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PROVABILITY AND INTERPRETABILITY
IN THEORIES CONTAINING ARITHMETIC -

Per Lindstrom

In the following we give a survey of some recent
work on provability and interpretability in theories
containing P (Peano arithmetic). §1 is devoted mainly
to the theory of partially conservative sentences. A sen-

tence ¢ is X-conservative over a theory T, where X is a

set of sentences, if for every ¥ € X, if T + @}—\p,‘then

T V.. This concept was introduced by Guaspari [2] and

the basic existence theorems were established by him

and Solovay (cf. [2]). The first result of this type is,
~however, due to Kreisel (cf. [15]) who observed that if
‘Con, is a "natural" formalization of "P is consistent",

P
then—1ConP is H?-conservativé'over P. Related results

have also been obtained by Jensen and Ehrenfeucht [%]
and Kreisel and Lévy [8]. In §2 results from §1 are

applied to prove results on interpretability using the

Fact that if S and T are r.e. reflexive extensions of P,
then S is interpretable in T iff every H? sentence prov-
able in S is provable in T. (For example, combining

this with the above mentioned result of Kreisel we get
the result of Feferman [1] ‘that P +-~.ConP is interpret-
able in P. Similarly the second Gddel unprovability theo-
rem implies that P + ConP is not interpretable in P as
was first shown by Feferman [1}.) Finally §3 contains a
presentation of the main results dn'the lattice of

degrees of interpretability introduced by Lindstrom


Rossella
vol2
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[9, 11] and §vejdar [17]. Most proofs are omitted or
only briefly outlined.

0. Notation and terminology. In the following S, T,

A, B, C are elementary Lheories (sets of sentences). We
shall only be interested in r.e. theories. But then, by
Craig's theorem, we may and shall assume that S etc.
are primitive recursive. Th(T) is the set of theorems
of T. We write TL— X or X ~4T;'where X is a set of sen-
‘ tences, Lo mean that X < Th(T). Thus S —T iff S is a-
subtheory of T. § is an X-subtheory of T," S —4XT, if
Th(S) n X < Th(T).'(pl is @ if i = 0 and—-¢ 1f i = 1.

In the following I' is either Zg or HU and T is the

+1 N
dual of T. T'-true(x) is a I partial truth definition
for T sentences, i.e. for every I senltence Q,
P~ ¢ «> I'~true(g). k
For notation and terminology not explained here see [1].

1. Partially conservative sentences. Let T be a

fixed primitive recursive but otherwise arbitrary con-
sisfent exblension of P and lel 1(x) be a PR binumera-
tion of T. Let {I'}(x,y) be the formula

Yuv<y(u is T A Prf (u,v) = TI'=true(u)).

1(z) v z=x
The following lemma is then easily verified.-
LEMMA 1. {T'}(x,y) is a I formula s. t.
(1) Pl={T}(x,y) A y" <y > {T'}(x,y'),
(i1) T + ¢ (T}(qp,m) For all ¢ and m,
(iii) if ¢ is I and T + ¢} ¥, then there is a' q s. t.
P+ {T}(9,q)F V. '
In fact these are the only properties of {T}(x,y) that
will be used in the sequel. -
Using Lemma 1 we can now provevtwo'lemmas which serve

to unify the proofs of a number of results stated in
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what follows (cf. [10]).

LEMMA 2. Suppose y(x,y) is I'. Then there is a I for-
mula £(x) s. t.
(i) T+ E(k) = x(k,m),
(1i) T + &§(k) —{fT u {x(k,q): q € w}.

PROOF. Case 1. T = 10 . Let £(x) be s. t. =

Plm B(R) > Wy (32 3(EGD),y) » x(R,y)) .

Then (i) follows at once from Lemma 1 (ii). To prove
o and T + &(k)|— V. By Lemma 1

(iii), there is a q s. t.

P 12 HER), ) - b

(ii), suppose V¥ is Zg

‘Hence, by Lemma 1 (i),

P+ Wy <q x(R,y) + =V £(R).
But then, since T + E(k)}— ¥, it follows that T «+
Yy <q X(E,y)k— $. This proves (ii).

Case 2. T = ZS+1.'Let E(x) be s. L. |
Pl= (k) > 3y(a(I)  HETR),y) A ¥z <y x(k,2)).

LEMMA3. Suppose ﬁxo(x,y) and X1(x,y) are I'. Then there

>? is a I' formula &(x) s. t. for i = 0,1,

(1) T+ 850 vy <@ X, (Ry) » x,_, (R,®),

(ii) if wvis I and T + Ei(E)F~ wi, then T v {XJ_i(E’a):

q € whHp wi.

Our first result on Lhe existence of bartiaily con-
servative sentences is the following theorem due to
Guaspari [2] (cf. also [4,10,14]). Let Cons(T,T) be the
set of sentepces I'-conservative over T. ’

THEOREM 1. Let X be any r.e. set. There is then a T
formula €(x) s. t. ‘ o SR
(i) if k € X, then T} =&(k),



— 434 —

(ii) if k & X, then £(k) € Cons(¥,T).

PROOF. Let p(x,y) be a PR binumeration of a relation
R(k,m) s. t. X = {k: ImR(k,m)}and let E(x) be as in
Lemma 2 with y(x,y) = p(x,y).

A set X of sentences will be said to be monoconsistent

with S if S + ¢ is consistent for every ¢ € X,
COROLLARY 1.
then

If X is r.e. and monoconsistent with T,

I n Cons(F,T) - x # g.

PROOF. Let £(x) be as in Theorem 1 and let ¢ be s. t.
P @ > E(g). If ¢ € X, then T —&(g),
But this is impossible and so o € X.

whence T —g.
Hence, by Theorem 1
(ii), ¢ 1is as desired.
Let
NX = {@: ¢ € X},
DCons(T',T) = Cons(T,T) n NCons(F,T).
We then have the following result essentially due to
Solovay [16] (cf. also (2,10,14]).
THEOREM 2.
T. Then
T n DCons(F,T) - (X u NX) £ @.
The proof is an application of Lemma 3 and is similar

to the proof of Theorem 1 followed by that of Coroll-
ary 1.

~Suppose X is r.e. and monoconsistent with

Let B(Z ) be the set of Boolean combinations of Z

sentcnces By a similar construction we can then prove

the following result due to HaJek [4].

0
THEUREM 3. Ak o N Cons(B(Zk 1) T) n NCons(Hk 1,T)
- NCons(Z 1,T) £ B.
Comblnlng Lemma 3 and Theorem 2 (with X = @) and

using some additional tricks we can also prove the
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following result which will be applied later to answer
a question on interpretability raised by Orey [12].

THEOREM A ([10]). There are senLences ¢, S- t. 9

, j(wo A @1) € Cons(I',T) - NConS(H T).

The following interesting result has recently been

proved by (. Bennet.

. T
THEOREM 5, sentences Oi s. t k%

0
There are Zn+1

@O»V 61 and for i = 0,1,
0. € Cons(HU T+ ﬁ®1_i).
i ;
PROOF. Let E {(x) be s. t.

}(ni(ﬁ),Z) A
Vu‘izﬁPrFT(E,U))

PF— g (k) > Hz(ﬁ{H

where ni(x) is
32(oi(X,z) AYu <z ey c(x, U))

(<, is < and <, is <)_Where in turn pi(x,y) is PR and s.t.

0 coand =4
P gi(x) — Hzpi(x,z).
Using Lemma 1 it can be shown that
(1) if T}— ¢, then TF- N (9),
(2) if TH ¢, then n, () E Cons(H
Now let ¢ be s. t. ‘
e no(@) v ﬂ1(W)
and let @i = ni(@). Then, by (1) and (2),

©. are as desired.
i

1,T+—11'],' ((P))

the sentences

We now give an example of an application of Theorem
5. For any sentence ¢, let e(o,I') = {¢ € I: T o «— V).
Let E(T) = {e(p,I): ¢ € T}. Elements of E(T) will be
written a, b ete. a < b iff T}~'¢ + Y where @ € a and
Y € b.
lattice witt* a u b = e(p v U,T) and a n b = e(p A~ §,T)

Moreover E(I') has a minimal

Clearly < is a partial ordering which is a

where again ¢ € a and € b. €0
element 0 = e(0=1,T) and a maximal element 1 = e(0=0,T).
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COROLLARY 2. The sentence

* -
(%) Yaga,3b, b (b ag " b1§_a1A by b, = agua, A

bOnb1:0)

0 1) and false in all the

is true in all the lattices E(Z
lattices E(H 1).

PROOF. To show that (*) is false in F(d, ) let 6
~be as in Theorem 5 and leL a, = e(ﬁ@i,ﬂg+1). Subpose'
(*) is true and let bi be s. t. bi < a 1 0 17
and bynb,=0. Let b, € b.. Then T} b, > 0, T
-0, Va0, - by v U, and T ﬂ(p AL It follows that
T + ﬂG + @ i}— ﬁw 3N (v \/¢1), whence T + ﬁGi + 0

- 7 whence T + je i Y- But then T} Oy Vv O,

IE bOUb =a_.Ua

1-1
cont-

rary tq hypothesis.,

Our next two results are refinements of the following
simple and certainly well—known‘observation: Suppose X
is r.e. and bounded, i.e. X c I for some I'yand T u X is
consistent. Then there is a sentence @ s. T + @}— X
and T + 0 is consistent. ’

THEOREM 6 ([10]). Let X be an r.e. set of T sentences.
There is then a I sentence 0 s. t. T y X —4T N 0 ~4 T u X.

PRUOF By the proof of Cran s theorem, we may assume
that X is primitive recursive. Let E(x) be a PR blnume—
ration of X. By Lemma 2, there is a I sentence 0 s. t.
(1) T + 0= £(¢) » T-true(d),
(2) 1T + @—4“ U {&(q) » T-true(q): q € w}.
But then T u X —{T + O follows at once from (1). Now
suppose ¥ is I and T O W. Then, by (2),

Tu {&(q) » T'-true(q): q € wlh .

But clearly T u Xl £(gq) - I'-true(q) for every g, whence
TU Xl U, Thus T + O —ﬁFT U X as was to be shown.

The following result will be applied in §3,

— 437 —

THEOREM 7 ([10]). Suppose X € I is r.e. and let Y

be any r.e. set of sentences s. t. T u XbL Y- for every

Y € Y. Then there is a I sentence © s. t. T u X —{T + 0

k/ VY for every ¥ € Y, A
PROOF. We may assume that X and Y are primitive recur-
sive. Let £(x) and n(x) be PR binumerations of X and Y,
0
respectively. IF T = Hn+1 let © be s. L.
PI—— 0 +— Yy(E(y) » VZU<y(n(Z) -+
0

ﬂPFfT(X) v oxe O(z u)) - H 1—true(y)).
0 let © be s. t.
+1

Pl= © « 3y(3zu<y(n(z) ~ PrFT(X)\/X:G(z,u)) A
Yz <y(E(z) = Zg+1—true(z)).

Next we observe that Cons(F T) is H and that Theo-
rem 1 implies that I n Cons(F T) is not r.e. Thus we are
faced with the problem of classifying these sets. A
very nearly complete solution follows from our next re-
sult. Let

Cons(T,Y,T) = {g: for every V. € T, if T + o 1,
then { € Y}.
Thus Cons(I',T) = Cons(T,Th(T),T7).

THEOREM 8 ({10]). Suppose T # H? and let Y be any
r.e. set monoconsistent with P. Then to any Hg set X,
there is a T formula E(x) s. t.

(i) If k € X, then E(K) € Cons(T,T),
(i) if k_ & X for r<q, then Y, g(k ) £ Cons(z YoT) v
' Cons(H Y,T).

To prove this we need the following

LEMMA 4. If X and Y are r.e. and Y is monoconeistent
with P, then there is a Z? formula Eo(x) and a H?‘For—

mula §1(x) s. t.
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(1) Pl g (k) - £4(k),
(ii) if k € X, then P gD(E),

(iii) if kg X for r < g, then \/g (k) £ v.
PROOF. Let R{k,m) and S(k,m) be prlmltlve recursive
relations s. t. X = {k: ImR(k,m)} and Y = {k: ImS(k,m)}.
Let p(x,y) and o(x,y) be PR binumerations of R(k,m) and
S(k,m). Let S (Y,p) be the primitive recursive relation

ELT (S(\/ (K.),p) & ¥m<p ¥s<q ~R(k_,m)) .
Ltet o (x,y) be. a PR blnumeratlon of § (y,p) and let
&, (x) be s. t.
| Pl— Eq(E) > UU(OO(§1,U) + 3v<u plk,v)).
Finally let E (x) be s. t.
P £4 (k) « 3z(p(k,z) A Yu< z+0 (51,u)>
Then (i) is obv1ous To prove (ii) and (iii) first
prove that 00(51?p) is false for every p.
Theorem 8 is now an easy consequence of Lemmas 2 and
4. [t has the following (cF. [4,10,13,14,161)
COROLLARY 3. The sets T n Cons(T,T), where T £ I

’

0
ZD C 0 0 0 8

5 N ons(21,T), and HZ n Cons(21,T) are complete HZ
t

: . 0 0
IF 7T is Zq—sound, then H1 n Cons(Z?,T) is H? u

. . 0
1f T is not 21—sound, then this set is complete I
too [13].

B
0
2

) Results similar to Theorem 8 and Corcllary 3 can
also be obtained from (the proofls or) Theorems 2,3,4,5,
Combining Theorem 8 and the proof.of Theorem 6 we
get the Follow1ng corollary which will be applied in §3.

CORCLLARY 4. IF T # H1 then

{o: Iy € T n Cons(F,T)(T + wf— ®)}

is a complete Eg set.

Suppose X is r.e. and let 'Y = {o: T +FQF— X}, Cleafly

Y is r.e. unless X is infinite over T in the sense that

sets.
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there is no k s. t. T u X[kl X.

THEOREM 9 ([10]). Suppose X is r.e., bounded, and
infinite over T. Then Y = {o: T +-9— X} is a complete
HO set.

2
The proof is an application of Theorem 1. Suppose X

c I'. It is not known if it follows that I' n Y is com-
plete Hg.

2. Interpretability. We write § < T to mean that S
is interpretable in 7. S < T if & < T Z S and S = T if
S < T <S. We assume that P —T.

All proofs in what follows of the existence of inter-

It can be shown, however, that ' n Y is not r.e.

pretations are applications, directly or indirectly, of
the following basic result established by Feferman [1].
LEMMA 5. If o(x) numerates S in T, then S < T + Cono.
This is proved by showing that the denumerable case of
the Henkin completeness proof can be carried out in P.
For any formula o(x), let o0*(x) be the formula
0(x) A~ Con

o(y) A y<x’
The following lemma is again due to Feferman [1] (cf.

also [11]).
| LEMMA 6. (i) IF o(x) binumerates S in T and for
every n, TF— Consr then o*(x) binumerates S in T.
(ii) P}— Con

S is rerlox1ve if SF— Consrn for every n. 5 is

essentially reflexive if all extensions of S in the lan-

guage of S are reflexive. In the following A,B,C are
essentially reflexive extensions of P.

If SO and S1 are finite and SU < 51, then P|— ConS1

> Cons‘. Thus from Lemmas 5 and 6 we get the following
0

- key
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LEMMA 7 ([3]). S < A iff A} cOnSrn for every n.

One immediate consequence of Lemma 7 is the following
result known as Orey's compactness theorem [12].

LEMMA 8. S < A iff SI'n < A for every n.

Suppose ¢ is H? and Q@ + ¢ < A, where Q is Robinson's
arithmetic. Then there is an n s. t. Q + ¢ < Arn. It

follows that P}— ConArn > ConQ -

— . 0 —_
+-ﬂPrQ(ﬁ@). But —op is 21, whence Pl -9 - Pra(ﬂ@);
Since A|— ConArn, it follows that A}~ ¢. This proves
one half of the following lemma (cf. [2,3,9]). The other

, whence P|— ConArn

half follows at once Frdm Lemma 7.

LEMMA 9. A < B iff A —{ ;0 B.
]

In view of Lemma 9, results on partially conservative
sentences can be applied to interpretability. Thus com-
bining Cbrollary 1 and Lemma 9 we get (cf. [3,6,9,10,16])
THEOREM 10. If X is r.e. and monoéonsistent with A,
then there is a Z? sentence ¢ £ X s. t. A + ¢ < A,
Similarly Theorem 2 yields the following
THEOREM 11 ([9,10]). If X is r.e. and monoconsistent

0 _0 _ i
HZ) sentence © s. t.. 0 ﬁ

with A, then there is a (22,

X and A + 0% <A, i = 0,1.

From our point of view we may regard ZF as an exten-
sion of P. Let P2 be the finite conservative "second
order" extension of P. Let X = {o: GB + ¢ < GB} and Y =
{o: P2 . 9 < PZ}. Then X and Y are r.é., sznce GB and P2
are finite. Clearly X is monoconsistent with ZF and Y
is monoconsistent with P, Hence, by Theorem 10 and re-
calling that P and ZF are essentially reflexive, we get
the following

COROLLARY 5. There is a Z? sentence ¢ s. t. P + ¢ <

P(ZF + g < 2F) and P% & ¢ £ PZ(GB + ¢ £ GB).
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Similarly applying Theorem 11 we get

COROLLARY 6. There is a (zg,ng) sentence @ s. t.
P+ ot < P(ZF + ot < ZF) and ARRCE £ P% (6B + o £ GB),
i=0,1. - o

From Theorem 4 we gelt the following (partial) answer
to a question of Orey [12].

THEOREM 12 ([10]). There are sentences 9 s. t.
A gy < Ay A+ P9 N Py £ A, A+ a9 £ A, ahd.A + j¢d v
gy < A, i = 0,1. |

By Theorem 6, we get the following

THEOREM 13 ([9,10]). (i) IFf A —{B; then there is a
(Zg,Hg) sentence © s. t. A + © = B. v
(ii) If X is an r.e. set of Z?
a Z? sentence g s. t. A U X = A + 0.

Theorem 13 (ii) can be applied to answer a ﬁuestion'

sentences, then there is

raised by gvejdar [17] as follows. (For more iHFormation
? and H? sentences in terms ' of
interpretability see Theorem 26 below.)

COROLLARY 7. IF A is consistent, there is a z? sen-

of the properties of I

tence 0 s. t. A + % A+ o for every'H? sentence V.
PROOF. It ean be shown without much-difficulty
(essentially by repeating the proof of Lemma 11 below)
that there is a Z? formula v(x) s. E. For‘every‘n;/
A+ v(n) Z Au {y(m): m <n}. Let X = {y(n): n € w}. By
Theorem 13 (ii), there is a Z? sentence 0 s. t. A+ 0
= AU X, Let ¥ be any H? sentence and Suppoée A +'M>§
A+ 0. Then, by Lemma 9, there is an n s. t. AU Xrnf— Y.
But them A U X < A + 0 <A + § —/A U Xn, whence A.-uU X
< Awu Xrn, a contradiction. - ’
By Lemma 7, {¢: A + ¢ < B} is Hg. Thus, By Theorem 8
with Y = Th(B) (cf. [9,10,14,16]) ’
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THEOREM 14. If A,S'B and B is consistent, then Z? n

{o: A + ¢ < B} is a complete Hg set.

Similarly, using Theorem 9, we get

THEOREM 15 ([9,10]). If there is no HO sentence O s.t.

]
Bl— 0 and B < A + 0, then {p: B < A + ¢} is a complete
Hg set.

Corollary 5 leads to the question if there is a (H )
sentence ¢ s. t. P + ¢ £ P(ZF + ¢ £ ZF) and P2 + ¢ <
PZ(GB + @ < GB). Solovay [16] has developed a method,
complétely different from the one used here, by means
of which_these questions can be anéwered in the affirma-
tive. Let A* be P or ZF and let S* be P2 or GB, respec-
tively. Then (cf alsc [5,181)

THEOREM 16. There is a N0 sentence @ s. t. S* + 0 <S*

and A* + 0 £ A*. 1

Note that, since A¥ is (essentlally) reflexive and
v is H1, A¥ + @ £ A* is equivalent to A*¥l4 . Unfortun-
ately it would take too long to explaln Solovay's con-
struction here. The reader is referred to [5,18].

We now introduce the following classification of sen-
tences: ¢ is of type (i,jo,j1>, where i,jo,j1 € {0,1},
IF 3 = 0 4FF A* & ¢ < A%, jo = 0 iff 5% + ¢ < S*, and
j1 = 0 iff S* + ¢ < S*. Héjek [5] observed that 0,
where 0 is as in Theorem 16, is of type <1,U,U> and
went on to prove the following

THEOREM 17, There are independent Z? sentences of all
Ppossible types.

By a similar but somewhat more complicated construc-
tion gvejdar 18] has proved the following remarkabie

THEOREM 18. There is a HO sentence ¢ s. t. A* % Y
£ A* and S* 4+ £ S* but A* + Y < Sx, '
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5. Degrees of interpretability. Clearly = (mutual

interpretability) is an equivalence relation. Its equi-

valence classes will be called degress (of interpret-

ability). Now let T bé a coﬁsistent essentially reflex-

ive extension of P e.g. P of ZF. In the following A,B,
etc. are extensions of T in the language of T. Thus A,
B, etc. are essentially reflexive. Let DT be the set of
degrees of the form d(A), where d(A) is the degree of -
A, i.e. A € d(A); Elements of DT will be written a,b,
etc. DT is partially ordered by the relation < induced
by interpretability, i.e. a < b iff A < B, where A € a
and B € b, i
We now define AT, +, and + as follows:
AT =T u {ConArn: n € w},
AiB = {9 v V: ¢ € A & ¥ € B},
A+B = AT U BT
Thus Th(A4B) = Th(A) n Th(B). By Lemma 7, we get
LEMMA 10. (i) A < B iff A —{B. Thus ATvE A-and A < B
ifF Al —B'
(ii) A < B,C iff A < BiC, :
(iii) A,B < C iff A+B < C iff A+B —|C.
For A € a and B € b let a nb = d(A4B) and a u b =
d(A+B). By Lemma 10, n and U are well-defined, a n b is

the glb of a and b, and a-u b is the lub of a and b.

-

Moreover it is easily verified that

alvrc) - (atssMyrcaTschy.

Thus we have the following .
THEOREM 19 ([9,11]). DT is a distributive lattice.
gvejdar [17] has defined the lattice VT of degrees

of the form d(T + ¢) and proved that V_ is distributive.

I
By Theorem 13, VT = DT.
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DT has a minimal element 0 = d(T) and a maximél ele-
ment 1, the common degree of all inconsistent theories.
If T is Z?—sound, then a,b < 1 implies a U b < 1. In
fact we have the following

THEOREM 20 ([9,11]1). T is not Z?—sound iff there are
ag,a, < 1T s. t. ag v a, = 1 (and ag - 0).
This may be proved in the following way. First prove

n. a

the following simple but occasionally useful
LEMMA 11. If X is r.e. and monoconsistent with Q,
then there is a true H? sentence Y s. t. ¢,ay E X.
Next applying Lemma 11 we can prove |
LEMMA 12. Suppose X is r.e. and monoéonsistent with
P and let © be any true H? sentence. There are then H?
sentences O, s. t.
(i) PR o, v 0,
(ii) Pl o0, A 0, ~ 0,
(iii) o ¢ X, i,j = 0,1.

o o -

PROOF OF THEOREM 20. Let © be a true H? sentence s. t.

TF— —0. Let X = Th(T). Let @i be as in Lemma 12. Finally

let a, = d(T + Gi). Then a, <1, ag n a, = 0, and ag v
a, = 1. '

1
Suppose a < 1 and A € a. By Lemma 11, there is a sen-

tence ¥ s. t. Q «+ wi/g A, i = 0,1. Let a, = d(A + wi).
Then a < ay and ag n a, = a. Thus a is not meet-irreduc-
ible. Moreover no a < 1 is join-irreducible. In fact we
have , , ,
THEOREM 21 ([9,11]). If a < b < 1, then there are de-

grees c. s. t. a < c, < b, c,noc a, and c. U c b.
i i

0 (e 0 (
PROOF. Let A € a and B € b. By Orey's compactness
theorem, there is 'a sentence { s. t. Bf— Y and. ¢ g A.

Moreover, by Lemma 7, there is an m s. t. Ak/ ConBrm.
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Let R(x) be a PR binumeration of B and let

X = {or v <A+ a9} u {g: A~ o v ComBrm};
Then X is r.e. and monoconsistent with P. Hence, by
Lemma 12, there are H? sentences @i s. t.

Pl=0, v 0,

P|'—— OO A @,I -+ CQnB,

0 # X, i,j = 0,1.
Let ¢. = b n d(A + 0.).

i i

From Theorem 21 it follows, of course, that DT is

—dense.

Suppose a < b < 1. Does it follow that. there is a
c >as. t. bnc = a? By our next result, the answers
to this question and its dual are negative. We define
<<j ("j" for "join") and << Ty fbr:”meet“) as follows:
a <<, b iff-a < b and for éevery c, if a v c
’ > b, then c > b,
a << b iff a <'b and for every.c, if b n c
< a, then c < a.
THEOREM 22 ([9,11]). (i) If 0 < a4 then there is‘a b
s. t. 0 < b <<j a. R o ‘ o
(ii) If a < 1, then there is a b s."t. e'<<m’b < -
PROOF. (i) Let A € a. By Lemma 9, there is a I
tence © s. t. Al— © and Th£ 0. Let X:=" Th(T + —0). Then

X is r.e. and menoconsistent with T'+ —=0. Hence, by

1.
0 sen-
1

Corollary 1, there is a sentence | € H?'n Cons(Z?, T +
—0) - X. Let B = T + ¢ v 0 and b = d(B). Then 0 < b < a.
Suppose ¢ U b > a. Then there is'an ms. t. T+ ¢ +
Concrmf— @, whence T + 40 + wk—‘ﬁﬁoncrm, whence T + =0
F— ﬁConCrm, whence CF~ ©, whence c > b, whehce c =z cub
> a. ' - ‘

(ii) can rather easily be derived from the following
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simple

LEMMA 13. The following conditions are equivalent.
(i) For every-c, ifitb n c'<'a, then c < a.
(ii) If o is z?, A€ a, and b < d(A .+ o), then A}l —o.

We write a <<* b to mean that a < b and there is a
H? sentence O s. t. B}— © and A + .0 < A, where A € a
and B € b. Then a <<* b implies a << b. The converse
of this, however, is false.

COROLLARY 7. To every a < 1,-there is a b s. t. a <<
b but not a <<* b. -

PROOF. Let A € a, X = {¢: a << d(A + @)}, and Y =
{p: a <<* d(A + ¢)}. By Lemma.7, {p: A + ¢ < B} is HU
Hence, by Lemma 13, X is HU. But; by Corollary 4, Y is

Ca complete 23 set and so iz not Hg. Finally Y ¢ X. It
follows that X & Y. Let y € X - Y and set b = d(A + ¥).
Note that if oa(x) is a PR binumeration of A, then

Sd(A) <<* d(T + Cona) if A is consistent. This follows

since A + jCona < A [1].

m

Theorem 22 (i) suggests the question if to each a < 1,

tnere is a b s. t. a <<j b < 1. The dual of this is ob-
viously false. We now show that the. answer is negative.
THEOREM 23 ([11]). There is a degree a < 1 s. t. if

~a <'b < 1, then there is a degree ¢ < b s. t. a U c = b.
PROOF. If T is not Z?—sound, this is obvious, by

Theorem 20. So suppose T is Z?—sound. Let t(x) be a PR
binumeration of T and let a = d(T + ConT). Then a < 1.
Suppose now a < b < 1. Let B(x) be a PR binumeration of
a theory of degree b. Next let @ be s. t.
: P oo Vz(PrF (¢p,z) » Ju < zPrf (10 0,u)).
Flnally let m be the Sentence ‘

Vz(PrFB(qU:O,z) -+ 3Ju <zPrfT(@,u)).

Then, by standard arguments,
(1) TH o,
(2) P~ o v 7,
(3) Pl o A @ » ConB.
Clearly Pl =¢ + Pr_(§). Since -¢ is z?,
P -9 ~ Pr_(59). Thus®
(4) P Con_ =+ ¢.
Let d = d(T + @). Then, since $ and ConT are I it
follows from (3), (4), and Lemma 5 that a v d > b. Sup-
pose a < d. Then‘T”+f$¥j'Con;:‘Henee, by (2) and (4),
Tl ¢, contradicting (1). Thus a £ d. Now let ¢ = d n b.
Then ¢ < b, Finally, by distributivity, a u c = (a u d)
n (auvub)=hb. o

Let UG (NG), where G is a set of degrees, be'the‘sop—

remum (infimum) of G if it exists. Somewhat surprising-

it follows that

- O

ly the following infinitary distributive laws hold.
THEOREM 24 ([11]). (i) 1f UG exists, then Uc n b =
UWla n b: a € G}. ’ '
(ii) I1f 16 exists, then 16 u b = {{a u b: a € G}.
(1) is an eesy consequence of ,
LEMMA 14. A4B < C iff A < C + -lConBrn for every n.
To prove (ii) we need the following
LEMMA 15. AtB > C iff for every (Z ) eentence © and
every. m, if AT + qun r —{ 07T + ©, then BF— -0,

1
PROOF. Suppose first AtB > C. Let © and m be s. t.
W T , . T
AT+ ﬁConCr —12? T + 0. There is a k s. t. A + ConB[\k

T
= Concrm, whence A =+ jConCr f- ﬁConBrk But then T+ 0
— ﬁConBrk, whence B}~ —0. This proves "only if". To

prove "if" suppose AtB Z C. There is then an m s. t. for

every k, AT + 7Concrmh% ﬂCénBrk. But then, by Theorem 7,
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. 0 _ AT
there is a L, sentence © s. t. A + jConCrm —{ZU T + 0

1
for every k. Since 0 is Z?, it

and T + O£ ﬁConBrk
follows that B} -0 and so the proof is complete

Theorem 24 (11) can be derived without much difficul-
ty from Lemma 15.

By Theorem ZO, if T is Z?-sound, no degree, except
trivially 0 and 1, has a complement, whereas if T is not
Z?—sound some do ThlS leads to the quesLlon if all
degrees have pseudocomplements. By (i) of the following
result, the answer is negetlve.

 THEOREM 25 ([11]) (i) IF c <1,

a>cs. t. {b: bn a - c} has no eupremum.

then there is an

(ii) If O <c <1 and there is a H ‘sentence 0 s.. t. c =
d(T + 9),

has no 1nf1mum

Lhen there is a degree a <cs.t. {b: bua = c}
Here (11) 15 a partlal dual of (i). The problem if
the full duel is true remains open. .

Next we cen31der degrees containing theories of a
given form in enalogy ‘with e. g the r.e. degrees of un-
solvability. Let X be any set of sentences. Then A[X]
= {d(A + @): ¢ € X} and a[X] = UlAalXx]: A € a}. By Theo-
rem 13, A[ZZ] = A[H ] = {d(B): B}~ A} and so a[Z ] =
a[Hg]' [8411 .(Here and 1n what follows [a,b] = {c:

a < c < bl, [a b) = {c: a <.c < b} and (a,b] and (a,b) are
deflned in the “obvious way.) If A < B ahd o] lS ZO “then,
by Lemma 9, A+ 0 < B+ 0. Hence a[Z 1 = A[Z ] for A€ a.

i

The follow1ng result contains some 1nFormaL10n on
the Sets:a[Z ],.A[HWJ,,ahdweLH1]_and the relations be-
tween .them. . o ,

THEOREM 26 ([11]) (i) If a < by then there is a.c €
[a,b) s. t. [c,b) n a[z?] - g, | |
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(ii) To any a < 1, there is a b s. t. a < b < 1 and
[b,1] c aln?]. |
(iii) If d(A) < b <.c, then there are.b', c' s. t.
b <b'<ec' <cand [b',e']l n A[H?] = .

(iv) If a < b, Lhen there are c, s. t..c € a[Z?],

.
(v) If'a < b, there are ¢, d s. t. a < c <d< b and
(almyl v alzl1) o [c,d] = 9. |

(vi) If A €d < b, then AfZ?]‘n A[n?]‘n (a,b) £ 0.

Our final result concerns the existence and nonexist-

o7 ©q
a <cy <o, b and Lco,c1] n e[H1]

ence of infima of sets of the form A[X]‘where X 'is -an
r.e. set of (ZO) sentences. Let us say that the infimum
NG is trivial 1F there is a flnlte set H < G s. t.
NG = NH.

THEOREM 27 ([11]):
(i) There is a primitive recuirsive set X af Z? sentences
s. t. d(A) is the nontrivial infimum of A[X].

Suppose A is consistent.

(ii) There is a primitive recursive set-Y of Z? sentences
s. t. A[Y] has no infimum. o
PROOF OF (i). By Corollary 7, there is a B s.“t,
d(A)“<<m'd(B) and not d(A) <<* d(B). Let X = {ﬁConBrn
n € wt. IfC < A+ ﬂConBrn
14, C4B < A, whence C < A, since A << B. Thus d(A) =

‘for,every n, then, by Lemma

NALX]. This infimum cannot be trivial, since then there
would be an.m s. t. A + ﬁConBrm <A Comtrery'to the
fact that not d(A) <<* d(B).

':The'proef of (ii) can be outlined as follows. First
we observe that if Z is an r.e. set of H?
then A[Z] does not have a nontrivial infimum. Now let

sentences,

'mo be'anny?ﬁsentence s. t. A < A +'¢O.“Next; appiying

the construction used to prove Theorem 26 (vi); we' can:i’:
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