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THE BEGINNINGS OF TOPOLOGY FROM 1850 TO 1914

by J. DIEUDONNE!

To people who are net professional mathematicians, there are
"common sense” notions which they would not consider as belong-

ing to mathematics, such as proximity, neipghborhood, limit,

dimension, position, orientation, ghape, deformation, etc. One

may say that one of the primary aims of Topology is to find
mathematical concepis corresponding to these notions, on the
model of what the Greeks had been able to do with notions such

as straightness, rigidity, superposition, movement, in their

axiomatization of Buclidean geometry. Efforts towards a similar

. goal for "topological" notions started much later, becoming

gystematic only in the XIXth century, and it was not reached
before the first third of the X.'Xlt'h century. 3ince then, the tools
invented for that purpose have become more and more useful in
almost all parts of mathematics, and I think that, in the history
of mathematics, the XXth century will remain as "the century of
Topology".

1. Limits.

The concept of "variable™ objects such as ratios of magnitudes,
lines, areas, volumes, having an object of the same kind as
"limit", was correctly conceived by the Greeks, and used by
mathematicians such as Budoxus and Archimedes. We know by s
treatise of Archimedes (which was only discovered around 1900)
that he used "intuitive" methods of approximation (and even
arguments drawn from statics)to guess the value L of a magnitude
(for instance the area of a segment of parabola); to prove that
L was indeed the correct value L', he argued by contradiction,
showing that L' could neither greater nor smaller than L, by
comparing L with magnitudes which certainly were greater or

smaller than L', but arbitrary close to L' (an example of such
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a comparison, going back at least to Budoxus, is the proof of
the formula for the volume of a pyramid, by comparing it with
a piling up of prisms of arbitrarily small height).

The modern definition of the limit of a gequence of real

numbers emerged with difficulty in the XVIIIth century, after
the long controversy over the undefined notion of "infinitesimalg";
it was finally realized that one could dispense with that notion
altogether and replace it by the clear concept of limit which we
still ugse.

Once that concept had been universally accepted in the XIXth

century, the concept of continuous function (at first a real

function f of a real variable x) could be explicitly defined by
‘reference to limits (for every sequence (xn) having a limit a,

the sequence (f (xn)) gshould have the limit £ (a)), whereas in

the previous period, its properties had been freely used without
even giving a name to that notion; these properties were gradually
stated and proved from 1810 to 1880,

During that process, it was realized that fundamental prop-
erties of real numbers (such ag Cauchy's principle of '"nested
intervals") had %o be repeatedly applied. We now consider that
they can be taken as an axiom system for real numbers (we say
that the set of real numbers is a complete, ordered, archimedean
field); but at that time there was agrowing uneasiness at taking
for granted properties for which the only justification was the
"intuition” we think we have of the "continuum" (recall that the
Pythagoreans had thought at first that all real numbers were
rational, on the basis of their "intuition"!). This gave rise to
the various methods of "construction" of the real numbers, start-~
ing from the integers and the Peano axioms (Weierstrass, Méray,
Cantor, Dedekind). At present most mathematicians consider that
these constructions really belong to mathematical logicy their

only use is to show that the axioms of real numbers are not

— 587 —

contradictory if one assumes that the Zermelo-Fraenkel axioms
of set theory are not contradictory.
The notion of limit was easily extended to seguences of

. . m . .
points in a space R for any m: one may consider, either the m

gequences of coordinates of the points of the given sequence,

or the sequence of distances of these points to their limit,
thus in both approaches reducing the problem to limits in R,

But as Analysis progressed, one needed the notions of approxi-
mation and limit for functions (in particular in order to expand
a function as sum of a series); and there new phenomena began to
appear, The "natural" definition was to extend the way limits

viere defined in R™ by the use of coordinates: one would say the

sequence (f ) of functions had limit f if, for each value of the

variable X, f(x) llm f (x) (this is what is called gimple
convergence ). However, when it came to properties 1nvqlv1ng
limits of functions, this notion soon appeared inadequate: one
would naturally have thought that a simple limit of continuous
functions would be continuous, and Cauchy thought he could prove
that result; but Abel found a counterexample. Similarly, when
(f ) had f as simple limit, jrf (x)dx did not always tend to
]f(x)dx. A deeper analysis of these phenomena led to +the

-notion of uniform convergence; so there were at least two

different ways for a function to be a "limit" of a sequence of

functions., Before the end of the XIXth century, still other
notions of "limit" appeared in other problems. For instance, in
the Calculus of variations, one had to distinguish the case in
which the sequence (fn) tends uniformly to f, from the case in
which both the sequence (fn) and the sequences (fﬁ) of the deriva-
tives tend uniformly to f and f' respectively. In the theory of
approximation and in the Calculus of probablllty, one met ge-
quences (f ) for which one only. knew that j’ f(x) - (x)\ dx
tends to O; should then one say that f is the "limit" of the se-
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quence (fn)'

II. Distances and metric gpaces.

The big step forward was to transcend all these particular
questions, and to reach for an underlying general structure.
Even if, in 1900, the idea of "structure" in mathematics had
not yet been formulated in a general way, it clearly was behind
the progress of algebra since 1840, in the long process from
which gradually emerged the concepts of group, field and module
on unsgpecified underlying sets, in contrast with the "classical®
type of mathematics, which dealt with explicitly defined sets

on which such structures were considered (think of number theory,
of groups of permutations or of algebraic geometry).

A similar widening of perspective had not yet occurred in
Analysis before 1900; it was first conceived in Fréchet's thesgis
of 1906, which marks the birth of what we now call Ceneral
Topology. Bis best idea was to take his cue from elementary
geometry, and define on any gset E a "distance" d(x,y) of eny
pair elements of E, for which only the most rudimentary prop-
erties of euclidean distance were postulated:

1) a(x,y)» 0, and d(x,y) = 0 if and only if x = y;

2) d(y,x) = d(x,y);

3) a(x,z)<d(x,y) + d(y,z) for any 3 elements of E ("triangle

inequality").

We now say that a set E equipped with such & "distance" is g
metric space, and its elements are called points; itAis then
immediate to transfer in E the definition of limit given in the
spaces R™ with the help of the euclidean distance: a segquence

(xn) of points of E has a point x€E as limit (or converges to

x) if the sequence (d(x,xn)) of real numbers tends to O,
Similarly, if £ : E—E' is a map of a metric space E (with
distance d) into a metric space E' (with distance ar), £ is a

continuous at a point x €E if for every seguence (xn) in B with
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limit x, the sequence (f(xn)) converges in E' to f(x). Finally

the notion of homeomorphism (which had appeared with M8bius and

Jordan in the 1860's) could be defined for metric spaces: a map
f :+ E—E' is a homeomorphism of a metric space E onto a metric
space E' if f is bijective and both f and its inverse -

1 E'—p E are continuous.

With the exception of simple convergence, all other types of
"limits" for functions, described above, can be defined by means
of an appropriate "distance" on the set E of all continuous (or
¢') functions in an interval [a,b]

(?)M(f,g) = o Supy [£(x) - g(x)l,
a' ' (f,8) = d,, (f,8) + doo (f',8')
a,(f,8) = ( f:]f(x) - g(X)[de)Vzl

Fréchet already knew that some types of convergencs (for
instance, simple convergence for bounded functions (continuous
or not) on an interval) cannot be defined by a "distance". In
the most useful cases for applications to Analysis (including
simple convergence), one can generalize the notion of metric

space to uniform spaces: to define such a space on a set E, one

considers on E a family (finite or infinite) of "pseudodis-
tances d,(x,y) : they satisfy contitions 2) and 3) above and one
has di(x?y)zao; but one may have di(x,y) = 0 for some pairs with
x #y. Let E, E' be two uniform spaces, with families of pseudo-
distances'(di), (ds); to say that a map £ : E—E' is continuous
at x ¢E then means that, given any finite number of pseudo-
distances d' (1=k=mn) on E' and a number € >0, there are a
finite numbe¥ of pseudodistances dih (1€h<n) on E and a number
§>0 such that, for all y €E for which dih (x,y)<% for 1shs<n
one has dsk (£(x) , f(y)) <€ for 1<k<m,

III, Coarse classgsification of subsets.

Until 1850, most "sets" considered by mathematicians were

. 2 3 .
intervals of R, "curves" or "surfaces" in R” or R~”, portions of
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surfaces "limited" by curves, portions of space "limited" by
surfaces. These concepts were taken for granted, by reference
to "parametrizations" by 1, 2, or 3 "real variables". With Bol-
zano, Weierstrass, and above all Cantor, began the study of
arbitrary subsets, first of R, then of the Rm, which was made
necessary by problems from Analysis (e. g. convergence of
trigonometrical series for Cantor).,

Cantor first considered the get of cluster points of & subset
E of R, which he called the derived set B! of E; then he iterated

the process, end it is well known that this ig what gave him the

idea of transfinite ordinals. This is a typical example of a

gquestion where problems of pure set theory and topological
‘notions are closely related; it is Cantor who taught mathema-
ticians to dissociate, on the "continuum" R, the notions of
cardinality, order, topology and measure, which, by their simul-
taneous presence, had created much confusion; and certainly
nobody before him had ever conceived the possibility of a set
such ag the "Cantor discontinuum" which has the power of the
continuum, is totally disconnected and has measure 0!

Between 1875 and 1914, the notion of derived set brought to
light several families of subsets of R which proved very important
in applications: closed sets (such that E'c E), perfect sets
(E' = E), dense sets (E' = R). Closed sets in R could be described
as complements of a finite or denumerable family of non over-
lapping open intervals; a remarkable result was the Cantor -
Bendixson theorem, which deseribed any subset of R ag the dig~
joint union of a perfect set and a finite or denumerable get,

The notion of derived set, as well as all those we have just
enumerated, could immediately be defined in all R™ for m>1,
and more generally in all metric spaces; but even in Rz, trying
tokclassify up to homeomorphism all closed subsets was very soon

seen to be compleiely unrealistic (see below). What turned out
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to have much greater importance in applications were notions
which in the space R were gquite trivial; they were chiefly
emphasized by Fréchet and F. Riesz in general metric spaces:
connected sets (in R only intervals are connected), compact
sets (in R™ they are just the bounded closed sets), separable
spaces, i.e. those in which there is & denumerable dense set (a
trivial property of all R™),

Another property of meiric spaces is not purely topological,
but linked to the choice of distance: a metric space is complete
if any Cauchy sequence (xn) (i.e. such that d(xm,xn) tends to O
when both m and n tend to + oo ) is convergent. As we have seen,

this is one of the basic properties of real numbers., In Analysis,

complete metric spaces are very useful for several reasons; one

is the so-called contraction principle, which enables one to

establish, under rather general circumstances, the existence of
a fixed point for a continuous map f of a complete space E into
itself; it is assumed that d(f(x) , £(y))=k . d(x,y) for all
points %,y in E, with 0<k<1; the sequence (xn) defined by

X = f(xn) then converges to a point a such that a = f(a).

Mzg; existence proofs for solutions of functional equations can
be obtained by applications of that principle. Another fundamental
property of complete metric spaces is the theorem proved around
1899 by Osgood and Baire: in such a space, the intersection of
a denumerable family of dense open sets is not empty.

All these "absiract" results gave a tremendous boost to
problems concerning function theory and functional equations by
applying them to metric spaces whose elements are functions, so
that general Topology was called "General Analysis" by Fréchet,
and "Functional Analysis" was meant to be the study of appli-
cations of Topology to spaces of functions., As outstanding
examples, we may mention the use of compactness in Hilbert's

proof of the "Dirichlet principle®" in 1900, or in his work on
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the spectrum of a self-adjoint operator (under the name "principle
of choicen),

IV. Dimension, boundary, pogition.

Before 1870, nobody thought that the concept of "dimension"
needed elucidation, being linked to the "natural” idea of para-
metrization. This naive conception was rudely shattered when
Cantor defined a bijection of R on any R™ and when Peano
congtructed his famous "curve" filling a square. The only possi-
bility which remained to transform the intuitive idea of dimension
into a genuine mathematical notion was to sgh
in R™ could noi be homeomorphic to an openss:: Zia;na?foie: zet
After some partial results for small values of m and n, this .

-general result was only established by Brouwer in 1911, using
hig notion of degree of a map and the technique of gimplicial
approximation (see below), -

(¢} 1] 3 3
ther "naive" notions concerned "positions" and "boundarieg"

of curve i 2 3
8 and surfaces in R° or R°: g portion of curve would have

a boundary congisting of 2 points, a portion of surface g
boundary consgisting of curves or portiong of curves, a volume
a boundary consisting of surfaces or portions of gurfaces. After
the discoveries of Cantor and Peano, a clarification of thesge
concepts was urgently needed; it began in 1893 with the famous

Jordan theorem on plane curves:

one defines g Jordan curve asg
homeomorphic to g circle; what Jordan stated and almost proved

is that for a plane Jordan curve J, its complement R2 ~ J has

exactely itwo components (usually called the "interior" and the

113 1
exterior® of J), snother that J ig the é¢ommon boundary of both:
b

this somewhat regtored, at least partially, the intuitive
concept of "plane curve",

The theorem immediately attracted universal attention, and

n ,
any proofs were proposed, Furthermore, Schoenflies, in a geries

of papers around 1900, added to Jordan's result several prop
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erties equally expected by "intuition", for instance the fact
that any point x,€ J can be joined to an arbitrary point of the
minterior" I (résp. the "exterior" E) by a segment of curve
(continuous image of the interval [O,{]) all of whose points
except %, are in I (resp. E); another property is that I is simply
connected (as well as the union of E and the point at infinity
when R2 is embedded in the sphere 82).

Schoenflies also thought that the property of a Jordan curve
to be the common boundary of the components of its complement

. 2 s .
in R was characteristic of Jordan curves. However, when Brouwer,

in 1909, made a thorough examination of Schoenflies' proofs, he
found that many were defective, and showed by counterexamples

that some of this assertions were wrong. The most remarkable of

these counterexamples was a closed set W in R2 with empty

interior, and whose complement R2 —~ W has k>3 components, each

one of which has W as boundary.
Since then, a very large literature has been devoted to the

properties of closed sets in RQ, bringing to light a great

variety of "monsters® for the intuition.

V. Shape, deformation, orientation.

Before the arrival of these unusual objects, mathematicisans
very seldom considered “"curves" in the plane which were not

differentiable, or piecewise differentiable. The idea of

ndeformation” of a curve was not absent from mathematical
thought, for instance in the Calculus of variations, where one
has a family of curves
Cy t x = £(t,A) , v = a(t,\)

depending on a parameter )\; usually f and g are differentiable
with respect to both parameters t,>\, and all curves C)\ are
homeomorphic.

Tf one allows f and g to be merely continuous, one has a more

general idea of "deformation"; already in the middle of the
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XIXth century, some mathematicians thought of classifying curves
"up to deformation" so that, for instance, a circle, an ellipge
and the périmeter of a triangle or a square would be in the same
class; more generally, all Jordan curves are in the same class.

One may define in the same manner "deformation" of surfaces,
and more generally of "manifolds" of arbitrary dimension. But
already for compact surfaces in R3 without boundary, it is
intuitive that there are many different classes, exemplified by
spheres with k hendles; the problem is to prove that these ob~-
Jects belong to different clagsses. It is advisable to replace
"deformation" (which is only meaningful within an "ambient®
space) by homeomorphism, which ig an intrinsic notion. The gen—
eral gtrategy is to associate to a space a number, or a system
of numbers, or algebraic objects (groups, rings, etc.) in such
a way that to homeomorphic spaces correspond the same objects
(up to isomorphism); if different numbers, or algebraic objects,
are associated to two spaces, they certainly are not homeomorphic,
the converse being not true in general and raising much deeper
problems. This general method is called algebraic Topology.

Its birth may also be dated to the middle of the XIXJ('h cen-

tury. It did not come into being out of mere curiosity, but
because it was needed by Riemann in his great vork on holomorphic
functions and abelian integrals: he constructed the famous com—

"pact Riemann gurfaces and had to clagsify them, which he did by

assigning to each one what was called its genus g, an integer
&> 0 which is invariant by homeomorphism, Developing an idea
which von Staudt had eggentially used in 1847 to characterize
the sphere, Riemann congiders, for a compact surface S without
boundary, the "Jordan curves" (homeomorphicto the circle 8 ) on
3; on the sphere, any such curve disconnects the surface (;efore
Jordan this wasg of course a statement only supported by "in-

tuition"); but on an arbitrary surface S there may be several
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Jordan curves J1,...,meithout common point which, taken togeth-
er, still do not disconnect S8 ; the maximum number g.of these
curves is Riemann's-genus-(for- & sphere with k- handles, g = k).
An equivalent definition is that 2g is the maximum number of
Jordan curves having finite intersections and which, taken to-
gether, do not disconnect S.

In ihe hands of Riemann and of his followers, in particular
Klein and Poincaré, these new notions opened up an unsuspected
new world for the theory of analytic functions of a complex
variable and for algebréic geometry. But, especially after Cantor
and Peano, a curious rift took place between analysts during 30

years: one one gide were those who obeyed the gtrict Weier-

‘gtrassian rules of "rigor" in sll their arguments, and on the

other the mathematicians who felt that, although the topological
foundations of Riemann's work were far from conforming to these
rules, one might use them with confidence; it was only after

the work of . Brouwer and H., Weil in 1911-1913 that the rift could
be closed.

Meanwhile, the further progress of Analysis called for an ex-
tension of Riemann's definition of the genus to higher dimen~
giong. Already, for 2 dimensions, Riemann's results were not
complete, for the surfaces he was considering were orientable:
this is a concept which only emerged after Riemann's work, with
the surprising discovery by Listing and Mobius of the famous
"onegided surfaces". This notion ig linked +to the position of a
surface in R3, but one can define for a connected surface a

notion of orientability, independently of any imbedding: take

at a point M two non colinear tangent vectors eqs 5 and move
continuougly M, ey 8y along a cloged curve in such a way that

the bivector e1A e, never vanighes; when M has come back to its

initial position,it may happen ejne, has changed sign (this happens

on the M8bius band); if it never happens, one says the surface
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is orientable (most usual surfaces are orientable), and the
choice of a bivector at one point determines an orientation, so
that there are two "opposite" orientations of the surface. The
complete classification of C1 gurfaces, with or without bound-
ary, had to take into account orientability; the results were
already stated at the end of the XIXth century, but only proved
after 1915,

For higher dimension, Riemann had realized that an n-dimen-—
sional 01 manifold (a notion he had esgentially introduced in
his famous work on Riemanniesn spaces) should be attached not
one number but a system of n-1 numbers, which his disciple Betti
endeavored to define on the basis of some fragmentary notes of
Riemann. But the theory only got started when Poincaré imagined

regular methods of computation of these "Betti numbers" as he

called them, Although he did not ugse our algebraic language, we
may say that Poincaré has been the first mathematician:to use
an extraordinary algebraic device (which has become standard in
modern mathematics) in the study of a set M of objects: one

congiders the module C of formal linear combinations of objects

of M with coefficients in Z or in snother ring; using properties
of M, one then defines submodules of C, and these, or their quo-

tients, turn out to be intringically attached to M, In a first

attempt, Poincaré, following Betti, considered, for an n-dimen-
sional manifold V and any p such that 1< pgn-1, the set M of
oriented "Jordan p-dimensional manifolds" in V, i.e. submanifolds
of V homeomorphic to the gphere Sp; to define a submodule B of

C which would have yielded a significant quotient module C/B
attached to V and to p, he tried, like Betti, to consider the
boundaries in V of all (p + 1)~dimensional submanifolds, but he
was unable to find a technique which would have given a regular
way of computing B (50 years later, R, Thom, in a closely relat-

ed question, invented such a technique in his theory of co=~
!
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bordism).

30, in 1899, Poincaré changed his tactics by turning his at-
tention to a different set M of objects attached to V; this time,
the machinery he invented turned out to be amenable to a purely
algebraic treatment; after dropping superflous assumptions, it
has remained the backbone of algebraic Topology. One of the dif-
ficulties encountered by Poincaré in working with "Jordan sub-
manifolds" of V is that there are too many of them, and they may
have a very nasty behavior, for instance when taking intersections;
hence the idea of considering only some of these submanifolds,
having "good" properties, but in sufficiently large numbers to
"represent" all the others,

The starting point seems very artificial and remote from the

problem to be solved: it is the study of very special compact

subsets of the spaces Rm, the euclidean simplicial complexes,

which generalize the classical "polyeders", Such a "complex" X

is the digjoint union of a finite family S of open simplices of

all dimensions < m, gatisfying the following condition: all
open simplices (of dimension p) whose disjoint union is the bound-
ary of a p-simplex of 5, also belong to S. For each p»0, one
then applies the general method to the get Mp of p-simplices of
S3: the formal linear combinations of elements of Mp with integer
coefficients form a Z-moduls Cp, whose elements are called the
p-chains of (X,8S).

However, if we look for substitutes to the "Jordan submeni-
folds", we should take into account the fact that they are ma-

nifolds without boundary; so not all p-chains should be consid-

ered. To single out those which matter, Poincaré introduces

purely algebraic notions which serve as substitutes for the

topological notions of boundary and orientation; the relevance
of these definitions is justified by the "intuitive" case p = 2.

By definition, an orientation of a p-simplex is an ordering



— 508 —

(ao,a1,...,ap) of its vertices, two orderings giving the same
orientation if and only if they are deduced from one another by

an even permutation. The boundary operator is then the homo -

morphism bp of Cp into Cp 1 de§ined on p-simplices by
JZ: (-1) (a,,a
and then by llnearlty in Cp. What is to take the place of the

"Jordan submanifolds" are the p-gcyecles, i.e. the p-chains form-
ing the kernel Zp of bp; and what takes the place of the bounda-

ries of (p+1)-submanifolds are the p-boundaries, i.e., the

b (a B ,eee a ) =
0! 1! s 19"'18'3 1!8'3_'_1!8')

(one verifies that b b oo

=0, i.e. a p-boundary is a p—cycle) And then the orlglnal idea

p-cycles forming the image B of b

of Poincaré (in our language) is to take the guotient H (X)
= Z / B o’ the p-th homology module of (X,8), whose rank is
the p—th Bettl number.,

What justifies @ pogsteriori the consideration of these seem-
ingly very special "euclidean simplicial complexes" is that most
"usual" compact gpaces are homeomorphie to such a "complex™",
for instance ¢ menifolds (with or without boundary) and complex
algebraic varieties (singular or not); one says such spaces are
triangulable and the images of the simplices of S constitute &
triangulation. So it appears that the Poincaré method gives inw-

deed a regular method of computation; however, to be sure that
the "homology groups" thus obtained are invariant under homeo-
morphism, one has to prove that two euclidean simplicial com~
plexes (X,S) (X',8') which are homeomorphic have isomorphic
homology groups Hp(X) , Hp(X'). Poincaré tried to give such a
proof, but did not succeed, and the invariance theorem wag only

proved in 1915 by J. Alexander, with the technique of gimplicial
approximation.

This was invented in 1911 by Brouwer in order to handle the
properties of continuous maps: the Peano curve showed that it

was hopeless to try to analyze their structure directly, and
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Brouwer's idea was to replace such a map by one which is arbi-

trarily close to it, but has "regularity" properties which allow

computations to be made. The simplest case is the classical
approximation of a continuous function of one variable in an
interval by a "piecewise linear" function coinciding with the
given one at the points of a fine subdivision of the interval.
In general, what replace "piecewise linear" functions are sim-

plicial maps: if (X,S)

complexes, a gimplicial map g : X—X' is such that:

(X*,8') are two euclidean simplicial

1) the image by g of any vertex of a simplex of S is a vertex
of a gimplex of 3';
2) for every p-simplex < of S, the images by g of the

vertices of & are not necegsgarily distinct vertices of a p~

gimplex 7= of S' and the restriction of g to & is an affine
map of & into ¢ .

To obtain a simplicial approximation for an arbitrary con-
tinuous map f : X —4 X' one first subdivideg the simplices of
S into simplices small enough for the image by f of such a sim-
plex to be contained in the gtar of some vertex of S5'. It is
then easily seen that for any vertex 8y of 3 there is a vertex
bkof 3' such that the line segment joining f(ak) and bk is
contained in X', and that if j + 1 vertices a, are the (distinet)
vertices of a j-simplex of S, the corresponding bk are (not
necegzarily distinct) vertices of a j-simplex of S'. Taking
g(a ) = b for each k deflnes unambiguously a simplicial map
g X /~¢X' and g approximates f in the sense that]f(x) - g(x)
is at most the maximum diameter of the simplices of S', for all
x & X,

“Phe virtue of a simplicial map g : X —£ X' ig that it
determines a homomorphism gp : Hp(X);—aer(X') of the homology
groups: to each oriented p-simplex (ao,a1,...,a } = & one

assigns the oriented p-symplex (g(ao),g(a1),...,g(ap)) = g(s)
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if all the g(aj) are distinet, and O otherwise: this defines =a
homomorphism g : CP(X)«——DCP(X') of p-chains by linearity, and
g maps cycles into cycles and boundaries into boundaries, hence,
by passage to quotients, one gets s homomorphism
g, * HP(X)mpﬂp(X').

One of Alexander's proofs congists in gshowing that if £ is a

homeomorphism of X onto X', a sufficiently close simplicial ap~-

proximation g to f yields an isomorphism of HP(X) onto HP(X')
for every p.

Once the intrinsic character of homology groups had been eg-—
tablished for triangulable spacesg, several methods were devised
between 1900 and 1930 to compute them explicitily in many cases
(Mayer~Vietoris sequences, Kunneth theorem, Poincaré duality,
ete.). Using these devices, it was possible to give very simple
proofs for theorems which Brouwer had proved in 1911 by extremely
complicated "simplicial approxima@ions". Two key results are
that in Rn(n;;z) a compact subset homeomorphic.to a cube
Ir(r:§n) does not disconnect the space whereas the complement
of a "Jordan hypersurface®, homeomorphic to Sn—1’ has two con-
nected components of which the hypersurface is the common bound-
ary ("Jordan-Brouwer theorem"); but it is not true any more for
n >3 that these components are always simply connected, From
these results, easy arguments lead to the Brouwer theorems on

the invariance of dimension and invariance of domain.,




