, then $T \models \neg \eta_i(\bar{\varphi})$,

(2) if $T \not\vdash \varphi$, then $\eta_i(\bar{\varphi}) \in Cons(\Pi_{n+1}^0, T + \neg \eta_{1-i}(\bar{\varphi}))$. Now let ψ be s. t.

$$P \vdash \psi \leftrightarrow \eta_{0}(\overline{\psi}) \vee \eta_{1}(\overline{\psi})$$

and let $\theta_i = \eta_i(\bar{\psi})$. Then, by (1) and (2), the sentences θ_i are as desired.

We now give an example of an application of Theorem 5. For any sentence φ , let $e(\varphi,\Gamma)=\{\psi\in\Gamma\colon T\models\varphi\leftrightarrow\psi\}$. Let $E(\Gamma)=\{e(\varphi,\Gamma)\colon\varphi\in\Gamma\}$. Elements of $E(\Gamma)$ will be written a, b etc. a < b iff $T\models\varphi\to\psi$ where $\varphi\in a$ and $\psi\in b$. Clearly < is a partial ordering which is a lattice with a U b = $e(\varphi\vee\psi,\Gamma)$ and a \cap b = $e(\varphi\wedge\psi,\Gamma)$ where again $\varphi\in a$ and $\psi\in b$. Moreover $E(\Gamma)$ has a minimal element $0=e(0=1,\Gamma)$ and a maximal element $1=e(0=0,\Gamma)$.

COROLLARY 2. The sentence

$$(*) \qquad \forall a_0 a_1 \exists b_0 b_1 (b_0 \le a_0 \land b_1 \le a_1 \land b_0 \cup b_1 = a_0 \cup a_0 \cup b_1 = a_0 \cup a_1 \land b_0 \cup b_1 = a_0 \cup a_0 \cup b_1 = a_0 \cup a_0 \cup b_1 = a_0 \cup b_1 = a_0 \cup a_0 \cup b_1 = a_0 \cup b_1 = a_0 \cup a_0 \cup b_1 = a_0 \cup b$$

 $b_0 \cap b_1 = 0)$ is true in all the lattices $E(\sum_{n=1}^{0})$ and false in all the lattices $E(\Pi_{p+1}^{U})$.

PROOF. To show that (*) is false in $E(\Pi_{n+1}^0)$ let θ i be as in Theorem 5 and let $a_i = e(\neg \theta_i, \Pi_{n+1}^0)$. Suppose (*) is true and let b_i be s. t. $b_i \leq a_i$, $b_0 \cup b_1 = a_0 \cup a_1$, and $b_0 \cap b_1 = 0$. Let $\psi_i \in b_i$. Then $T \vdash \psi_i \rightarrow \neg \theta_i$, $T \vdash$ $\neg \theta_0 \lor \neg \theta_1 \to \psi_0 \lor \psi_1, \text{ and } \dagger \models \neg (\psi_0 \land \psi_1). \text{ It follows that}$ $T + \neg \Theta_{i} + \Theta_{1-i} \vdash \neg \psi_{1-i} \wedge (\psi_{0} \vee \psi_{1}), \text{ whence } T + \neg \Theta_{i} + \Theta_{1-i}$ $\vdash \psi_i$, whence $\mathsf{T} + \neg \Theta_i \vdash \psi_i$. But then $\mathsf{T} \vdash \Theta_0 \lor \Theta_1$, contrary to hypothesis.

Our next two results are refinements of the following simple and certainly well-known observation: Suppose X is r.e. and bounded, i.e. X \subset Γ for some Γ , and Γ \cup X is consistent. Then there is a sentence Θ s. t. T + $\Theta \vdash$ X and $T + \Theta$ is consistent.

THEOREM 6 ([10]). Let X be an r.e. set of Γ sentences. There is then a Γ sentence Θ s. t. $T \cup X \longrightarrow T + \Theta \longrightarrow T \cup X$.

PROOF. By the proof of Craig's theorem, we may assume that X is primitive recursive. Let $\xi(x)$ be a PR binumeration of X. By Lemma 2, there is a Γ sentence Θ s. t.

- (1) $T + \Theta \vdash \xi(\bar{\varphi}) \rightarrow \Gamma true(\bar{\varphi})$,
- $(2) \ T + \Theta |_{\Gamma} \ T \ \cup \ \{\xi(\bar{q}) \rightarrow \Gamma \mathsf{true}(\bar{q}) \colon \ q \in \omega\}.$

But then I \cup X \longrightarrow T + Θ follows at once from (1). Now suppose ψ is $\check{\Gamma}$ and $I + \Theta \vdash \psi$. Then, by (2),

 $T \cup \{\xi(\bar{q}) \rightarrow \Gamma - true(\bar{q}): q \in \omega\} \vdash \psi.$

But clearly I U X \vdash $\xi(\bar{q}) \rightarrow \Gamma$ -true (\bar{q}) for every q, whence T \cup X \vdash ψ . Thus T + Θ \vdash \vdash T \cup X as was to be shown.

The following result will be applied in §3.

THEOREM 7 ([10]). Suppose $X \subset \Gamma$ is r.e. and let Y be any r.e. set of sentences s. t. T \cup X $\not\vdash$ ψ for every $\psi \in Y$. Then there is a Γ sentence θ s. t. $T \cup X \longrightarrow T + \theta$ \forall \forall for every $\psi \in Y$.

PROOF. We may assume that X and Y are primitive recursive. Let $\xi(x)$ and $\eta(x)$ be PR binumerations of X and Y, respectively. If $\Gamma = \prod_{n+1}^{0}$ let Θ be s. t.

$$P \models \Theta \leftrightarrow \forall y (\xi(y) \land \forall z u \leq y (\eta(z) \rightarrow \neg Prf_{\tau(x)} \lor x = \overline{\Theta}(z, u)) \rightarrow \Pi_{n+1}^{0} - true(y)).$$
If $\Gamma = \Sigma_{n+1}^{0}$ let Θ be s. t.
$$P \models \Theta \leftrightarrow \exists y (\exists z u \leq y (\eta(z) \land Prf_{\tau(x)} \lor x = \overline{\Theta}(z, u)) \land \forall z \leq y (\xi(z) \rightarrow \Sigma_{n+1}^{0} - true(z)).$$

Next we observe that $\operatorname{Cons}(\Gamma, T)$ is II_2^0 and that Theorem 1 implies that Γ \cap Cons $(\check{\Gamma}, I)$ is not r.e. Thus we are faced with the problem of classifying these sets. A very nearly complete solution follows from our next result. Let

> Cons(Γ , Y, T) = { φ : for every $\psi \in \Gamma$, if $T + \varphi \vdash \psi$, then $\psi \in Y$.

Thus $Cons(\Gamma,T) = Cons(\Gamma,Th(T),T)$.

THEOREM 8 ([10]). Suppose $\Gamma \neq \Pi_1^0$ and let Y be any r.e. set monoconsistent with P. Then to any Π_2^U set X, there is a Γ formula $\xi(x)$ s. t.

- (i) If $k \in X$, then $\xi(\overline{k}) \in Cons(\overline{\Gamma}, \overline{\Gamma})$,
- (ii) if $k_r \not\in X$ for $r \leq q$, then $\sum_{r \leq q} \xi(\bar{k}_r) \not\in \text{Cons}(\Sigma_1^0, Y, T)$ u $\text{Cons}(\Pi_1^0, Y, T).$

To prove this we need the following

LEMMA 4. If X and Y are r.e. and Y is monoconsistent with P, then there is a Σ_1^0 formula $\xi_{\Pi}(x)$ and a Π_1^U formula $\xi_1(x)$ s. t.

(i) $P \models \xi_0(\bar{k}) \rightarrow \xi_1(\bar{k}),$

 $\xi_1(x)$ be s. t.

(ii) if $k \in X$, then $P \models \xi_0(\bar{k})$,

(iii) if $k_r \not\in X$ for $r \leq q$, then $\bigvee_{r < q} \xi_1(\bar{k}_r) \not\in Y$.

PROOF. Let R(k,m) and S(k,m) be primitive recursive relations s. t. X = {k: $\exists mR(k,m)$ } and Y = {k: $\exists mS(k,m)$ }. Let $\rho(x,y)$ and $\sigma(x,y)$ be PR binumerations of R(k,m) and S(k,m). Let $S_0(\gamma,p)$ be the primitive recursive relation $\exists qk_r(S(\bigvee_{r\leq q}\gamma(\bar{k}_r),p) \& \forall m\leq p \ \forall s\leq q \ \sim R(k_s,m)).$ Let $\sigma_0(x,y)$ be a PR binumeration of $S_0(\gamma,p)$ and let

 $P \vdash \xi_1(\bar{k}) \leftrightarrow \forall u(\sigma_0(\bar{\xi}_1,u) \to \exists v \leq u \ \rho(\bar{k},v)).$ Finally let $\xi_0(x)$ be s. t.

 $\begin{array}{c} P \longmapsto \xi_0(\bar{k}) \; \longleftrightarrow \; \exists z (\rho(\bar{k},z) \; \land \; \forall u \leq z \neg \sigma_0(\bar{\xi}_1,u)). \\ \text{Then (i) is obvious. To prove (ii) and (iii) first} \\ \text{prove that } \sigma_0(\bar{\xi}_1,\bar{p}) \; \text{is false for every p.} \end{array}$

Theorem 8 is now an easy consequence of Lemmas 2 and 4. It has the following (cf. [4,10,13,14,16]) $\text{COROLLARY 3. The sets } \Gamma \cap \text{Cons}(\Gamma,\Gamma), \text{ where } \Gamma \neq \Pi_1^0,$ $\Sigma_2^0 \cap \text{Cons}(\Sigma_1^0,\Gamma), \text{ and } \Pi_2^0 \cap \text{Cons}(\Sigma_1^0,\Gamma) \text{ are complete } \Pi_2^0 \text{ sets.}$ $\text{If } \Gamma \text{ is } \Sigma_1^0 \text{-sound, then } \Pi_1^0 \cap \text{Cons}(\Sigma_1^0,\Gamma) \text{ is } \Pi_1^0. \text{ But }$ $\text{if } \Gamma \text{ is not } \Sigma_1^0 \text{-sound, then this set is complete } \Pi_2^0 \text{ too } [13].$

Results similar to Theorem 8 and Corollary 3 can also be obtained from (the proofs of) Theorems 2,3,4,5. Combining Theorem 8 and the proof of Theorem 6 we

get the following corollary which will be applied in §3. COROLLARY 4. If $\Gamma \neq \Pi_1^0$, then

 $\{\varphi\colon \exists \psi\in\Gamma \ \cap \ \mathsf{Cons}(\Gamma,\mathsf{T})(\mathsf{T}+\psi {\capprox{\mid}} \phi)\}$ is a complete Σ^0_{τ} set.

Suppose X is r.e. and let Y = $\{\varphi: T + \varphi \mid X\}$. Clearly Y is r.e. unless X is <u>infinite over</u> T in the sense that

there is no k s. t. I $\cup X \upharpoonright k \vdash X$.

THEOREM 9 ([10]). Suppose X is r.e., bounded, and infinite over T. Then Y = $\{\phi\colon T + /\phi \vdash X\}$ is a complete Π_2^0 set.

The proof is an application of Theorem 1. Suppose X $\subseteq \Gamma. \ \text{It is not known if it follows that } \Gamma \cap Y \text{ is complete } \Pi^0_2. \ \text{It can be shown, however, that } \Gamma \cap Y \text{ is not r.e.}$

2. Interpretability. We write $S \le T$ to mean that S is interpretable in T. S < T if $S \le T \not\le S$ and $S \equiv T$ if $S \le T \le S$. We assume that P - |T.

All proofs in what follows of the existence of interpretations are applications, directly or indirectly, of the following basic result established by Feferman [1].

LEMMA 5. If $\sigma(x)$ numerates S in T, then S \leq T + Con $_{\sigma}$. This is proved by showing that the denumerable case of the Henkin completeness proof can be carried out in P.

For any formula $\sigma(x)$, let $\sigma^*(x)$ be the formula

 $\sigma(x) \wedge \text{Con}_{\sigma(y)} \wedge y \leq x.$ The following lemma is again due to Feferman [1] (cf. also [11]).

LEMMA 6. (i) If $\sigma(x)$ binumerates S in T and for every n, $T \models \text{Con}_{S \upharpoonright n}$, then $\sigma^*(x)$ binumerates S in T. (ii) $P \models \text{Con}_{\sigma^*}$.

S is reflexive if $S \vdash Con_{S \upharpoonright n}$ for every n. S is essentially reflexive if all extensions of S in the language of S are reflexive. In the following A,B,C are essentially reflexive extensions of P.

. If S_0 and S_1 are finite and $S_0 \leq S_1$, then P \vdash Con $S_1 \rightarrow$ Con S_0 . Thus from Lemmas 5 and 6 we get the following key

LEMMA 7 ([3]). $S \le A$ iff $A \vdash Con_{S \upharpoonright n}$ for every n. One immediate consequence of Lemma 7 is the following result known as Orey's compactness theorem [12].

LEMMA 8. $S \le A$ iff $S \mid n \le A$ for every n.

Suppose φ is Π_1^0 and $\mathbb{Q} + \varphi \leq A$, where \mathbb{Q} is Robinson's arithmetic. Then there is an n s. t. $\mathbb{Q} + \varphi \leq A \upharpoonright n$. It follows that $P \models Con_A \upharpoonright n \to Con_{\mathbb{Q} + \varphi}$, whence $P \models Con_A \upharpoonright n \to \neg Pr_{\mathbb{Q}}(\neg \varphi)$. But $\neg \varphi$ is Σ_1^0 , whence $P \models \neg \varphi \to Pr_{\mathbb{Q}}(\neg \varphi)$. Since $A \models Con_A \upharpoonright n$, it follows that $A \models \varphi$. This proves one half of the following lemma (cf. [2,3,9]). The other half follows at once from Lemma 7.

LEMMA 9. A \leq B iff A $-|_{\Pi_1^0}$ B.

In view of Lemma 9, results on partially conservative sentences can be applied to interpretability. Thus combining Corollary 1 and Lemma 9 we get (cf. [3,6,9,10,16])

THEOREM 10. If X is r.e. and monoconsistent with A, then there is a Σ^0_1 sentence $\varphi \not\in X$ s. t. A + $\varphi \leq$ A.

Similarly Theorem 2 yields the following

THEOREM 11 ([9,10]). If X is r.e. and monoconsistent with A, then there is a (Σ_2^0,Π_2^0) sentence Θ s. t. $\Theta^i\not\in X$ and A + Θ^i \le A, i = 0,1.

From our point of view we may regard ZF as an extension of P. Let P^2 be the finite conservative "second order" extension of P. Let X = { $\phi\colon GB + \phi \leq GB$ } and Y = { $\phi\colon P^2 + \phi \leq P^2$ }. Then X and Y are r.e., since GB and P^2 are finite. Clearly X is monoconsistent with ZF and Y is monoconsistent with P. Hence, by Theorem 10 and recalling that P and ZF are essentially reflexive, we get the following

COROLLARY 5. There is a Σ_1^0 sentence φ s. t. P + $\varphi \le$ P(ZF + $\varphi \le$ ZF) and P² + $\varphi \not\le$ P²(GB + $\varphi \not\le$ GB).

Similarly applying Theorem 11 we get a second second COROLLARY 6. There is a (Σ_2^0,Π_2^0) sentence θ s. t.

 $P + \Theta^{i} \leq P(ZF + \Theta^{i} \leq ZF)$ and $P^{2} + \Theta^{i} \not\leq P^{2}$ (GB + $\Theta^{i} \not\leq GB$), i = 0, 1.

From Theorem 4 we get the following (partial) answer to a question of Orey [12].

THEOREM 12 ([10]). There are sentences ϕ_i s. t. A + ϕ_i \leq A, A + ϕ_0 ^ ϕ_1 $\not\leq$ A, A + $\neg\phi_i$ $\not<$ A, and A + $\neg\phi_0$ v $\neg\phi_1$ \leq A, i = 0,1.

By Theorem 6, we get the following

THEOREM 13 ([9,10]). (i) If A \rightarrow B, then there is a (Σ_2^0,Π_2^0) sentence Θ s. t. A + Θ \equiv B.

(ii) If X is an r.e. set of Σ_1^0 sentences, then there is a Σ_1^0 sentence σ s. t. A \cup X \equiv A + σ .

Theorem 13 (ii) can be applied to answer a question raised by Švejdar [17] as follows. (For more information of the properties of Σ^0_1 and Π^0_1 sentences in terms of interpretability see Theorem 26 below.)

COROLLARY 7. If A is consistent, there is a Σ_1^0 sentence σ s. t. A + ψ $\not\equiv$ A + σ for every Π_1^0 sentence ψ .

PROOF. It can be shown without much difficulty (essentially by repeating the proof of Lemma 11 below) that there is a Σ_1^0 formula $\gamma(x)$ s. t. for every n, A + $\gamma(\bar{n}) \not \leq A \cup \{\gamma(\bar{m}) \colon m < n\}$. Let $X = \{\gamma(\bar{n}) \colon n \in \omega\}$. By Theorem 13 (ii), there is a Σ_1^0 sentence σ s. t. A + σ \equiv A U X. Let ψ be any Π_1^0 sentence and suppose A + ψ \equiv A + σ . Then, by Lemma 9, there is an n s. t. A U X \ n \ \mapsto ψ . But then A U X \leq A + σ \leq A + ψ \mapsto A U X \ n, whence A U X \leq A U X \ n, a contradiction.

By Lemma 7, $\{\varphi\colon A+\varphi\leq B\}$ is Π_2^0 . Thus, by Theorem 8 with Y = Th(B) (cf. [9,10,14,16])

THEOREM 14. If A \leq B and B is consistent, then Σ_1^0 n $\{\varphi\colon A+\phi\leq B\}$ is a complete Π_2^0 set.

Similarly, using Theorem 9, we get

THEOREM 15 ([9,10]). If there is no Π_1^0 sentence Θ s.t. $B \models \Theta$ and $B \leq A + \Theta$, then $\{\varphi \colon B \leq A + \varphi\}$ is a complete Π_2^0 set.

Corollary 5 leads to the question if there is a (Π_1^0) sentence φ s. t. P + φ $\not \leq$ P(ZF + φ $\not \leq$ ZF) and P² + φ \leq P²(GB + φ \leq GB). Solovay [16] has developed a method, completely different from the one used here, by means of which these questions can be answered in the affirmative. Let A* be P or ZF and let S* be P² or GB, respectively. Then (cf also [5,18])

THEOREM 16. There is a Π_1^0 sentence θ s. t. $S* + \theta \le S*$ and $A* + \theta \not\le A*$.

Note that, since A* is (essentially) reflexive and φ is Π_1^0 , A* + φ \not A* is equivalent to A* \not φ . Unfortunately it would take too long to explain Solovay's construction here. The reader is referred to [5,18].

We now introduce the following classification of sentences: ϕ is of type $\langle i,j_0,j_1\rangle$, where $i,j_0,j_1\in\{0,1\},$ if i = 0 iff A* + ϕ \leq A*, j_0 = 0 iff S* + ϕ \leq S*, and j_1 = 0 iff S* + $\neg\phi$ \leq S*. Hájek [5] observed that $\neg\theta$, where θ is as in Theorem 16, is of type $\langle 1,0,0\rangle$ and went on to prove the following

THEOREM 17. There are independent $\boldsymbol{\Sigma}_1^0$ sentences of all possible types.

By a similar but somewhat more complicated construction Švejdar [18] has proved the following remarkable THEOREM 18. There is a Π_1^0 sentence ψ s. t. A* + ψ $\not\leq$ A* and S* + ψ $\not\leq$ S* but A* + ψ \leq S*.

3. Degrees of interpretability. Clearly \equiv (mutual interpretability) is an equivalence relation. Its equivalence classes will be called degress (of interpretability). Now let T be a consistent essentially reflexive extension of P e.g. P of ZF. In the following A,B, etc. are extensions of T in the language of T. Thus A, B, etc. are essentially reflexive. Let D_T be the set of degrees of the form d(A), where d(A) is the degree of A, i.e. $A \in d(A)$. Elements of D_T will be written a,b, etc. D_T is partially ordered by the relation \leq induced by interpretability, i.e. $a \leq b$ iff $A \leq B$, where $A \in a$ and $B \in b$.

We now define A^{T} , \downarrow , and \uparrow as follows:

 $A^{T} = T \cup \{Con_{A \mid n} : n \in \omega\},$ $A \downarrow B = \{\phi \lor \psi : \phi \in A \& \psi \in B\},$ $A \uparrow B = A^{T} \cup B^{T}.$

Thus $Th(A \downarrow B) = Th(A)$ n Th(B). By Lemma 7, we get LEMMA 10. (i) $A \leq B$ iff $A^T - B$. Thus $A^T \equiv A$ and $A \leq B$ iff $A^T - B^T$.

(ii) A < B,C iff $A \le B \downarrow C$,

(iii) A,B < C iff A+B < C iff A+B \rightarrow C.

For $A \in a$ and $B \in b$ let $a \cap b = d(A + B)$ and $a \cup b = d(A + B)$. By Lemma 10, n and u are well-defined, $a \cap b$ is the glb of a and b, and $a \cup b$ is the lub of a and b. Moreover it is easily verified that

$$A^{\mathsf{T}} + (B + C) - | - (A^{\mathsf{T}} + B^{\mathsf{T}}) + (A^{\mathsf{T}} + C^{\mathsf{T}}).$$

Thus we have the following

THEOREM 19 ([9,11]). D_T is a distributive lattice. Svejdar [17] has defined the lattice V_T of degrees of the form $d(T+\phi)$ and proved that V_T is distributive. By Theorem 13, $V_T=D_T$.

 D_T has a minimal element 0 = d(T) and a maximal element 1, the common degree of all inconsistent theories. If T is Σ_1^0 -sound, then a,b < 1 implies a υ b < 1. In fact we have the following

THEOREM 20 ([9,11]). T is not Σ_1^0 -sound iff there are $a_0, a_1 < 1$ s. t. $a_0 \cup a_1 = 1$ (and $a_0 \cap a_1 = 0$).

This may be proved in the following way. First prove the following simple but occasionally useful

LEMMA 11. If X is r.e. and monoconsistent with Q, then there is a true Π_1^0 sentence ψ s. t. $\psi, \neg \psi \not\in X$.

Next applying Lemma 11 we can prove

LEMMA 12. Suppose X is r.e. and monoconsistent with P and let 0 be any true Π_1^0 sentence. There are then Π_1^0 sentences θ_i s. t.

- (i) $P \vdash \Theta_0 \vee \Theta_1$,
- (ii) $P \vdash \Theta_0 \land \Theta_1 \rightarrow \Theta$,
- (iii) $\Theta_{i}^{J} \not\in X$, i, j = 0,1.

PROOF OF THEOREM 20. Let θ be a true Π_1^0 sentence s. t. $T \vdash \neg \theta$. Let X = Th(T). Let θ_i be as in Lemma 12. Finally let $a_i = d(T + \theta_i)$. Then $a_i < 1$, $a_0 \cap a_1 = 0$, and $a_0 \cup a_1 = 1$.

Suppose a < 1 and A \in a. By Lemma 11, there is a sentence ψ s. t. $\mathbb Q$ + $\psi^i \not \leq$ A, i = 0,1. Let $\mathbf a_i = \mathsf d(\mathsf A + \psi^i)$. Then a < $\mathbf a_i$ and $\mathbf a_0 \cap \mathbf a_1 = \mathbf a$. Thus a is not meet-irreducible. Moreover no a < 1 is join-irreducible. In fact we have

THEOREM 21 ([9,11]). If a < b < 1, then there are degrees c_i s. t. a < c_i < b, c_0 \cap c_1 = a, and c_0 \cup c_1 = b.

PROOF. Let $A \in a$ and $B \in b$. By Orey's compactness theorem, there is a sentence ψ s. t. $B \vdash \psi$ and $\psi \not \leq A$. Moreover, by Lemma 7, there is an m s. t. $A \not \vdash Con_{B \mid m}$.

Let $\beta(x)$ be a PR binumeration of B and let $X = \{ \phi \colon \psi \leq A + \neg \phi \} \cup \{ \phi \colon A \models \phi \lor Con_{B \mid m} \}.$ Then X is r.e. and monoconsistent with P. Hence, by Lemma 12, there are Π_1^0 sentences θ_i s. t.

$$P \vdash \Theta_{0} \lor \Theta_{1},$$

$$P \vdash \Theta_{0} \land \Theta_{1} \rightarrow Con_{\beta},$$

$$\Theta_{i}^{j} \not\in X, i, j = 0, 1.$$

Let $c_i = b \cap d(A + \Theta_i)$.

From Theorem 21 it follows, of course, that \mathbf{D}_{T} is dense.

Suppose a < b < 1. Does it follow that there is a c > a s. t. b \cap c = a? By our next result, the answers to this question and its dual are negative. We define << j ("j" for "join") and << m ("m" for "meet") as follows: a << j b iff a < b and for every c, if a \cup c \cup > b, then c > b,

a << $_{\rm m}$ b iff a < b and for every c, if b n c < a, then c < a.

THEOREM 22 ([9,11]). (i) If 0 < a, then there is a b s. t. 0 < b << j a.

(ii) If a < 1, then there is a b s. t. a << mb < 1.
PROOF. (i) Let A \in a. By Lemma 9, there is a Π_1^0 sentence Θ s. t. A \models Θ and T $\not\models$ Θ . Let X = Th(T + $\neg \Theta$). Then X is r.e. and monoconsistent with T + $\neg \Theta$. Hence, by Corollary 1, there is a sentence $\psi \in \Pi_1^0$ n $Cons(\Sigma_1^0, T + \neg \Theta) - X$. Let B = T + ψ v Θ and b = d(B). Then Θ < b \leq a. Suppose c U b \geq a. Then there is an m s. t. T + ψ + Con_{C} \models Θ , whence T + $\neg \Theta$ + ψ \models $\neg Con_{C}$ \models Θ , whence C \models Θ , whence c \geq b, whence c = c U b \geq a.

(ii) can rather easily be derived from the following

simple

LEMMA 13. The following conditions are equivalent.

- (i) For every c, if $b \cap c \leq a$, then $c \leq a$.
- (ii) If σ is Σ_1^0 , $A \in a$, and $b \leq d(A + \sigma)$, then $A \models \neg \sigma$.

We write a <<* b to mean that a < b and there is a Π_1^0 sentence θ s. t. B $\mid -\theta$ and A + $\neg \theta \leq$ A, where A \in a and B \in b. Then a <<* b implies a << m b. The converse of this, however, is false.

COROLLARY 7. To every a < 1, there is a b s. t. a << $_{\rm m}$ b but not a <<* b.

PROOF. Let $A \in a$, $X = \{\varphi \colon a <<_m d(A + \varphi)\}$, and $Y = \{\varphi \colon a <<* d(A + \varphi)\}$. By Lemma 7, $\{\varphi \colon A + \varphi \leq B\}$ is Π_2^0 . Hence, by Lemma 13, X is Π_3^0 . But, by Corollary 4, Y is a complete Σ_3^0 set and so is not Π_3^0 . Finally $Y \subseteq X$. It follows that $X \not\subseteq Y$. Let $\psi \in X - Y$ and set $b = d(A + \psi)$.

Note that if $\alpha(x)$ is a PR binumeration of A, then $d(A) <<* d(T + Con_{\alpha})$ if A is consistent. This follows since $A + \neg Con_{\alpha} \leq A$ [1].

Theorem 22 (i) suggests the question if to each a < 1, there is a b s. t. a << $_{\rm j}$ b < 1. The dual of this is obviously false. We now show that the answer is negative.

THEOREM 23 ([11]). There is a degree a < 1 s. t. if a \leq b < 1, then there is a degree c < b s. t. a u c = b. PROOF. If T is not Σ_1^0 -sound, this is obvious, by Theorem 20. So suppose T is Σ_1^0 -sound. Let $\tau(x)$ be a PR binumeration of T and let a = d(T + Con $_{\tau}$). Then a < 1. Suppose now a \leq b < 1. Let $\beta(x)$ be a PR binumeration of a theory of degree b. Next let φ be s. t.

Then, by standard arguments,

- (1) $I \not\models \varphi$,
- (2) $P \vdash \varphi \lor \hat{\varphi}$,
- (3) $P \vdash \varphi \land \hat{\varphi} \rightarrow Con_{g}$.

Clearly $P \vdash \neg \varphi \rightarrow \Pr_{\tau}(\bar{\varphi})$. Since $\neg \varphi$ is Σ_1^0 , it follows that $P \vdash \neg \varphi \rightarrow \Pr_{\tau}(\bar{\neg \varphi})$. Thus:

(4) $P \vdash Con_{\tau} \rightarrow \varphi$.

Let $d = d(T + \widehat{\phi})$. Then, since $\widehat{\phi}$ and Con_{τ} are Π_1^0 , it follows from (3), (4), and Lemma 5 that a \cup d \geq b. Suppose a \leq d. Then $T + \widehat{\phi} \models Con_{\tau}$. Hence, by (2) and (4), $T \models \phi$, contradicting (1). Thus a \not d. Now let $c = d \cap b$. Then c < b. Finally, by distributivity, a \cup c = (a \cup d) \cap (a \cup b) = b.

Let V_G (Λ_G), where G is a set of degrees, be the supremum (infimum) of G if it exists. Somewhat surprisingly the following infinitary distributive laws hold.

THEOREM 24 ([11]). (i) If U_G exists, then $U_G \cap b = U_{a} \cap b$: $a \in G$.

- (ii) If $\bigcap G$ exists, then $\bigcap G \cup b = \bigcap \{a \cup b : a \in G\}$.
 - (i) is an easy consequence of

LEMMA 14. A+B \leq C iff A \leq C + \neg Con_B n for every n. To prove (ii) we need the following

LEMMA 15. A+B \geq C iff for every (Σ_1^0) sentence Θ and every m, if A^T + \neg Con_{C|m} $- \mid_{\Sigma_1^0}$ T + Θ , then B \mid \neg Θ .

PROOF. Suppose first $A \uparrow B \geq C$. Let Θ and m be s. t. $A^T + \neg Con_{C \mid m} - \neg \Sigma_1^0 + \Theta$. There is a k s. t. $A^T + Con_{B \mid k} - Con_{C \mid m} - \neg Con_{B \mid k}$. But then $I + \Theta - \neg Con_{B \mid k}$, whence $A^T + \neg Con_{C \mid m} - \neg Con_{B \mid k}$. But then $I + \Theta - \neg Con_{B \mid k}$, whence $A^T + \neg Con_{B \mid k}$. There is then an M s. t. for every $A^T + \neg Con_{C \mid m} - \neg Con_{B \mid k}$. But then, by Theorem 7,

there is a Σ_1^0 sentence Θ s. t. $A^T + \neg Con_{C|m} - \neg \Sigma_1^0$ T + Θ and T + $\Theta \not\vdash \neg Con_{B|k}$ for every k. Since Θ is Σ_1^0 , it follows that $B \not\vdash \neg \Theta$ and so the proof is complete.

Theorem 24 (ii) can be derived without much difficulty from Lemma 15.

By Theorem 20, if T is Σ_1^0 -sound, no degree, except trivially 0 and 1, has a complement, whereas if T is not Σ_1^0 -sound, some do. This leads to the question if all degrees have pseudocomplements. By (i) of the following result, the answer is negative.

THEOREM 25 ([11]). (i) If c < 1, then there is an a > c s. t. {b: b n a = c} has no supremum. (ii) If 0 < c < 1 and there is a Π_1^0 sentence θ s. t. c = d(T + θ), then there is a degree a < c s.t. {b: b u a = c} has no infimum.

Here (ii) is a partial dual of (i). The problem if the full dual is true remains open.

Next we consider degrees containing theories of a given form in analogy with e.g. the r.e. degrees of unsolvability. Let X be any set of sentences. Then A[X] = {d(A + ϕ): $\phi \in X$ } and a[X] = U{A[X]: $A \in a$ }. By Theorem 13, A[Σ_2^0] = A[Π_2^0] = {d(B): B|— A} and so a[Σ_2^0] = a[Π_2^0] = [a,1]. (Here and in what follows [a,b] = {c: a < c < b}, [a,b) = {c: a < c < b} and (a,b) and (a,b) are defined in the obvious way.) If A < B and σ is Σ_1^0 , then, by Lemma. 9, A + $\sigma \leq$ B + σ . Hence a[Σ_1^0] = A[Σ_1^0] for A \in a.

The following result contains some information on the sets a[Σ_1^0], A[Π_1^0], and a[Π_1^0] and the relations between them.

THEOREM 26 ([11]). (i) If a < b, then there is a c \in [a,b) s. t. [c,b) \cap a[Σ_1^0] = \emptyset .

- (ii) To any a < 1, there is a b s. t. a \leq b < 1 and [b,1] \subseteq a[Π_1^0].
- (iii) If $d(A) \le b < c$, then there are b', c's. t. $b \le b' < c' \le c$ and $[b',c'] \cap A[\Pi_1^0] = \emptyset$.
- (iv) If a < b, then there are c, c_0 , c_1 s. t. $c \in a[\Sigma_1^0]$,
- $a \le c_0 < c < c_1 \le b$ and $[c_0, c_1] \cap a[\Pi_1^0] = \emptyset$.
- (v) If a < b, there are c, d s. t. a \leq c < d \leq b and (a[Π_1^0] \cup a[Σ_1^0]) \cap [c,d] = \emptyset .
- (vi) If $A \in a < b$, then $A[\Sigma_1^0] \cap A[\Pi_1^0] \cap (a,b) \neq \emptyset$.

Our final result concerns the existence and nonexistence of infima of sets of the form A[X] where X is an r.e. set of (Σ_1^0) sentences. Let us say that the infimum ΛG is trivial if there is a finite set $H \subseteq G$ s. t. $\Lambda G = \Lambda H$.

THEOREM 27 ([11]): Suppose A is consistent.

- (i) There is a primitive recursive set X of Σ_1^0 sentences s. t. d(A) is the nontrivial infimum of A[X].
- (ii) There is a primitive recursive set Y of Σ_1^0 sentences s. t. A[Y] has no infimum.

PROOF OF (i). By Corollary 7, there is a B s. t. $d(A) <<_m d(B) \text{ and not } d(A) <<* d(B). \text{ Let } X = \{\neg Con_B \mid n \in \omega\}. \text{ If } C \leq A + \neg Con_B \mid n \text{ for every } n, \text{ then, by Lemma } 14, C \downarrow B \leq A, \text{ whence } C \leq A, \text{ since } A <<_m B. \text{ Thus } d(A) = \bigcap A[X]. \text{ This infimum cannot be trivial, since then there would be an m s. t. } A + \neg Con_B \mid_m \leq A \text{ contrary to the fact that not } d(A) <<* d(B).$

The proof of (ii) can be outlined as follows. First we observe that if Z is an r.e. set of Π_1^0 sentences, then A[Z] does not have a nontrivial infimum. Now let ψ_0 be any Π_1^0 sentence s. t. A < A + ψ_0 . Next, applying the construction used to prove Theorem 26 (vi), we can

effectively find Σ_1^0 sentences σ_n and Π_1^0 sentences ψ_{n+1} s. t. A + ψ_n > A + σ_n \geq A + ψ_{n+1} . Let Y = $\{\sigma_n : n \in \omega\}$. Then Y is as desired, since A[$\{\psi_n : n \in \omega\}$] has no infimum.

We conclude by sketching a proof of Theorem 25 (i). Let C \in c. By Theorem 27 (ii), there is a primitive recursive set Y = $\{\sigma_n : n \in \omega\}$ of Σ_1^0 sentences s. t. C[Y] has no infimum. Let A = C \cup $\{\neg\sigma_n : n \in \omega\}$ and a = d(A). Then, since the sentences $\neg\sigma_n$ are Π_1^0 , by Lemma 14, B \neq A \leq C iff B \leq C + σ_n for every n. But then, by Theorem 24 (i), a supremum of $\{b : b \cap a = c\}$ would be an infimum of C[Y].

REFERENCES

- 5. Feferman, Arithmetization of metamathematics in a general setting, Fund. Math. 49 (1960), 33-92.
- [2] D.Guaspari, Partially conservative extensions of arithmetic, Trans.AMS 254 (1979), 47-68.
- [3] P.Hájek, On interpretability in set theories, Comment.Math.Univ.Car. 12 (1971), 73-79.
- [4] P.Hájek, On partially conservative extensions of arithmetic, <u>Logic Colloquium 78</u>, North-Holland, Amsterdam 1979, 225-234.
- [5] P.Hájek, On interpretability in theories containing arithmetic II, Comment.Math.Univ.Car. 22 (1981), 667-688.
- [6] M.Hájkova and P.Hájek, On interpretability in theories containing arithmetic, Fund.Math. 76 (1972), 131-137.
- [7] D.Jensen and A.Ehrenfeucht, Some problems in elementary arithmetics, Fund.Math. 92 (1976), 223-245.
- [8] G.Kreisel and A.Lévy, Reflection principles and their use for establishing the complexity of axiomatic systems, Z.Math.Logik Grundlag.Math. 14 (1968), 97-142.

- [9] P.Lindström, Some results on interpretability, Proc. of the 5th Scand.Logic Symp. 1979, Aalborg 1979, 329-361.
- [10] P.Lindström, On partially conservative sentences and interpretability, to appear in Proc.AMS.
- [11] P.Lindström, On certain lattices of degrees of interpretability, Notre Dame JFL 25 (1984), 127-140.
- [12] S.Orey, Relative interpretations, Z.Math.Logik Grundl.Math. 7 (1961), 146-153.
- [13] J.Quinsey, Sets of Σ_k -conservative sentences are Π_2^0 complete, JSL 46 (1981), 442 (abstract).
- [14] C.Smoryński, Calculating self-referential statements Guaspari sentences of the first kind, JSL 46 (1981), 329-344.
- [15] C.Smoryński, The incompleteness theorems, <u>Handbook</u> of mathematical logic (ed. J.Barwise), North-Holland 1977, 821-865.
- [16] R.Solovay, On interpretability in set theories, to appear.
- [17] V.Švejdar, Degrees of interpretability, Comment. Math.Univ.Car. 19 (1978), 789-813.
- [18] V.Švejdar, A sentence that is difficult to interpret, Comment.Math.Univ.Car. 22 (1981), 661-666.