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11} - LOGIC AND RELATED TOPICS

JEAN YVES GIRARD
Université Paris VII B

This series of lectures tries to advocate the use of cate-
gory-theoretic constructions in logic and computer science. The first
lecture details thié possibility in the case of ordinals, making
explicif the hidden fﬁnctoriality in the Cantor Normal Form theorem.
fhis study leads to dilators, whose various aspects are sketched in
the second lecture. The same spirit, but with a slightly different
technical apparatus has been developed for denotational semantics
(third lecture). First a mere éimplificatidn of Scott semantics,
the approach lead to a reﬁefinition of the very principles of
logic (linear logic). .

Further readings éould be : the author's paper "Tré—logic; part I :
dilators'" Ann. Math. Log. vol 21 (1981), pp; 75-219.

Abrusci's exposifary paper on Goodstein's sequences, to appear in
the‘Proceedings of the AMS éongress held in Arcata, 1985. 7
The author's texts on denotational semantics for F, and on linear
logic, both to appear in Theoretical Computer Science.: "The system

F of variaﬁle types, fifteen years later'", '"Linear logic",
Unfortunately, no published material on the relation between dilators

and descriptive set theory is available.
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I THE ‘NORMAL FORM THEOREM

XXXXXXXXXXXXXXXKKXKKKKKKK

I.1. ordinals

We often deal‘with order relations R ; wé use the nota-
tion x € g ¥ to say that x is less or equal than y w.r.t. R, and |R|
will denote the domain of R; i.e. [R| = {x;x-s R x}'
I.1.1. R is a well-order when any non-void subset of |R| has a smal-
lest element ;

VX(XCIRIAX#Q)_—»BxGX VyéXxVSRy)

A well-order is always linear :

FaS

VxVy(xelRlAyelRl—-)xSRyVy x )

=R
I.1.2. R is an ordinal when R is a well-order induced by the relation
€ on some transitive set &, i.e. |R] =0, <R = 6/6(2 :

WK ¥y (XENA YEN X EYVx=yVyEx)A

¥x ¥y (xEX Ay € xry€eer )
(the axiomv of foundation ensures the smallest element condition).
I.1.3. If R is a well-~order, there is a unique ordinal & and a
unigue isomorphism Cf betwegn R and of. Notations &= |R |, C(: hp.
I.1.4. ordinals are ordered by the relation

A< ifr xXefv 0(=F>
This order’ is a well-order. But the class On of all ordinals is not
an ordinal, since it is not a set (paradox of Burali-Forti, 1898).

Apart from this, On is a very reasonable ordinal.

I.1.5. If & is an ordinal, then & is the set of all its predecessors

(w.r.t. the ordering of On). In particular the following are ordinals :

8 (=0, Y= 1), {0,033 (= 2), {8.103.{0.{833} (=3) etc.
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in general the intger n will be identified with the finite set
{Q,l,...,n-l}; the first infinite ordinal,w, is the set of all
integers : W = {0,1,2,1... } .
I.1.6. If X € On is a set of ordinals, then this set has a l.u.b. in
On, defined by
sup(X) = U X

I.1.7. Let X be an ordinal ; then
i) either ol = ¢
ii) or ® has a greatest element{B ; in that case ¥ = P U{P}, and
we use the notation ™ = P+l.
iii) or X # @ and & = supldl) =Ud .

| These three cases are mu—.tually exclusive ; according to
the case, ® will be said to be zero, successor (vof {5), limit.

I.2. ordinal functions

I.2.1. The successor function

o+1l=9oU {e(}
is the most immediate of all ordinal functions.
I.2.2. the sum function

ol + 0 =0

d+(P+1)=(o¢+[$)+1
‘ 0(+)\ = sup e(<+f5 (ﬁlimit)
BN

generalizes the sum of integers.

1.2.3. the producf function

of. 0=20Q

o, ( (5+ 1) = .0 o

ol. X = supcl[s ¢ ﬁ.l’imit)
p<x . _

generalizes the product of integers.
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I.2.4. the exponential function
’ o]

o =1
“@"' =q(3 .ol
0(": s‘u;:uxr> - (?\ limit)

2N

generalizes the exponentiation of integers.
I.2.5; Tﬁere are many other interesting ordinal functions ; let us
mention the Veblen hierarchy (1908) :

Vo) = X

Vp+1(o() = the Nth fixed point (in increasing order) of
the function Vp .

V,,\ () = the uth point in the range of all VP's for
B<X . (A 1linit).

Generalizations of recursion theory (e.g. set recursion
of Dag Normann) givé wide schemes for generating ordinal functions.
The cardinal functions o anp 55“ are also ordinal functions, but
belong to a completely different universe of thought.

I.2.6, Sum, product, exponential ‘are generalizations of familiar ope-
rations between integers ; two questions arise :

i) in which sense are these generalizations "natural" ?

ii) what is the reason why some equations between integers' persist
for ordinal values (e.g. (a + b) + ¢ = a + (b + ¢)), whereas others
don't (6.g. a+b="b4+ a) ?

The approach to ordinals and ordinal functions through
topologx cannot help : typically the functions we are dealing with
are not even continuous, i.e. do not commute with limits.

For inStance w+w # sup n +w = e . The category-theoretic approach

n<w
(dilators) will make explicit a deeper notion of continuity, and will
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clarify these two points in a quite satisfactory way.

I.3. the Cantor Normal Form Theorem

I.3.1. take a point z{ c(+p ; then two cases

- either z (X

— or z can be (uniquely) written z =&+ y for some y< ﬁ
I.3.2. take a point z(_o(.@- ; then there are unique x <& and y(P
such that z=0.y + X
I.3.3. (Cantor Normal Form) Take a point z < (l+°()p; it is possible
to find an integer n, together with Yp-1 &K o yo( ’% and
xn_l,...,x0 £ o such that , i

zZ = (l+Q)yn_l.(l+ xn—l) + oees + (1400 o.(1+ xo)
The integer n, the éequences yi and x; are unique.
I.3.4. the normal forms I.3.1.-I.3.4. have the additional property
that, if we take any expression satisfying the requirements, then it
is the normal form of something : typically, given any x {ef, any y(P
then z = 8.y + x is the normal form of a point of o(.f& .
I.3.5. The main problem is to generalize the normal form to general
ordinal functions ; this is surely impossible to do this in general,
Hence our task will be to find'a suitable class of functions for
which something like a normal form theorem holds. The answer is given
through dilators.

I.4. the category ON

I.4.1. a category (here the category ON of ordinals) is defined by
specifying :

1) a class of objects : here On, the class of all ordinals

ii) given any two objects (here. ordinals) ® and '3 ; the set of all

morphisms from & to@: in ON, we take the set of all strictly in~
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creasing maps from ¢ to (b

I(O(,(ﬁ) = {*‘ e 4 —)‘[5; Vx,y (x dy — f(x)< f(Y))}
iii) define an associative composition of morphisms : given f from
ol tofb , & from (5 to Y , then gf will be a morphism from O(to'x .
In the case of ON, we take the usual composition of functions.
iv) define, for any object & , a distinguished identity morphism
from & to itself, which must be neutral w.r.t. composition. In ON,
we take, as expected, as identities, the maps

EO((Z) =z for all z€q .
I.4.2. ON has the very useful property :
given f € On and XC. &, there. are unique {35 On and f € I(P,O‘)
such that X = rg(f). v
In particular, ON is a very "rigid" category : when X and rj are
isemorphic, i.e. when there are f € I(O(,P), g€ I(rﬁ,ol) such that
fg:EP, gf:EO( , thenP:O(, and f = g = Eg .
I.4.3. When t and $ are categories, a functor F from ttovb con~
sists in the following data :
i} a function F seriding objects of C’to objects of J
ii) given any two objects O and P of C »-a function (still denoted
by F) sending morphisms from ©& to p in C to morphisms from F(OX¢)
to F(P) in z .
iii) F must be compatible with the compositions .in t and% :

Flgf) = F(g)F(f)

iv) F'must preserve the identities
F(E = E

() = Ep(y)
I.4.4. It is possible to define functors in several variables ; for

instance a functor from ON2 to ON will aasociate :
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i) to any pair (0(,(5) of ordinals, an ordinal F(O(,ﬁ)
ii) to any pair (f,g), T€ I(Q,&'), g € 1((3,(3') of morphisms,
a morphism F(f,g) € I(F(O(,[?;),F(Ol',fS').
iii) one must have
F(f'f,g'g) = F(£',g")F(f,g) °

F(Eu,Els) = EF(O(,p)

I.4.5. when F and G are functors from t to% , then a natural

iv) and also

triansformation T from F to G is a family (To() such that :
i) for any object X of C , T« is a @ -morphism from F(®) to G(X)

ii) if O{,rﬁ are objects of C , if £ is a C—morphism from O to [5 y

- then the diagram

F(f)
F(X) :F({S)

T°( TP

alel ) ya(f3)
G(T) . {3

is commutative, i.e. T F(f) = G(f)T(x . It is possible to define, when

£
f is a 'e—morphism from & to P , ac'b—morphism T(f) from F(®Y) to

G((a), by

I.4.6. If T and U are natural transformations reépectively from F to

T(f) = TpF(f) = G(f)Ty -

G and from G to H, then one can define another one from F to H by :
(UT)y = Uy Ty

and it is easily checked that (UT)(gf) = U(g)T(f).

I.4.7. Sum, product and exponential are indeed functors from 0sz to

ONY: we have already defined functions Q+{5 ., O(.F; s (1+0()@; so it

remains to define F(f,g) when f € I(X,0l), g€ I(r3,{3‘). This is

done by using the normal form theorems :

i) f+ g€ I(o(+[3,cx'+ [5') is defined by
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(f+g)(z) = £(z) ifz<4

(f+g) (O + z) = O 1+ g(z) if z ¢ r§
ii) f. g I(o(.p,otwp') is defined by

(f. g@)(®.y + x) = &'.gly) + £(x) if y<[3 x4 ¢
iii) (1+9)8 € I((1+a()(3,(1+o(')($') is defined by

y Y
(1+:E‘)g(('1+u) ’n_l.(l+xn__,1) + ees + (14¢¥) 0.(1+x0)) =

(

(v _,) alyy)
L) s e s (et 0L (1eE(x,))

g

(1+e¢ ")
Observe that, in case iii) the fact that f and g preserve strict
inequality is essential : this ensures that (1+f)g applied to a
normal form is still a normal.- form. Another importént property is used,
namely, that, in order to compare two Cantor Normal forms, one with
n,(xi),(yi), another with m,(x&),(yé), then only matters the mutual
relations between the yi's and the yj's on one hand, and between the
xi's and the xj's on the other hand.
I.4.8. We have therefore discovered.an important feature of the ordi-
nal functions sum, product, exponential, namely that the normal form
theorems enable us to consider them as functors. We shall try to prove

the converse, namely to recover a normal form theorem from a functor.

In fact, most of ordinal functors are pathological, hence it will be

necessary to require some properties from our functors. To simplify

matters, we shall restrict our attention to unary functqrs.

I.4.9. examples of unary functors, i.e. functors from ON to ON :

i) constant functors : if ® € On, define
x(P)-x AUf) = Ey

ii) the identity functor

Id(X) =X Ia(f) = ¢

iii) using these basic unary functors, then one can define other ones
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by composition with sum, product and exponential

c(I+I)(X) = 1 + & (1+Id)(f) = E; + f
(Id+1)(X) = &+ 1 (Ia+1)(f) = £ + El
o (Ia+Ia(K) = K + X (Id+Id)(f) = £ + f

2

. (1) (&) =W (18%)(f) = £°

£

() ey = (1e00)™ (1+1a)79(£) = (14)

d

' I 1
Let us for instance detail the functor 107" = (1+9) d :

107%ot) = 10™ ; when £ € (et,(®), then

x x f(x_ ) f(x.)
Id n-1 0 _ n-1 (6]
107 (f) (10 .an_l+...+10 .ao) = 10 .an_l+...+10 -3

~when a ,...,an< 10 and xo< (xn_l(o( .

0

In particular, if & and F} are integers, then 10f consists "in adding
zeros in the decimal expansions. For: instance

10f(51003401300991) = 500100304001300900091000), if of = 20, P‘: 36
and £(0) =3, £(1) = 4, £(2) = 8, £(5) = 11, f(6) = 12, £(8) = 15,

£(9) = 17, £(12) = 20, f(13) = 23 ; the other values of f are irre-

|

levant to the result.
I.4.10. the condition that will be required on a functor will be so

strong that, as soon as we know it on integers (and on morphisms

of integers), then we know it everywhere. This answers the questions

raised in 1.2.6.

i) from the definition of the sum of integers n + m and the sum of
morphisms of integers f + g, there is only one possible extension to
ON enjoying our strong requirement.

ii) if we consider the associativity of sum (n + m) + p = n + (m + p)
observe that we have also (f + g) + h=f + (g + h) when f,g,h are
morphisms of integers. The unicity of the extension into a ternary

functor enjoying the strong condition forces the functors
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(u+[3)+a’ and o(+({$+x)tobeequal. On the other hand
the commutativity of addition n '+ m=m + n holds for integers, but
fails for morphisms (in general f + g # g + £), hence there is no
way to conclude that Oh_-lb = {5+ox. In other terms a sufficient con-
dition for an equation to persist for ordinal values, is that it
also holds for morphisms .of integers. (The condition is not necessa-
ry, as shown by 1 + +Ot'=0( + 1 +OX, which holds for anyex € On,
but is not a functorial equality, since l + Id + Id £ Id + 1 + Id.)
I.4.11. exercise : prove the distributivity of product w.r.t. sum
by checking it on integers and morphisms of integers.

I.5. direct limits

I.5.1. assume that I is a non void ordered set, and that I is direc-
ted : Vi,jerd xer i,; <k .

A direct system indexed by I is a family (O(i,fij) such that :

i) for all i€ I, O(i is an ordinal

ii) fop all 1i,j € I such that i £ 7 J fijG. I(O(i,O(J.)

iii) for all i,j,k €T such that i £ j & k ,

fik = fjkfij
iv) for all i € I, fii = E“i .
I.5.2. examples
i) I = W, o(n ='n, fnm = Enm where Eo(’sél(a,ﬁ) is defined by

Ey (z) =z for all z£ o¢ .
ii) I = W c(n = n+i1, fnm = Enm + El , i.e.

fm(P) =p for p < n, T a(n) =m

iii) I = N “n = n+n, fnm = Enm + Enm’ i.e.

fnm(p) =p for p {n, fnm(g+p) = m+p for p { n.

iv) let & be a limit ordinal, and let I ='°( . For i Lo, let

23

°‘i =i, and, for i £j 4 X let fij = Eij.
v) let & be an ordinal, and let I be the set of all finite subsets
of X . When i € I, define di = J}il] (the order type of the subset
i of u);. When i € j, then the inclusion map from i to j induces,
using the isomorphisms hi’hj of I.1.3., a function fij € I(O(i, O(j) :
f. .(h.,(z)) = h,(z) for z €1i.
i 1 J
1.5.3.. assume that (O(i,fij) is a direct system indexed by I ; then
a direct limit for (Oli,fij) is a pair (0(,fi) such that :
i) o{€0n
ii) for all i € I, fi-é I(O(i,O()
iii) for all i,j € I such that i £ j £, =5 -
iv) if (@,g.) is any other solution to i)~iii) then there is a
i
unique h € I(Ol,(b). such that g, = hf, for all i €I
This last condition is extremely important ; observe that it implies
the unicity of the direct limit (when it exists).

I.5.4. Definition 1.5.3. is a general category-theoretic definition ;

in the special case of ON, we have a more manageable equivalent of iv)

iv)! o = U rg(fi).

i€l
I.5.5. examples : in the cases considered in I.5.2., we have direct
liﬁits, namely
1) (WE )
ii) (w+1,Enw+E1), i.e. fn(p) = p for p<1:x, fn(n) =W .

s = = fo n.
-iii) (w+Q,En +Enw)’ i.e. fn(p) P, fn(n+p) m+p r p &

w
iv) (0(,E.°() : generalization of 1i).
i
v) (x ,h—.'l) . Let us check iv)' in that case : z € & is in the
i

range of f.{z} .
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I.5.5. notation : (O(,fi) = lir,n((xi,fij) when (Ol,fi) is the direct
limit of (o(i,fiji.

I.5.6. In examples i) and iv) above, a direct limit was nothing moré
than a supremum : this is when the morphisms are of the form E .

In particular the categorical notion of limit contains the topologi-
cal one. But we have alsq seen many examples of direct limits, where
the limit was not a supremum. For instance example v) shows that

any ordinal is a direct limit of integers. In fact, what is the im-

portant property is not exactly this, but that the class of

"functions" compatible with that kind of approximation is extremely

rich.

1.6. existence of direct limits

I.6.1. there are many systems in ON without a direct ‘limit. For ins-
tance, if O(n =n, and, when n { m, fnm = EOm—n + En’ i.e.

fnm(p) = p+m-n for p < n : consider a direct limit (O(,fn) : then
fn+1(0) £ fn+1(1) = fn+1(fnn+l(0)) = fn(O). Hence the set

{fn(o) ;n € ]N} has no smallest element, contradiction.

I.6.2, it is convenient to introduce OL, a category wh95e objects
are linear orderé, and whose morphisms are strictly increasing maps..
In OL, it ié easily checked that all direct systems have direct
limits, for instance, the system considered in I.6.1. admits as
direct limit in OL, the order opposite to .

I.6.3. A direct system (O(i’fij) in ON, can be viewed as a system in
OL, and so has a direct limit in OL, (x,fi). Then (o(i’fij) has a
direct limit in ON exactly when x is a well-orhder, in which case

the direct limit in ON is ( |x H,hxfi). |

7
I.6.4. a sufficient condition for the existence of a direct limit in
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.

ON for (O(i,fij) is the existence of ((b,gi) enjoying conditions
i)-iii) of direct limits.

1.7. preservation of direct limits

y

I1.7:1. A functor F from ON to ON preserves direct limits iff, given

ény direct system (O(i,fij) in ON admitting the direct limit

(o(,fi), then the system (F(O{i),F(fij)) admits the direct limit
(F(O(),F(fi))-

I.7.2. The following condition is easily shown to be equivalent to
preservation ;bf direct limits :

given any &, € On and any z € F(X), one can find an integer n and a
morphism £ € I(n,X) such that z € rg(F(f)).

I.7.3. The functors considered in 1.4.7.,1.4.9. preserve direct limits

i) the identity preserves everything, in particular direct limits.

~ii) the constant functors preserve direct limits

iii) the binary functors sum, product and exponential, preserve
direct limits : this is a consequence of the finiteness of the
normal forms. For instance, let us consider the exponential : the
obvious analogu,e of I.7.2. for binary functors, says that, given
(Y4 ,@QOn, z € (1+0] )@ , tﬁere are integers n,m and morphisms
f€ I(n,A), g€ I(m,(.’)) such that z € rg((1+f)g). Now write

yp—l

¥
z = (1+K) Alex ) 4+ e+ (L+R) 0.(1+x0). Let m = p and

p~1
define g €yI(m,P) by g(i) = i i define £ € I(n,o!) by the
condition rg(f) = {xo,...,xp_lz (hence n = card({xo,...,xp_]}) ).

If Zy = (1+n)m_l.(1+f—1(xm_1)) + oaes + (l+n)o.(l+f—l(xo)), it

1t

is plain that z = (1+£)8(z ).
I.7.4; If F and G are two functors from ON to ON preserving direct

limits, and such that F and G coincide on integers and morphisms of
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integers, then F = G. For instance, since every ordinal is a direct
limit of integers, if follows that F and G take the same ordinal
values.

1.7.5. The provisional conclusion of the work so far done, is that
we msut restrict our attention to functors preserving direct limits.
I.8. Pull-backs t

I.8.1. Let [31,(:}2,3’ be ordinals, let g € I(f3,¥), g, € I(ﬁz,X).
A 3-tuple (0(,f1,f2) is said to be a pull-back of (gl,gz) when the

following holds :

i) (€ on
ii) £, € I(°‘,P1) £, € I(Ol,F}z)
1ii) gt = 8,f,

0( >3

5 j{ g
Y

Pz —

g

[

iv) given any other solution (uﬂ,fi,fé) to i)-iii), there is a unique
) L LI

h € I(',X) such that fl = flh, f2 = f2h.

I.8.2, Definition I.8.1. is a general category-theoretic definition H

in the case of ON, iv) can be replaced by

1 t — -

i)' rgle f)) = relgyf,) = rele) Nrele,).

(Hence direct limits correspond to directed unions, and pull-backs to

finite intersections.)

In the category ON, fi and f_, can be recovered from h = glf

2 1= &y
and it is enough to concentrate on h ; notation h = g, & g2;
I.8.3. in ON, pull-backs always exist : this is immediate from condi-

tion iv)!'.

-1.8.4. a functor F from ON to ON preserves pull-backs, iff for any

 two morphisms f and g with the same target, one has

F(f & g) = F(f) & F(g).

1.8.5. ‘the functors considered in I1.4.7.,1.4.9. preserve pull-backs :

"i) the identity functor Id preserves everything

ii) the constant functors preserve pull-backs because EN & Eo‘ = Etx

:iii) the binary functors sum product, exponential, preserve pull-backs :
vthié is a consequence of the unicity of normal forms. For instance,

“w.r.t. the exponential, write the Cantor Normal form of z { (1l+ (:(7)ﬁ

which involves coefficients KyseeesX o £ d, Yorees¥ 1 ' p . Then

z € rg(F(f,g)) exactly when the xi's belong to rg(f) and the yi's

belong to rg(g). From this one gets

rg(F(f & £',g & g') = rg(F(£,g)) (Y re(F(£',g")).
I.9. dilators
I.9.1. a dilator is a functor F from ON to ON preserving direct limits
and pull-backs
I1.9.2. all functors considered in I.4.9. are dilators. There is no
link between preservation of direct limits and preservation of pull-

backs ; however, one can prove that, from a functor F from ON to ON

<'preserving only direct limits, one can obtain a functor G preserving

also pull-backs (i.e. a dilator) : G = F o w.(1+Id)
I1.9.3. The Normal Form Theorem |
Let F be a dilator, let X be an ordinal, and let z € F(&X )} ; then it
is possible to find an integer n, a morpﬁism f € I(n,&), and a point
Z, € F(n) such that

z = F(f)(zo) (1)

Moreover, if (n,f,zo) enjoying (1) have been chosen with n minimum,
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then thére is only’ oqe solution, i.e. this determines f and zo.
(The proof of the normal form theorem is an immediate consequence

of the prevservation properties : the existence of a solution to (1)
is preseravation of direct limits, the unicity of a solution with n
minimal, is preservation of pull-backs.)

I.9.4. notation : Assume Fhat n,f,zO are the data uniquely associated
with F, &,z by I.9.3. ; then we shall indicate the situation by

)

z = (zo;xo,...,xn_l; F

where x; = £{i).

I1.9.5. the trace of F is the set of all pairs (zo,n) such that

i) z, € F(n)

ii) if m & n, if £ € I(m,n) is such that zoé rg(F(f)), then m = n.
The trace Tr(F) of F is just the set of invariants of normal forms
w.r.t. F : 1f»(zo,n) € Tr(F) and X, < e <xn—l £ , then

(z is a normal form w.r.t. F.

0iXo Xl g
I1.9.6. a dilator acts as follows on its normal forms : giveh
fe I(O(,(S), then
F(f)(zo;xo,...,xn_l; ()()F = (zo;f(xo),'...,f(xn_l);ﬁ)F.
I1.9.7. a natural transformation T from a dilator F to a dilator G
acts as follows on their respective normal forms :
T(™) (zo;xo, RS ST 0()F = (T(n)’(zo) XgreeesX o3 0(—)G
(The result is non-trivial). It is possible to define a function
Tr(T) from Tr(F) to Tr{(G) by
Tr(T)(zo,n) = (T(n)(zo),n)-
I.9.8. Let us compute the normal forms w.r.t. the functor Id2 : start
with z ¢ & 2 ; we know that z = {.u + v, for some u,v { O ; then three

cases occur
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i) udv then z (l;u,v;d)Id2
iiy u=v then z = (O;u;u)IdZ

iii) u v then z = (2;v,u;q)Id2
so Tr(Id2) = {(1,2),(0,1),(2,2)} .

I1.10. effectivity of dilators

1.10.1. a functor F from ON{@W(integers) toON, and preserving pull-
backs, can be extended into a functor F' from ON to OL preserving
direct limits and pull-backs. Moreover, if F'(0{) happens to be a
well-order for all® € On, then F' can be chosen to be a dilator,

and this extension is of course unique.

I.10.2. a dilator is not only completely determined by its restriction
'to ON €&, but there is an effective way to compute its values from
the integer values :

i) the trace of F can be obtained from the restriction of F to ONC W.

ii) we define |F(®X)| as the set of all formal expressions
(ZO;xO""'xn—l;N)F

with (zo,n) € Tr(F), Xy & ene <xn_1<o{.

iii) the functions F(f) from |[F(X{)| to |F((3)| are defined (when

fE€ 1(A, (5)) by

F(f\‘)(zo;xo,...,xn__l;O()F = (zo;f(xo),...,f(xn_l);P)F.

iv) it remains to define the order relation on [F(X)| : in order to

compare (zo;xo,...,xn_l; OC)F and (zl;yo,...,ym_l; O()F, let p be the

cardinal of the set {XO""'xn—l’yO""'ym—l} = X, and define

h € I(p,®) by rg(h) = X. Then our two formal expressions are ordered

as (z -1

-1 . -1 -1 .
ot T(xp)seeash Tx 1 )ip)g and (z5h (ygdseeesh "y J)5p)g

(actual normal forms) were ordered in F(p).

This completes the effective description of F ; of course the formal
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normal forms correspond to real ones w.r.t. F.

1.10.3. In fact there is no reason why the trace should be effective
from the restriction of F to ON <co; but we can of course take

as data :

i) the trace Tr(F)

ii) for any (zo,n), (zl,m) € Tr(F), for any p and f € I(n,p),g € I(m,p)
such that p = rg(f) U rg(g), the order between F(f)(zo) and F(g)(zl).

In particular, it makes perfectly good sense to speak of a recursive

dilator.
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II DILATORS : A SURVEY

XXXXXXX XXX XXX XXX XKXXXX

*I11.1. :Dilators and proof-theory

II.1.1. A B8-language L is a language including a specific type On
for ordinals, together with a speéific binary predicate < taking
afguments of type On. B-languages are always supposed to be denumera-
ble..A B-theory T is a theory within a B-language. If T is B-theory,

a B-model for T is a model for T in the usual sense, such that the
interpretation of On and &£ are an ordinal : M(On) =¢¢ , M(K) =€/ql2.
The 'value®= O is not excluded. We define |[|M | =,

II1.1.2. Mostowski raised the problem of finding a syntactical notion

of B-proof which should be complete w.r.t. validity in B-models ; in

1974, Apt claimed to have disproved the existence of any reasonable

B-rule. In fact his work did not prove anything of that kind, because
he sticked too much to the familiar idea of infinitary rule.

IT.1.3. A (trivial) approximation to the solution is as follows : fix
an-ordinal & ; if A is valid in all B;models of T, then A is valid

ih all B-models of T such that [[M || =X. Then, a straightforward
generalization of the familiar G) -completeness theorem, shows that A
will be provable by means of the "¢{-rule", in the theory TDI), obtai-
ned by adding to XL constants i for all i{®, and the axioms 1 £ 3
when i £ j, 1(1 € J) when j 4 i’. The " ®{-rule" is just the generali-

zation of the familiar & -rule :

eB(I) (el i)

Vonn.B[x]
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Now, A will provable by means of the(-rule in all T[Pd's. fhis means

tha§ we can take as a B-proof of A in T, a family (3*), such that

Po( is an®-proof of A for all & € On.

However, the situétion is ridiculous : a family of infinite proofs,

indexed by On, is not quite a syntactical object !

IT.1.4. We therefore try to find a way to express that a family (a‘)

of proofs of variious sizes, like in II1.1.3., can be generated from

its subfamily (Pn)’ in an effective way :

i) if P' is an '-proof in T[_ot'] , if T € I(exX,™'), then we shéll

try to define an & -proof f_l(P) in T[] :

. in P delete all formulas which are premises of index i §§rg(f) of

some O '-rule ;: delete also premises of deleted premises etc., so

that to get a subtree P' of P

. it may happen that in P', we have still parameters not belonging

to rg(f). Then f_l(P) is not defined.

. otherwise, f_l(P) is defined by replacing in P' all parameters

(i) by 1.

ii) a B-proof of A in T in a family (ka )cl € on such that, for all

o PO( is a proof of A in T[O(] ; furthermore, it is required that
Vol,ol' € On ¥f € I(X, o) f'l(Po(,) = Py -

iii) it is possible to build a category whose objects are pairs

(e{,P), where & €0n, and P is an f-proof ; morphisms from (& ,P)

1

to (',P') are just functions f € I( &, ®™®') such that P = f ~(P').

Then a B-proof appears as a functor from ON to this category of proofs.

Such a functor necessarily preserves direct limits (and also pull-
backs). As a consequence, the family (PO() is effectively computable

from its subfamily (Pn), just as a dilator is computable from its
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behaviour on ON < W .

Ii.’lsS. B-completeness theorem

+Axis-valid in all B-models of T iff there is a B-proof of A in T.
Furthermore, when T is recursive, the B-proof can in turn be chosen

‘f recursive.: the function n A Pn (recall that Pn is a finite proof)

is recursive.

'11.1.6. There are more than superficial ‘analogies between dilators

and B-proofs. The combination of both ingredients in the framework

of sequent calculus, leads to a proof-;thkeoretic analysis of inductive

definitions. The methods used are too ‘sophisticated to be explained

" here ; let us say that the essential oufput has: been the ‘majorization
:pesults in generalized recursion.

- II.2. Dilators and generalized recursion

S IT.2.1. Which kind .of ordinal -functions .are 1likely to be ‘Jb'ound‘e‘d by

dilators ? There are obviously. functions which grow ‘too fast, typi--

cally -k M-N’Sj :.-Using (AC) + (CH), one easily Ffinds;a ‘function
. Do _

‘ i?r,om&{; to-itself, which is not bounded by:any denumerable dilator,

i.e: by any dilator with-a-denumerable trace.

1I1.2.2. Hence 'somef}‘{ind. of definability condition J‘ls*-n‘ee‘d‘ed-._.‘in -order
to ensure that the function £ from:On to its:q‘,;\tf ‘;ShQUJ-d be ‘bounded. A
by a.dilator.: The first result in that ,-‘diréctgién is :thg.;follo,w‘ing :

I1T1.2.3. Let f be a .Q)EK—recurfsfive function; sending o)l (the first
nor~recursive ordinal) into itself. Then there is-a recursive
dilator F such that

vorcal® FER) & F(R).
The .result.was first thainéd as-a ’;qor’é:/l”_l;ja‘ry}*‘tp “the ;pnpof-*thgor'etic

analysis of 1D

12 the theory «of -one 1nduct1vede:f in
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II.2.4. This result has been generalized to many other kinds of gene-

ralized recursion. The value of ‘those results is that, to some extent,

the infinitary features that are used in the computation of generalized

recursive functions, can be, as far as we are only concerned with

their growth, be eliminated in favor of a purely finitary approach.

I1.3. Dilators and descriptive set-theory

II.3.1. ‘_'(1

2—completeness of dilators : assume that A is a n; formula

¥yf dg ¥n R f‘(n),é(n) ; then there is a recursive functor D from
ONK @ to itself such that
A" ¢—» D can be extended into a dilator

This means that the values D(®X) computed by direct limits, are

 qs 1
well-orders, for ol &€ On. This generalizes the familiar nl—completeness

of ordinals.

II.3.2. The use of ordinals in descriptive set-theory is linked to
the following features

i)ni—completeness of ordinals : a ni formula A can be represented
by "R is a well-order'", for an appropriate recursive linear order R.
ii) the existence of a simple well-ordering of ordinals, enabling us
to -select an ordinal in any non-void set of ordinals.

The problem with the use os dilators is that; although they arjeTT;—
complete, ‘there is no reasonable well-ordering od dilators ; for

instance, how should we compare Id and ZId ?

II.3.3. In féct, it is eanough to restrict the comparizon to the
denumérable case. The idea will be to find a dilator & such that

F o ﬁ_ and G o _ﬁ.
are comparable‘ in a very straightforward sense, for all denumerable

F and G. Here comparable means w.r.t. the inclusion relation :
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H. £ H' means dH". (H' = H + H"), in other terms, H' is an end
extension of H.
I7.3.4. A dilator F is said to be a flower when the following holds :

F(E for all & 5(’_> .

ap) = Fr(s ()
If F is a flower, then the functiondw F(O{) is topologically
continuous (and conversely). %, Id, & + Id4, 1_OId are flowers. A
denumerable dilator F is a flower iff F('brl) < 577I

A flower F is regular when it enjoys the following :
vo(,‘sz € I(d,(}) ¥z LK (F(z) L FIX)A F(£)(F(z)) = F(£(z)) )
In other terms, the functions TOl(Z) = F(z) (TN

define a natural transformation from \.)-i?vfrom Id to F.

€ I(,F(eX)) )

The most remarkable feature of regular flowers, is the possibility

is a family of regular

of defining infinitary products : if (Fi)i

Lol

flowers, then one can define.a new one ‘ i F., which coincides,
it

in.case & =n, with F. o ... 0o Fn_ . The product enjoys the expected

0 1

generalized associativity property. In fact, the generalized product
is obtained by a direct limit of finite products.

IT.3.5. let us go back to descriptive set theory. It is easily shown
that the condition ‘;F o_ﬁ » G ofl comparable w.r.t. & for all denu~
merable F and G", follows from the special case

Fof) =f) for any denumerable regular flower F.

This suggests the following definition :

II.3.6. axiom of equalization

If F and G are two regular flowers, then one can find a regular flower
H such that F-oH=GoH.

IT1.3.7. From the axiom of equalization, one can prove the following :
if X is any family of regular dilators, then one can find a regular

dilator H such that c
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VF,F'€ X FoH=F"'oH
Furthermore; if there is such an equalizer for the family X, there is
a smallest one, smallest in the sense of a category-theoretic universal
problem.that we shall not explain here.
IT.3.8. In particular, the smallest equalizer ji of the set X of all
regular denumerable flowers is such that

Fofi=& for all FEX.
II.3.9. There are deep connections between "sharps" and the axiom of
equalization. In fact, the axiom of equalization (for denumerable
regular fiowers) is equivalent to the determinacy of:[zi games. Another

l_

,-determinacy is the intuitionistic

interesting equivalent toTT
analogue of B-completeness:

IT.4. dilators and combinatorics

IT.4.1. It is easy to define the sum ji: Fi of any family of dilators.
‘ it
The first decomposition theorem states that a dilator can be uniquely

written as a sum :E: Fi’ where the Fi's are connected, i.e. are
: i LA
non zero, and cannot in turn be written as sums. Typically the ordering

FC G means that, with F =Z F.» G = Z G,:o((Fand F. =G,
ikek i<p 7 ot
for all i {¢(.

II.4.2. A connected dilator may be equal to the constant 1 ; it
may also be something like Id, that cannot be broken into a sum.
Dilators are classified into four kinds :

F is of kind 0 when F = 0

F is of kind’ 1 when F is of the form G + 1

F is of kind w when F has a first decomposi-

tion 2 F,, with & limit.
1ot ,

when F = F' + F'", F" connected

F is of kind SZ

and F" # 1.
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'The classification is linked to the values taken by F on the ordinal
“class On : F(On) can be defined by direct limit and is a class
 Fois of kind iff F(On) is

0L : ‘ 0

1 successor

w7 . 1imit of small cofinality

125 limit of cofinality On

For instance, (Id + Id)(On) = On + On, hence Id + Id is of kind .

II.4.3. The second decomposition theorem breaks a dilator F of kind

_fl_ into a f%mily (Fc() of dilators such that :

i) F = FO + G for some connected G

ii)O(_‘P—-) ch;_-FP

iii) F(On) = sup  (Fg, (On))
o € On
The .theorem is obtained by means of a sophisticated analysis of the

behaviour of normal forms. For instance, if F = Id + Id, then

F, =Id+0.

o

: IT.4.4. If we define the strict order 46( between dilators by :

i) F(K F'+ G when G £ 0
ii) if F is of kind {2 and (Ex) is the second decomposition

of F, if o € 0n, then FNO<< F.

iii) F4KG and G&KH —» F<<H.
Then one easily shows that :
i) the predecessors {(w.r.t. {& )} of F are linearily ordered by <L .
iij given any A < F(On), there is a unique F' < F such that
F'(On) = A.
» This shows that we have sucéeeded, through the two decom-
position theorems, in breaking dilators completely. The relation

is well-founded (but a given point has a proper class of predecessors)
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and this can be used to prove arguments, or to construct functions

(or functors) by induction on dilators.

IT1.4.5. The first use of induction on dilators has been to relate the

two familiar hierarchies of number-theoretic functions :

go(n) =0 o ho(n) = n
go(+1(n) = go((n)+1 l%(+1(n) = ho((n+1)

= . { = . :
gﬁn) g[t\]l'}\n) h (n) hﬂ]n(n) ( 1 limit)

In the limit case, one uses so—called "fundamental sequences" m] n.
The g-hierarchy is extremely slow, compared with h ; but g is theorg—
tically more interesting, since in some sense, it counts the number
of steps of the computation of -the function.

The result proved by the author in 1976 is that

g =h
€b ?O
éo being the familiar ordinal of arithmetic, the smallest solution

of wd= ol ; "]O is the "Howard ordinal", traditionally attached to

I1.4.6. more recently, this approach has been used in relation to the
Par‘is-—Gocés',tein-Kirby theorem. We assume that the reader is familiar
with this nice combinatoric result. One of the key notions here is
to pass from "pure base n" to pure base n+l ; this change is easily
seen as the action of a dilator, namely the function D(En_ln),.where

D is an W-iteration of the exponential

(1+Id)° """
(1+14)
D = (141a) (11D

Using the decompositions of dilators, it is possible to give exact
computations for the number of steps involved in the Goodstein process.
This yields a new proof of the result, but also suggests (since

we are free to choose arbitrary dilators) other results on the

smae line of thought.
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III APPLICATIONS TO COMPUTER SCIENCE

D.0:0,0,0.0.0,0.0,0.0.0,0.0.0.0.0.0.0.00.0.6.0.6.06.0.0.0000000¢

III.1. The first attempts have been to translate more or less directly
the theory of dilators into the theory of programming languages.

Several simplifications were found afterwards, and lead to developments

: with no direct connection with the starting point, except a similarity

of spirit and techniques. It is however expected that dilators will
be really needed at some ulterior stage.

iII .2, Coherent spaces

IIT.2.1. A coherent space is a set X enjoying the following properties :
i)a€ X A bCa — b€X

ii) if AC X is such that : Va,b€ A aUb€ X, thenUAe X.
III.2.2. The web W(X) of a coherent space consists in the following

data :

[w(x)| = {x; {x]ex}

~

The binary relation [ (mod W(X)} defined by

x Oy (mod W(X)) iff {x,y} € X.
Notation : x ™y fo-r x Oy and x £y, x Ay for A{x " y),
x“yfor1(xTy).
III.2.3. The map X asDW(X) is a bijection between coherent spaces and
reflexive-symmetric relations (unoriented graphs). The converse map .
is obtained from the formula :

a€Xx iff Vx,yE a ny (mod W(X)).

T is called coherence (modulo W(X)).

We distinguish as little as possible between X and W(X) ,» and for ins-

tance we shall use |X| for |W(X)| and (mod X) for (mod W(X)).
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111.3. the function space

IIT.3.1. A function F from a coherent space X to a éoherénf space Y

is said to be stable when it enjoys the following properties : .

(s1) acb €X —y F(a)C F(b)

(s 2) If (ai)i€I is a directed subset of X (w.r.t. inclusion), then

rl ey = UFeay)
(S 3) if a and b are coherent, i.e. if a U b € X, then
F(a A b) = F(a) M F(b)

I11.3.2. normal form theorem

If F is a stable ‘map from X to Y, if a € X and z € F(a), then one

can find a'C a, a' finite, such that z €F(a') ; furthermore, if

a' is chosen minimal with this property, then it is unique.

III.3.3. The proof of this property is very easy : the existence of
the finite a' comes from (S 2) (because 'a is the directed union of

its finite subsets), whereas the unicity comes from (S 3). There is
more than a superficial analogy with the normal form theorem for
. dilators :

i) a coherent space can be seen as a (trivial) category, whose objects
are the elements of X, the morphisms between a and b € X existing only
when a Cb ; in that case.there is a unique morphism ®b from a to b.
ii) if one translates the words"direct limit" in this trivial category,
then one gets "directed union" ; if one translates ""pull-back'", then
one gets "intersection of coherent elements". In’particular, if one

translates 'functor preserving direct limits and pull-backs", one

gets (S 1) (functor) (S 2) (direct limits) (s 3) (pull—backs) !
III.3.4.'If F is a stable map from X to Y, then the trace of F is

defined by :
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Tr(F) = {(a,z);z €r(a) Ya' Calz €F(a') da' = a)}
Tr(F) determines F via the simple formula :

F(b) = {z; aacb (a,z) eTr(F):S
II1.3.5. The coherent space X =Y is defined by means of its web :
|X 25Y| = Xein X Y| (xfin = finite objects of X )
(a,y) T (b,z) (mod X =pY) iff i) and ii)
i)aUb€X — yZ2z (modY)
ii)aUb&Xanda#b =5 y™z (modY)

ITT.3.6. It is easy to check that the sets of the form Tr(F) for some

stable F from X to Y can be caracterized as the elements of the cohe—~

‘rent space X =>Y, i.e. as the coherent subsets of |X =>Y|. In

particular, the function space is interpreted as a coherent space.
It may be of some interest to see to what relation between functions
correspond the inclusion of traces ; define F € G by Tr(F) C.Tr(G) ;
then F C_G iff Va,b EX (aCb —F(a) = F(b)n\G(a)) ; this very
nice and natural order is called.the Berry order, from Gérard Berry
who first found it in the context of Scott domains.
IIT.3.7. Compared with extant materials on the subject (so called
JScott domains''), this approach is extremely simple ; in fact Scott
ignores (the analogue of) condition (S 3) ; worse, he wants, for
obscure reasons, to use the ordering

F G G iff F(a) CG(a) for all a &X.
This ordering (whose only advantage is the simplicity of formulation)
has no nice property w.r.t. normal forms (or any kind of minimal re-
presentation), gnd forces to represent F by the set of all pairs
(a,z) such that z € F(a) and a is finite. But the set of such repre-

sentations is very complicated, and this forces to complicate very
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much the original pattern, leading to so called "information systems".
In particular, even if it is theoretically possible to modelize pro-
gramming languages within Scott's tradition, this is practically
unfeasible, because of the heavy apparatus involved in the function
space.

II1T.4. dénotational semantics

IIT.4.1. if we take a functional language (e.g. a variant of‘A—calculus)

we mean by a denotational semantics an interpretation of the result

of computations, not at all an interpretation of the computations
themselves ; this is a static conception of semantics, that should be

opposed with the dynamic one, namely an operational semantics that

would modelize also the execution of programs. Up to now there is

no convincing operational semantics for programming languages, ‘even

if there is now some reason to hope for the creation of such things

in a near future. The traditional denotational semantics is the one
due to Scott, which is unfortunately too complicated, essentially

due to a superficial treatment of the function space.

IIT.4.2. For typed X—calculi, using the arrow as basic type, .there

is a very simple coherent semantics :

i) types are interpreted as coherent spaces ; in particular, if S-and
T have been interpreted by X and Y respectively, then S =T will be*hi

interpreted by X =Y.

ii) if T is interpreted by X, then an object of type T‘will be inter-
preted by an element of X ; in particUlaf, an object depending on
a variable will depend on the interpretation of th? variable, and
will lead to a stable function. The interpretation of the ‘x—abstrac-

tion will be done by means of the trace of the function ; conversely
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fhé,interpretation of application will be done in the spirit of
II11.3.4. : Aa = {z; Bb Ca (b,z)€& A}

This interpretation will be compatible with V‘\- and F— conversions,

i.e. will not vary through the normalization process.

"fiIi.4.3. This basic idea can be used to replace everywhere Scott's

semantics by the simpler coherent spaces, in particular for pure

"fua—caiculus.

+ 111.4.4. In the case of the author's system F (also called second

ordef A—calculus), the use of Scott domains never answered the

N b . .
- question of defining functions which could be applied to arbitrary

" types, like for instance the universal identity

ad.}ﬂf‘xd

which, when applied to a type T, yields the identity of T, XXT.XT .
The’difficulty is that the term can be applied to any tybe,
including its own type, and this yields some (at least apparent)
circularity.

The idea will be to define objects of variable type on a smali class
of finite types (here finite coherent spaces), then to extend the
definition to arbitrary arguments by taking direct limits. The idea
is reminiscent of the definition of a dilator from its restriction to

ON €W . The details, which are quite difficult, will not be explained

here. Let us only mention that we need to be able to approximate an
arbitrary coherent space (w.r.t. direct limits) by means of finite
ones. Th;s téchnical need was the reason for the abandon of Scott's
semantics, which has a bad behaviour w.r.t. finitism.

III.4.5. One of the interesting outputs of the ihterpretation of F is

the intrinsic model for‘)kcalculus : when we use coherent spaces, we
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are faced with the same problem as with Scott's interpretation, namely

we have to solve an equation

x%x 29X (1)

where H and K are reciprocal isomorphisms. Now, all solutions to this

question are rather arbitrary, even if some of them afe quite simple.

Now, given X,H,K, we can define the interpretation.t§,H,K of any
m—term t, as an element of the coherent space X. The idea is to sée
t;,H,K as a functor of the imputs X,H;K and, by téchnidues of’hérmal
form (similaf to thoge used fof universél types); to obtain ah‘inter—
pretation t*, iﬁdepehd;nt ofvaﬁy choice of a solution in (i)m Moreover,
from t*, which should be the tracé of a functor, one can recover ;11
ti,H,K‘by a simple formula, i.e. t* should encode all possible inter—
pretations of t by means of coherent spaces. There is just a litt;e
problem : we cannot approximate a solution of (1) by means of fihite
solutions of (1’. Hence we have to.give up the condition "H and K
reciprocal isomorphisms" in favor of the more liberal requirement

X =X

KoH c:_Idx and HoKkK CI . Once this modification

is:- done, the modelization proceeds without any problem, and yields
a very compact modelization. There is an unexpected feature :
when t =/ u, then t* Cu*, i.e. the intrinsic model is also

operational to some extent.

III.5. linear logic

III.5.1. The interbretation of the function space by means of coherent
spaces is so simple that something completely unexpected happens :

the connective of implication is broken into more primitive ones.

Define, when X and Y are coherent spaces, a coherent space X -0 Y by :

X —o Y| = [X] x [Y]
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(x,y) = (x',y') (mod X —o Y) iff i) and ii)

i)y x T ox! (mod X) = y:y' (mod Y)

Cii)y x ™ x' (mod X) m» y T y' (mod Y)

The operation -o is called "linear implication".

Define, when X is a coherent space, the coherent space !X by
Xl = Xeip

a:: b (mod !X) iff aUb X

The -modality ! is read "of course".

Now, if we compare these definitions with the definition of X =2 Y, we

immediately remark that X =Y is equal to (!X) -o Y.

III.5.2. In fact, there is more than that : the usual implication is

decomposed, not into arbitrary algebraic operations, but into logical

operations, i.e. -o and ! should be seen as connectives of a new logic,

:linear logic. The subject is too big to be explained here, even quickly H

let us only say that it is a drastic reformulation of constructivism,
pushing the work begun with intuitionism to its implicit consequences.
Many prejudices concerning constructivism are completely destroyed
by this new approach ; just think that linear logic is built on a

constructive and involutive negation! The properties of this logic

A
make us hope that it will be possible to give a semantics of proofs

even for classical logic, by an appropriate translation inside linear

logic !

‘I11.5.3. Linear logic is developed in a classical framework, as a

multiple conclusion logic. This involves a new kind of parallel
syntax. Logically speaking, linear logic could be the tool that

is needed in order to handle parallelism at a logical level.



