— 635 —
Estratto da

C.Benﬁwdiefﬁf@gh(acunxdﬁ,Aﬁidqﬂihwonh@dihyun1nawnunwa FINITE DISTRIBUTIVE LATTICES AS CONCEPT LATTICES

Volume 2, Siena 5-8 gennaio 1983, 6-9 aprile 1983, 9-12 gennaio 1984, 25-28

. by RUDOLF WILLE
aprile 1984. Y

Disponibile in rete su http://www.ailalogica.it
' In £5], ideas of restructuring lattice theory are deve-

loped as an attempt to reinvigorate connections with our
general culture and to promote better communication
between lattice theorists and potential users of lattice
theory; an approach to lattice theory is described where
lattices are interpreted as hierarchies of concepts.
This approach is carried out further in [6], [73, [ 81,
£913, L1073, [3]. Since distributive lattices occur in
many lattice-theoretical developments and applications,
it seems appropriate to study (finite) distributive
lattices as hierarchies of concepts. In this paper we
shall represent finite distributive lattices as itera-

ted sum of glued atlases of concept lattices which are

created by v-and A-irreducible elements of the distribu-

tive lattices.

First let us recall some notions concerning concept
lattices. A context is a triple (G,M,I) where G and
M are sets and I is a binary relation between G
and M (i.e. 1I¢GxM); the elements of G and M are
called objects and attributes, respectively. If gIm
holds, we say: the object g has the’attribute m.
For AsG and B&SM we define:

A':={meM|gIm for all geA), B':={geG|gIm for all meB}-
This definition establishes a Galois connectioﬁ charac-

terized by the properties:
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(1) ASA, implies A{aAé for A1,A29G,
{1') B.sB implies B!2B) for B, /B,sM,

1 2 1 2
(2) AcA" and A' = A"™ for AsG,
(2') B&«B" and B' = B" for BeM.

Now, a concept of a context (G,M,I) is a pair (A,B)
with AcG, BgM, A' = B, and B’ A; A and B are

1

called the extent and the intent of the concept (A,B),
respectively. The set of all concepts of (G,M,I) is de-
noted by ¥(G,M,I). The hierarchy of concepts is ex-
pressed by the definition:

‘(A1,E1)5(A2,Bz):<=>A1
The hierarchical structure of all concepts of (G,M,I)
is denoted by #%(G,M,I):=(H(G,M,I),5).

§A2 (<=>B12B2).

Basic Theorem for Concept lattices [5J: Let (G,M,I)
be a context. Then ¥(G,M,I) is a complete lattice,

called the concept lattice of (G,M,I), for which the
infimum and the supremum can be described as follows:
A (ALBO=(MN AL, (MBI N B BO=(((B, (B,
teT teT teT teT teT teT
In general,:a complete lattice L is isomorphic to
£H(G,M,I) if and only if there exist mappings Y:G + L
and u:M + L such that <YG 1is supremum-dense in
L (i.e. L = {VX|XeYG}), uM is infimum-dense in L
(i.e. L = {AXIXQuM}, and gIm is equivalent to Ygsum;
in particular L = ®%(L,L,s)

By Birkhoff [1], a finite distributive lattice is iso-
morphic to the lattice of all order ideals of the ordered
set of its v-irreducible elements. We recall that an

order ideal (order filter) of an orderd set P is a
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subset A of P which contains all elements x of P
with xsa (xza) for some asA; a principal ideal
(principal filter) of P is defined by
(al:={xeP|xsa}(Ca):={xeP|xza}) for aeP. The lattice of
all order ideals of P ordered by set inclusion is de-
noted by Y(P).

Proposition 1: Let P be an ordered set. The concepts

of the context (P,P,#) are exactly the pairs (A,P\A)

where A is an order ideal of P; especially,

%(P,P,%) = 9(P),

Proof: The assertion follows immediately from the

equivalence x}y<=>(xlnly) = @.

For the structural analysis of finite distributive latti-
ces we shall use further lattices derived from an ordered
set P. In general, for subsets A and ‘B of P, we
define AsB if for every aeA there exists beB with
asb. We recall that a subset A of P is convex if
a,beA and asxsb in P always imply xeA. A k-subset
of P is a subset of P which does not contain a chain
of length k. Derived relations on P are obtained by
the definition: xz,y if xzy in P and 1lfy,xJ2k
(i.e. the length of the interval [y,x] is at least k).
As abreviations we define (a]k:={xeP|azkx} and

[a)k:={xeP|xgka} for aeP.

Proposition 2: Let P be an ordered set of finite

length and let k be a positive integer. Then
(A,B) » AnB describes an isomorphism from é{P,P,ik)

onto the lattice of all maximal convex k-subsets of P.
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Proof: For (A,B)eyplplik)l

which is convex because A is an order ideal and B

AnB 1is a k-subset of P

an order filter of P; furthermore, AuB = P. Let

xeB with 1ly,x1<k for all yeAnBn(x]. Suppose xéA.
Then Bn(x]k £ ®; but A contains all minimal elements
y of Bn(x]k what contradicts 1ly,xJ<k for yeAnBna(x].
Therefore xeAnB. Together with the dual argument, this
shows that AnB is a maximal convex k-subset of P.
Conversely, if C is a maximal convex k-subset of P,
then ({xeP|xsy for some yeC}, {xeP|xzy for some yeC)
is a concept of (P,P,ik). Furthermore, for
(Bq/By),(A,,B,)E%(P, P4, ), (A,,By)S(A,,B,)) is equivalent
to A1nB1SA2mB2. All together yield the assertion of the

proposition.

It is often natural to understand a (complete) lattice
as a union of intervals which itself form a (complete)
lattice. For a finite lattice L, such a decomposition
can be given by a tolerance relation © of L, i.e. a
reflexive symmetric relation on L compatible with the
join and meet operation of L. The blocks of 0O are the
intervals Eae,(ae)oj where a9:=/\{x€L]an} and
bezz\/{xeL]bOx}. Since the maps a ag and bw p?

form a Galois connection, the set L/O of all blocks of

© together with the order relation defined by
[ae,(ae)ejs[be,(be)@]:<=>a9.<,b@ is again a lattice, called
the factor lattice of L by ©O. The tolerance relation
0 of L 1is said to be glued if blocks which form a
covering pair in the factor lattice L/O have always non-
empty intersection. There is é smallest glued tolerance
relation of 'L, denoted by Z(L), which is generated
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by all covering pairs of L; S(L):=L/IZ(L) is called the
skeleton of L (cf. [4], [81]).

The structural analysis by the blocks of tolerance rela-
tions can be turned into a construction method for finite
lattices; then a finite lattice is understood as the sum
of a (glued) atlas consisting of all blocks of a (glued)
tolerance relation [8]. We aim at this construction when
we analyse finite distributive lattices by tolerance
relations. In decomposing  the factor lattices by tolerance
relations again and again, the construction may be itera-

tively applied.

Tolerance relations of a finite concept lattice %AG,M,I)
can be discovered directly within the context (G,M,TI):

A tolerance relation ¢ of ¥%(G,M,I) corresponds to a
block relation J of (G,M,I), 1i.e. a relation between
G and M extending I for which gJ:={meM|th] is an
intent of (G,M,I) for all geG and mJ:={geG|gIm}

is an extent of (G,M,I) for all meM; the correspon-
dence is given by (A,B)O(C,D)<=>AuCsH and BuDSN for
some concept (H,N) of (G,M,J) _(sée I87]). The sets
{(A,B)e%(G,M,I)|ASH and BEN} with (H,N)e%(G,M,J)

~

are exactly the blocks of 0 and so ¥%(G,M,I)/0 = ¥%(G,M,J).

Let us denote by IL(I) the block relation corresponding
to X(&(G,M,I)); thus, a block relation J corresponds
to a glued tolerance relation if and only if Z(I)&J.

The next proposition indicates that there is a natural
chain of glued tolerance relations for each finite distri-

butive lattice.

ki
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Proposition 3: Let P be an ordered set of finite length
and let k be a positive integer. Then *k is a block
relation of (P,P,ik_1) with Z(ik_1)§ik; in particular

3, =% = ().

Proof: Notice that the intent of (P,P,#k) consisting
of all vyeP with xiky equals P\(x]k. Now, we show

that P\(x1, = }(/:\XP\(ka_1 (y3x means that y is cover-
ed by x). Obviously, y=<x implies '(y]k—1g(x1k and

so P\(X]kgp\(Y3k—17 hence P\(X3k§§:LP\(YJk—1‘ Let
ze(x]k. Then there exists y<x with ze(y]k_1 and so

z¢ () P\(y] . Hence P\(x], = (\\P\(y] . This to-
k~1 k k-1
y=x y=x
gether with the dual identity yields that *k is a block

relation of (P,P,ik_1). By [8; Theorem 1017, Z(ik_1) is
the smallest block relation of (P,P,ik_1) containing

all pairs (x,y)eP2 such that (X3k~1 is minimal in
{(z]k_1|ze[y)k_1} or [y)k'1 is minimal in
{[z)k_1ize(x]k_1}. For such a pair (x,y), we have
1Iy,xJ = k-1 and so xiky. Therefore Z(ik_1)54k.
Furthermore, it follows that ZI(#) is the smallest

block relation of (P,P,i) containing all pairs (x,x)eP%
hence #1 =3} = (.

In general, #k -does. not equal X(ik_1); for instance,
. . c d 2 -

if P 1szthe fence al/ib , then 42 = P but

2(41) = P\{(d,a)}.

Proposition 3 yields a scheme how to construct finite
distributive lattices as iterated sum of glued atlases

of certain concept lattices. It should be mentionéd that
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the derived lattices need not to be distributive;

C. Herrmann even showed in [4 ] that every finite lattice
L is isomorthic to the skeleton of some finite distribu-
tive lattice. This can be seen by defining P:=Lx{0,1}
and (x,1)>(y,0):<=>x}y in L because then we obtain

~

L = S(@(P,P,i)) using Proposition 3.

In the following, the iterative construction method is
worked out further for the case that the v-irreducible
elements form a ranked ordered set. We make the general
assumption that P is an ordered set in which every
maximal chain has the same' finite length n, i.e. P
is a ranked ordered set of length n. Let Pk be the
set of all elements of P of rank k. We define
P(r,s):=§{Pn_r,PS§) for r+ssn. A= A' and B » B'

denotes the Galois connection in (P,P,i).

Lemma 4: For r+s«<n, an injective V-morphism
¢IS:P(r,s) + P(r+1,s) 1is given by ¢rs(A,B):=(Bth_r_1'
and an injective/\-morphism Y_ :P(r,s) » P(r,s+1) is

rs
given by wrS(A,B):=(A,A'nP

B)

s+1)‘

Proof: By the Basic Theorem for Concept Lattices, we

have only to show that (B'nP B) is a concept of

n-r-1'
(Prl r 1,Ps,i). This is an immediate consequence of
1]

Brﬁpn~r—1

see that (A,A'nPS

= {yeP|y4x for some xeA}. Analogously, we

JP_ o ,3).

is a concept of (Pn

+1) ~-r’ s+l

Next we define the lattice P(m):=P(m,0)xP(m-1,1)%...xP(0,m),
the V-morphism ¢ 1P (m) + P(m+1) by

e Prnor@(mo1)17 " r30n)

(¢moam07®(m—1)1a(m—1)1""’¢omaom’oo(m+1))’
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and the /\-morphism v tP(m) + P(n+1) by

\Il(amo,a(m_1)1,L..,a =3

om
(1(m+1)o' wmoamo’w

(m-1)1%(n-1)1""** "Yon?om’
for 0Osm<n .

Lemma 5: ¢mme1sw o)

n®m-1 for 1s=m<n. .

Proof: We have to show that

¢r(s+1)wrs(A’B)iw(r+1)s¢rs(A’B) for s+r = m-1 and

(A,B)eP(r,s). By definition, the inequality is equivalent
1

to (A nPS+1)'nPn_r_1QIVnPn_r_1. Let xePn_r_1 with

xty for all yeA‘nPS+1. Since A'nPS+1 = {veP|vyu

for some wueB}, it follows that xeB'. This proves the

desired inclusion.

Now, let L,(P):=P(0,0) and Lo,1(P):= U C¢mx,wmx]
xeLm(P)

for 0sm<n; notice that ¢mxéwmx for XG[¢mu1erm_1YJ

because ¢mxé¢m$

m_1y§wm¢m_1y§wmx by Lemma 4 and 5.

Theorem 6: L_ ,(P) = &(P,P,ik’) for Osksn

Proof: For m:=n-k, an injective (complete) homomor-
phism 1 from gap,p,ik) into P(m) is defined by
1m(A,B):=((AnPk,BnPO)AAnPk+1,BnP1),...,(AnPn,Ban))
for (A,B)e§4P,P,$k), because (AnPn_r,BnPS)eP(r,s)
for r+s = m. Clearly, S is an isomorphiém from
&(P,P,in) onto P(0,0)(= LO(P)). Let us assume that
Im is an isomorphism from &(P,P,ik) onto Lrl k(P)
for some m:=n-k<n. For '(A,B)G@(P,P,%k),’ let
((Cy /D)1 (CysDy)penns ((Cy D ))eld 1 (A,B),b 1 (3,B)].
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It follows that ‘
1]

( (BnPi) NPy i1 ,B(\Pi) S(Ck+i~—1 'Di) 5(1\4’1}?}(_{&_‘1 ; (AP

for 1sism; therefore {yeP|y4x for some

xeRnPy G JeCy 5 1EBOPY L g

1} for 1s5ism. From this we obtain that

C:=C vC, u...uC is an order ideal of P and
k-1""k n '

‘ 1
k+i-1) 0Py)
and BnP,2D.2(yeP|yrx  for

some xeBnPi

D::DOvD1u...qu is an order filter of P. For yePi

we have the eguivalence yeDi<=>xi for all xeC;

Y
hence D = {yePlx%k_1y for all XZC} and dually
C = {xePlxik_1y for all vyeD}. Thus, (C,D) is a con-
cept of (P,P,ik_1) and so Lm+1(P)th+1§(P,P,ik_1).
Now, let (E,F)eiﬁP,P,ik-1). We choose the concept
(E,F) of (P,P,#k) with E = {xeplxiky for all vyeFl}.
kei-15E N Py
12ism+1 and so 1m+1(E,F)§wm1m(E,F); . furthermore,

Because of ESE, we have EnP for
F¢F implies FnPianPi for 0s5ism and so
1m+1(E,F)z¢m1m(E,F). This proves that

Ut B(P/BE 4) = L

by induction.

m+1(P). Thus the theorem is proved

By an example, we demonstrate how the iterative construc-
tion method may be applied. We choose the free bounded
distributive lattice FBD(4), the v-irreducible elements
of which form an ordered set P isomorphic to the power
set P({1,2,3,4}) (see £11). Thus,

FBD(4) = éﬂ?ﬂ{1,2,3,4})/p({1,2,3,4}),$) by Proposition
1. The underlying context may be described by the table
in fig. 1. The lattices P(r,s) for O=r+ss4 and the
morphisms ¢rs and wrs for O0sfr+ss3 are shown in
fig. 2. From this figure we may deduce the diagrams of
Ln_k(P)(§ gyP,P,ik)) for 0s5ks4 which are presented in
fig. 3 and 4. The diagram of FBD(4) (= L4(P)) in fig. 4
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is divided into subdiagrams which are linked by perfora-
ted lines; to obtain the common Hasse diagram, we have
to translate the subdiagrams along the perforated lines
such that their end points coincide (cf. [10]). The sub-
diagrams in fig. 4 represent the blocks of E(FBD(4))
which aré the maximal 'Boolean subintervals of FBD(4)
(this is a fact for every finite distributive lattice
[4]). We conclude with the remark that the described
construction method has not only led to an iterative
representation of FBD(4), it has also suggested a
better understandable diagram (cf. [21).

Z 14123 4% (3213 |23 |14 |2 |34 [123 124 1341234 1234
g X X X X X X X X X X X X X X
1 X X X X X X X X X X X X X X
T X X X X X X X X X X X X X X
3 X X X X X X X X X X X X X X
q. X X X X X X X X X X X X X x
u X X X X X X X X X X X X
15 X X X X X X X X X X X X
E X X X X X X X X X X X X
ilf X X X X X X X X X X X X
:l; X X X X X X X X X X X X
3!’. X X X X X X X X X X X X
323 X X X x X X X X
12‘3 X X X X X X X X
13’ X X X X X X X X
LEL X X X X X X X X
1234

fig. 1
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fig.2
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— 648 —

Birkhoff: Rings of sets. Duke Math. J. 3 (1937),
443-454,

C.C. Chen, S.K. Tan: On prime ideals of finite

distributive lattices. Nanta Mathematica
5 (1972), 96-100.

Ganter: Two basic algorithms in concept analysis.
THD-Preprint Nr. 831, Darmstadt 1984.

Herrmann: S-verklebte Summen von Verbidnden.
Math. Z. 130 (1973), 255-274.

Wille: Restructuring lattice theory: an approach
based on hierarchies of concepts. In:

I. Rival (ed.): Ordered Sets. Reidel,
Dordrecht-Boston 1982, 445-470.

Wille: Subdirect decomposition of concept
lattices. Algebra Universalis 17 (1983},
275-287.

Wille: Sur la fusion des contexte individuels.
Math. et Sci. Humaines 85 (1984), 57-71.

Wille: Complete tolerance relations of concept
lattices. THD-Preprint Nr. 794, 1983.

Wille: Tensorial decomposition of concept
lattices. THD-Preprint Nr. 823, 1984,

References
[11] G.
21

31 B.
[4] c.
[51] R.
I6] R.
[7] R.
[81 R.
[91 R.
{10] R.

Wille: Line diagrams of hierarchical concept
systems. International Classification 11
(1984), 77-86.

Arbeitsgruppe Allgemeine Algebra

Fachbereich Mathematik

Technische Hochschule Darmstadt




