Estratto da

C. Bernardi e P. Pagli (a cura di), *Atti degli incontri di logica matematica* Volume 2, Siena 5-8 gennaio 1983, 6-9 aprile 1983, 9-12 gennaio 1984, 25-28 aprile 1984.

Disponibile in rete su http://www.ailalogica.it

LOGICA EFFETTIVA II POTERE ESPRESSIVO

Antonio Vincenzi

Sia Λ una macchina effettiva (v. [Ga]) e sia L un vocabolario numerabile contenente un insieme numerabile di simboli costante. Λ é L-universale se contiene una appropriata sottomacchina effettiva Λ_s per ogni simbolo $s \in L \cup \{=\}$. Una struttura effettiva é una coppia $\mathcal{U} = (\|\mathcal{U}\|, \Lambda)$ in cui $\|\mathcal{U}\|$ é una L-struttura ordinaria e contabile ed Λ é una macchina effettiva L-universale costruita a partire dall'universo di $\|\mathcal{U}\|$. Per cui

struttura effettiva = data type + calcolatore. Sia stc e la funzione che associa a ciascuno dei precedenti vocabolari l'insieme stc (L) di tutti gli L-enunciati del prim'ordine (in breve, gli Le-enunciati). Un insieme finito P di Le-enunciati di base é un calcolo relativo ad una struttura effettiva $\mathfrak{A} = \langle \| \mathfrak{A} \|_{,} A \rangle$ se é contemporaneamente contenuto nel diagramma di $\| \mathfrak{A} \|_{,} = \| \mathbb{A} \|_{,}$

 $\mathfrak{A}\models^{\mathbf{e}}\varphi$ sse c'é un calcolo P relativo alla struttura \mathfrak{A} che risolve φ .

Sia & la categoria che ha come oggetti le strutture effettive e come frecce le immersioni isomorfe tra esse. In [Vi] viene allora provato che $\Omega^e = \langle \&, \operatorname{stc}^e, \models^e \rangle$ é — sostanzialmente — una logica nel senso specificato in [Mu]. Inoltre, nello stesso articolo, si dimostra che Ω^e é una logica \aleph_0 —compatta che soddisfa le proprietà di Consistenza di Robinson, Interpolazione di Craig, Definibilità di Beth e Δ —chiusura. A questo punto, utilizzando le nozioni introdotte in [Ba] ed i risultati ivi provati, si ottengono i seguenti teoremi.

- 1. Teorema di omissione dei tipi per Ω^e . Sia T un insieme di L^e -enunciati. Siano t_1, \ldots, t_n alcuni H^e -termini chiusi. Sia $\Sigma_i = \Sigma_i(t_1, \ldots, t_n)$ un insieme di $(L \cup H)^e$ -enunciati $(i < \omega)$. Sia \mathcal{T} un insieme di prova (v. [Ba, 2.2]). Supponiamo che
- (1) T abbia un modello effettivo;
- (2) per ogni $i < \omega$, per ogni, $\varphi(R) \in \mathcal{F}$, R simbolo relatione n-ario non in L, l'esistenza di un'enunciato effettivo τ universalmente valido e tale che $T \cup \{\varphi(\tau/R)\}$ ha un modello effettivo implica l'esistenza di un enunciato $\sigma \in \Sigma_i$ tale che $T \cup \{\varphi(\sigma/R)\}$ ha un modello effettivo.

Allora

 $T \cup \{\forall x_1,\ldots \forall x_{n_i} \ \bigvee_{\sigma \in \Sigma_i} \ \sigma(x_1,\ldots,x_{n_i}) \ | \ i < \omega \}$ ha un modello effettivo.

2. Teorema di completezza per $\sum_{\omega_1\omega}^e$. Sia $\mathcal F$ un insieme di prova. Allora i seguenti assiomi e le seguenti regole sono complete per $\sum_{\omega_1\omega}^e$

Assioma 1. Per ogni enunciato di prova $\varphi(R) \in \mathcal{F}$, tutti gli enunciati della forma

$$\varphi(\bigvee_{i < \omega} \psi_i/R) \longrightarrow \bigvee_{i < \omega} \varphi(\psi_i/R)$$
.

Assioma 2. Tutti gli enunciati validi in \mathfrak{L}^e .

Assioma 3. Tutti gli $\mathcal{L}_{\omega_1\omega}^{\,\mathrm{e}}$ -enunciati della forma

$$V_{i < \omega} \psi_{i} \longrightarrow \psi_{j}$$
 $(j < \omega)$

Assioma 4. Tutti gli $\sum_{\omega_1 \omega}^{e}$ -enunciati della forma

$$\forall_{i < \omega} \ \psi_i \rightarrow \neg \land_{i < \omega} \neg \psi_i$$
.

Regola 1. Modus ponens, generalizzazione.

Regola 2. Da $\vdash [\varphi \to \psi_j]$ per ogni $j < \omega$, segue $\vdash [\varphi \to \bigwedge_j <_\omega \psi_j]$.

Regola 3. Da $\vdash \varphi(R)$ segue $\vdash \varphi(\sigma/R)$.

- 3. Teorema di omissione dei tipi per $\Sigma^{\rm e}_{\omega_1\omega}$. Sia $\mathcal F$ un insieme di prova. Sia $\Sigma^{\rm e}_A$ un frammento $\mathcal F$ -chiuso di $\Sigma^{\rm e}_{\omega_1\omega}$ (v. [Ba,pp.63-64]). Allora $\Sigma^{\rm e}_A$ ha la proprietà di Omissione dei Tipi relativa all'insime $\mathcal F_A$ di $\Sigma^{\rm e}_A$ -enunciati della forma $\varphi(\mathsf R,\psi_1/\mathsf P_1,\ldots,\psi_n/\mathsf P_n)$, in cui ψ_1,\ldots,ψ_n sono $\Sigma^{\rm e}_A$ -enunciati e $\varphi(\mathsf R,\mathsf P_1,\ldots,\mathsf P_n)\in\mathcal F$.
- 4. Teorema di compattezza alla Barwise per $\mathfrak{D}_{\omega_1\omega}^{\mathbf{e}}$. Sia \mathscr{T} un insieme di prova. Sia \mathscr{A} la classe di tutte le

macchine effettive di $\mathrm{HF}(A)$. Sia $\mathfrak{D}^{\mathrm{e}}_{\mathscr{A}}$ il frammento contabile di $\mathfrak{D}^{\mathrm{e}}_{\omega_1\omega}$ in cui $\forall \Phi$ e $\land \Phi$ sono $\mathfrak{D}^{\mathrm{e}}_{\mathscr{A}}$ -enunciati solo quando ogni $\varphi \in \Phi$ é risolto da qualche $\land \in \mathscr{A}$. Assumiamo che l'insieme degli enunciati $\mathfrak{D}^{\mathrm{e}}$ -validi sia ricorsivamente enumerato da qualche $\land \in \mathscr{A}$ e che \mathscr{T} sia ricorsivamente enumerato da qualche $\land \in \mathscr{A}$. Allora

- (1) L'insieme degli enunciati $\mathfrak{L}_{\mathscr{A}}^{\mathbf{e}}$ -validi e ricorsivamente enumerato da qualche $A \in \mathscr{A}$.
- (2) Se T é un insieme di $\mathfrak{L}_{\mathscr{A}}^{e}$ -enunciati ricorsivamente enumerato da qualche $A \in \mathscr{A}$ e se ogni $T_0 \subseteq T$ risolto da qualche $A \in \mathscr{A}$ ha un modello effettivo, allora T ha un modello effettivo.
- 5. Teorema di espressività per $\mathcal{L}_{\omega_1\omega}^e$. C'é una macchina effettiva in grado di tradurre ogni enunciato di una delle seguenti logiche in un'enunciato equivalente di ciascuna delle altre (v. [MT]).
- (1) $\Omega_{\omega_1\omega}^e$.
- (2) Logica infinitaria di Engeler.
- (3) Logica dinamica.
- (4) Logica delle definizioni effettive.
- (5) Logica algoritmica.

RIFERIMENTI

- [Ba] Barwise, J.: The role of the Omitting Types Theorem in Infinitary Logic. Arch. Math. Logik 21 (1981) 55-66.
- [Ga] Gandy, R.: Church's Thesis and Principles for Mechanisms. In THE KLEENE SYMPOSIUM. Barwise, J., Keisler, H.J., Kunen, K. eds., North-Holland 1980.
- [Ke] Keisler, H.J.: Forcing and the Omitting Types Theorem. In STUDIES IN MODEL THEORY, Morley, M. ed., Math. Assoc. Am. 1973.
- [MT] Meyer, A.R., Tiuryn, J.: A note on equivalence among Logics of Programs. In LOGICS OF PROGRAMS, Kozen D. ed., Springer LNCS 131, 1982.
- [Mu] Mundici, D.: A Generalization of Abstract Model Theory. Fund. Math. to appear (1984).
- [Vi] Vincenzi, A.: Effective Logic I. Basic notions. In preparation.