Estratto da

C. Bernardi e P. Pagli (a cura di), *Atti degli incontri di logica matematica* Volume 2, Siena 5-8 gennaio 1983, 6-9 aprile 1983, 9-12 gennaio 1984, 25-28 aprile 1984.

Disponibile in rete su http://www.ailalogica.it

CREATIVITY AND EFFECTIVE INSEPARABILITY IN DOMINICAL CATEGORIES

Robert Di Paola (New York)

We recall the definition of a dominical category. Let C be a pointed category with a functor $x: CxC \to C$ satisfying the following $(N_1) \phi x \psi = 0$ iff $\phi = 0$ or $\psi = 0$;

- (N₂) x restricts to $C_T \times C_T \to C_T$, where it is a product, equipped with projections $X_1 \leftarrow X_1 \times X_2 \xrightarrow{p_2} X_2$, and the diagonal $\Delta_X \colon X \to X \times X$, i.e., the unique morphism such that $p_1 \Delta_X = 1_X$, $p_2 \Delta_X = 1_X$;
- (N₃) the associativity and simmetry morphisms of this restriction are natural on CxCxC and CxC, so that x is coherently associative and symmetric;
- (N_4) for each $\phi: X \to X'$ and each $Y p_1(\phi \times Y) = \phi p_1$ and $(\phi \times \phi) \Delta_X = \Delta_X \phi$.

Here C_T is the subcategory of C having the same objects and as morphisms the total morphisms of C, that is, the morphisms ϕ such that for each α , $\phi\alpha=0$ implies $\alpha=0$. A bifunctor x that satisfies $(N_1)-(N_4)$ is called a near-product in C. A dominical category is a pointed category equipped with a near-product.

A <u>scmigroupoid</u> is a category in which each pair of objects is isomorphic. A Turing morphism in a dominical semigroupoid C is a morphism $\tau: X \times Y \to Z$ such that for each $\phi: X \times Y \to Z$ there is a total $g: X \to X$ such that $\phi = \tau(g \times X)$. Since all pairs of objects in C are isomorphic we may restrict our attention to the case $\tau: X \times X \to X$.

A <u>recursion category</u> $\mathbb C$ is a dominical semigroupoid equipped with a Turing morphism. Hereafter, the notation " $\mathbb C$ " always denotes some recursion category. An index in $\mathbb C$ of $\phi: X \to X$ relative to τ

is a total $g:X \to X$ such that $\phi p_2 = \tau(g \times X)$.

To represent adequately the generalized incompleteness theorem of Gödel in purely algebraic terms, the notion of creative set and effectively inseparable sets ought to have algebraic (i.e. category-theoretic) representatives in \mathbb{C} . Accordingly, we first recall that the domain ε in X of $\phi\colon X\to Y$ is the compsition $P_2 < \phi, X > = p_1 < X, \phi > : X \to X$, where in general $< \phi, \psi > = (\phi \times \psi) \Delta_X$. A domain δ in X ($\delta \in \text{Dom } X$) is creative if there is a total $k: X \to X$ such that for all $\varepsilon \in \text{Dom } X$ and all indices g of ε , if $\delta \varepsilon = 0$, then $\delta kg = 0$ and $\varepsilon kg = 0$.

THEOREM 1. dom($\tau\Delta$) is creative.

In a pair (δ, ϵ) of domains in X x X is <u>effectively inseparable</u> if there is a total k: X x X \rightarrow X x X such that for all $\delta', \epsilon' \in \text{Dom} X \times X$ and all indices g,h of ϵ', δ' respectively, if $\delta \subseteq \delta'$, $\epsilon \subseteq \epsilon'$ and $\delta' \epsilon' = 0$, then $\epsilon' k < g, h > = 0 = \delta' k < g, h >$.

Å dominical category C is +-dominical if C has a coproduct, if (i) f+g is total when f and g are total, and (ii) all the morphisms $(X \times Y_1) + (X \times Y_2) \xrightarrow{(X \times i_4, X \times i_2)} X \times (Y_1 + Y_2)$ are isomorphisms. A section of $\phi \colon X \to Y$ is a $\sigma \colon Y \to X$ such that $\phi \sigma = dom\sigma$ and $\phi \sigma \phi = \phi$.

The <u>axiom of choice</u> in a dominical category C is the assertion that every morphism has a section. If C satisfies the axiom of choice it is <u>c-dominical</u>; C is c+-dominical if it is both c-dominical and +-dominical.

THEOREM 2. If C is c+-dominical, then there are effectively inseparable pairs (δ,ϵ) in Dom X x X .