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THE DISCRETE AND THE CONTINUOUS IN MATHEMATICS
AND THE NATURAL SCIENCES

JENS ERIK FENSTAD
University of Oslo (Norway)

Mathematical intuition is founded upon two sources, the
continuous and the discrete, and the tension between the two
has always played a central rdle in mathematical thought.
This is true not only in the discussion of the foundation of
mathematics, but also in the use of mathematics in the model

ing of natural phenomena.

The discrete has .its root in counting and labeling; one

way of connecting it with the continuous is through the act
of measurement.- Measurements create points and intervals,
hence also parts of or fractions of intervals, in the conti-
nuum. So much for our inmediate expérience. But do the points
we .create exhaust the continuum?. Is the geometric continuum

a point set?.

Points and lines.

What does geometric intuition tell us?. Let us take a
brief look at the usual axiomatization of the affine plane,
Artin [4]. There are two basic categories of objects, lines
and points. There is one basic relatiom, Pe %, the point P
lies on the 1line %, and a defined notion, &||m, the lines &

and m are parallel , i.e. either £=m or 2 and m have mno poing
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in common.

Basic geometric axioms tell us that two distinct points

determine a unique line; that through-a given point there is

a unique line parallel to a given line; and-to avoid triviali

ties- that there are at least three non-collinear points.

A geometry is determined by its symmetries. A dilata-
tion o is a map from points to points satisfying the follow-
ing property: Let two distinct points P and Q be given and
let 2 be the line determined by P and @. If &' is the line

parallel to % passing through oP, then aQ ¢ 2'.

A trace of P with respect to a nontrivial dilatation o
is a line % such that both P and oP lies on 2. A translation
1 is either the identity map or a dilatation without fixed
points, in which case the traces of t is an equivalence class

of parallel lines.

We note that the dilatations D form. a group and that

the translations T is an invariant subgroup. A trace preser-

ving homomorphism a: 7 + T is a homomorphism satisfying the
property that either 1 = aft) is the identity of t and 1"
have the same equivalence class of parallel lines as their
traces. Let ® be the set of all trace-preserving homomor-
phisms of T. We can introduce an addition end a multiplica-

tion in ® by the equations
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If our geometry has enough symmetries, i.e. if it satisfies
the theorem of Desargﬁe, fhen &R is a field and we can intro
duce coordinates from &R for points in the plane. This follows
from the fact that if v; and 1, are translations different
from the identity and have different directions, then to any

v e T there exist unique «,8 e & such that

L= TT

AHERNH

Choose any point 0 as origin and any two translations T and
1, with different traces. We think of the T,-trace and v, -
trace through ovas the coordinate axis'. Thus given any’ point
P, let 1, be the (unique) translation that moves 0 to P, we
can write 1, = r? rg for unique a,8 € &, and we assign the
coordinates (a,B) to P.

So for basic geometric intuition. Any point lies on a

' line, but a line is not given as a set of points. And if

the geometry has enough symmetries we can introduce coordina
tes from a field. But this does not yet determine how many

points there are on a line.

There are further geometric properties that we may con-
sider. A plane is ordered if the points on each line are 1i-
nearly ordered (hence gives us a notion of lies between among
points on a line), and if parallel projections either preser
ve or reverse the ordering. The plane is ordered iff the

associated field ®mis (weakly) ordered.

An ordering of the plane is called Archimedian if it

ﬁas the following property: Let T, and Ty be (nonidentity)

translations with the same directions and P a point which
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does not lie between 11(P) and 12(P), then there exists an
integer n > 0 such that rz(P) lies between P and 4;(P). It
follows that a necessary and sufficient condition for an orde
red geometry to come from field § which is isomorphic to a
subfield of the field of real numbers is the Archimedian

axiom.

Thus granted the Archimedian axiom we know what pos -~
sibilities there are for sets of points on the geometric li-
ne. But is the Archimedian axiom a "true" geometric fact?
What is given in our immediate experience is a limited part
of the geometric line with at most a finite number of points
marked on it, representing e.g. the results of some physical

measurements. The rest is an extension, ideal or real,.

This has been forcefully expressed by Abraham Robinson
[12]):

Whatever our outlook and in spite of Leibniz' poeitiom, it ap~
pears to ue today that the infinitely small and the infinitely large
numbers of a nonstandard model of Analyeis are neither more nor less
reai than, for example, the standard irrational numbere. Thie 18
obviocus if we introduce such rumbers axiomatically; while in the gene-
tic approach both standard irrational numbere and monstandard numbers
are introdﬁced by certain infinitary processes. This remark i8 equal-
1y true if we appreach the problem from the point of view of the empi-
rical scientist. For all measurements are recorded in terms of integere
and rational numbers, and if our theoretiea} framevork goee beyond
these, then theve is mo compelling reasom why we should stay within an

Archimedian number gystem.

‘For Robinson, who on several occasions expresed a

strong formalist conviction, see [11] and [13], this is the

end of the story:

From a formalist point of view we may look at our theory syntac-
tically and may consider that what we have done is to introduce new de-

ductive structurees rather than new mathematical entities.

Not everyone will agree to this point of view. Godel in
some remarks following a talk by Robinson at the Institute
for Advanced Study in March 1973 [10] seems to maintain that
there is no ontological difference between the integers: ,
the rationals, the irrationals, and the infiniiesimals. By
a series of "quite natural steps'" we may become familiar

with and gain insight into what already exist.

But what are the natural steps, how do we construct

points on a line?.

How to construct points on a line.

Let us for a moment take seriously ‘the intuition that

the geometric continuum, space, is not given -as a point set.

The standard approach., Through measurements we know how to

mark points'in the continuum. And chosen a unit we are then
able to consffuct points corresponding to any rational frac-
tion. But, as the ancient already observed, there must be

points not named by the rationals, one example being the in-

commensurability of the diagonal of the square with its sides.



This forces points on us labeled by certain algebraic number

fields. But this is not the end.

A Cauchy sequence is a countable sequence of rationals

numbers <P > eIV satisfying the condition that given any na-

tural number £ there exists a number n, such that

1 N
[rn-rml <g» for all mm2n

The accepted standard point of view is that the geometric
line is rich enough in points to contain limits for all Cau-
chy sequences of rationals. The plane is the "maximal" or-

dered desarguean geometry satisfying the Archimedian axiom.

Before closing the door, however, let us elaborate on
one point. Different Cauchy sequences ought to determine
the same point, e.q. <I1,1,1,...> and <,4,3,8,1,1,1,...> should
in the'limit determine the same point. We need an equality

relation in the set of Cauchy sequences; the standard one is

. <l-,.n> - <an> iff ,Z:: (rn.an) -0

This does not oaly identify sequences that differ in a fini

te initial part, but also identifies sequences such as‘<%>

and <3%>,'which exhibit different convergence behavior. Clas
siCal?y, the set of reals is the set of equivalence classes

of Cauchy sequences with respect to the equality relation in
troduced above. And the set of'reals, the arithmetic conti-

nuum, is identified with the geometric continuum.

But if-we look upon Cauchy sequences as a method of

constructing points, is the above equality relation the only

permissible one?.

A remark on a constructivist point of view. The constructi-

vist is also permitted to construct "rational points" on the
line. To obtain further points one introduces constructively
given Cauchy sequences <r,>. The constructivist also requi-
res a constructive version of the Cauchy criterion, viz. a

constructive rate-of-convergence function u : W + ¥ such

that

#e>0 ¥ mn > wk)[|z x| < F)

A constructive real is a pair/(<rn>,u) and an equality is

defined in the set of constructive reals by

(@3 1) = (o2 v) iff (r-8,) +0,

see Feferman [9].

But this equality relation completely disregards the
information gifen by the rate-of-convergence function. Cons
tructively (<%>,u) ;nd (<J%>,v) determine the same point on

n
the line, even if. their rate-of-convergence is not at all the

same.

Perhaps, from the point of view of recorded measurements
this is adequate. But if we want to preserve in the limit the
difference in convergence behavior, and if we also wanf to pay
attention to difference in asymptotic behavior, we should con-
sider using a less "crude" equality relation in the set of

Cauchy sequences.

The nonstandard approach. Let us reopen the discussion of




the 1limit behavior of sequences <a >. Our interest lies in
their "eventual" behavior, i.e. two sequences <a,> and <bn>
should be identified, if a, = b, for all sufficiently large
n, or, put in a different way, we identify <a > and <bn> if
there exists some n, such that ¢ =b for all n > n,. In
this way we would distinguish between <%> and <i>. So, per

ﬁz

haps, we have the correct ‘answer.

At this point it is useful to introduce the notion of filter.
A filterF is a family of subsets of N which satisfies the
following conditions: if 4,8 € ¥, then 4 N B eT; if 4 e T
and 4 < B, then B € F; the empty set @ does not belong to'¥.
The last point is to avoid the trival case that ¥ contains
every subset of IN. A set is co-finite if its complement in
IN is finite, it is easy to see that the family of co-finite

sets 'ch is a filter in IN.

The condition introduced above, that <a > =f<bn> iff
‘there is some n, such that ¢ = b for all n > n,, can now
be rephrased in the following manner: <a > = <bn> - if

(nemw |an =b e ?;f.

This is our initial attempt to make precise the notion
of "eventually the same behavior". But it leads us into
trouble with the algebra. The "natural"” way of introducing
the algebraic operations in this set of sequences is as fol-
lows:

> +<b>=<> iff neW |an +b =cle 'ch

<a> e+ <b>=<c> iff ne W | a +b =cle (}'of
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But consider the sequences <1,0,1,0,...> and <0,1,0,1,...>,
by the aBove rules <1,0,1,0,...> « <0,1,0,1,...> = <0,0,0,0,....%,
but neither <1,0,1,0,...> nor <0,1,0,1,...> is aqual to the zero-
sequence <0,0,0,0,...>. We have introduced zero-divisors, which

ruin the standard rules of algebraic manipulations.

We want to preserve the property that if a+b = 0 then
either a=0 or b=0. Translated into the language of filters
this means that if AUB e F then either 4 ¢ T or B ¢¥. (In
bur case let A be the set of even numbers and B the set of
odd numbers, then A UB=I € ?; , but neither 4 nor B belongs
to ?‘cf.). Call a filter a prime filter if it has this pro-
perty. (This terminology is taken from the characteristic
property of prime numbers: if p is a prime and divides a-b,

the p divides a or p divides b).

Prime filters -or ultrafilters- will do the job. Let
U be a prime filter exteﬁding_?;f, such filters exist. Let
<a,> and <bn> be two sequences of real numbers, i.e. <a, >,

<bn> e Y , we introduce an equality by

<a> = <bn> iff {ne IVI a, = bn} e U,

and let *IR denote the set of equivalence classes with res-

pect to this equality, in standard notation,
‘R ="/ Y

In *® we introduce algebraic operations as above, and we

order *R by the relation



a<b iff {ne.ﬂla-n<bn}e u,

where a=<p>/ and b =.<b >/1 . The set R of standard
reals is embedded into *® by mapping r € IR to the constant

sequence <r,r,r,...>.

An element ¢ € *R is called finite if |af<n for some
standard natural number n e N; let JRJ, denote the finite ele
ments in *R. a e *R is called infinitesimal if |a| <-’1; for
all ne F; 1et.Ri denote the set of infinitesimals. It is

easy to see that

R = R/ E; ,

thus for every finite a e *® there is .a (unique) reR

such that the difference (a-r) is infinitesimal. We also

see that the sequences <%> and‘<3%> determine two distinct
n

1 1

infinitesimals in *R, &, = <z>/qy . and §, = <;§>ﬁu s su;h

that

o
A
Or
A
(=]
A

N

all n e W,

It is now a basic assumption of nonstandard analysis
that the construction of *®F is a method of'const;ucting new
points in the geometric continuum; i.e. *R is an ordered
field which can be used to '"name" points on a line. *R has
strong closure properties and we may therefore "forget" the
ambient geometric space and choose one version of *R as the
extended geometric line. But this is nottcbrrect on our point

of view. *R is but one method of constructing points. And

we are at liberty to create different pointsets on the line
for different purposes. We shall see how this leads to ri-

cher possibilities in niodeling natural phenomena.

But first two remarks.

Remark 1. A similar point of view was expressed by Charles

S. Peirce, see [8] for an exposition. Independen
tly of Dedekind and Cantor he had around 1880 discussed the
nature of the geometric continuum and the notion of infinity.
He rejected Cantor's and Dedekind's identification of the
Archimedian arithmetic continuum with the geometric conti-
nuum. He had independently of Cantor proved that the power
set of an infinite set had greater cardinality than the set
itself, and he had boldly asserted that the forever inérea-
sing multitudes of "points" thus produced could be fitted
into the ordered geometric,continuum by some process of "in-
terpolation", - Peirce never arrived at a precise mathemati-
cal theory, he argued for the infinitesimals on the grounds

of logical possibility and physical necessity.

Remark 2. The "praxis" of nonstandard theory, as the follow-
ing examples will show, is often remarkably con-

crete, even '"constructive", with explicit calculations repla

cing abstrac developments. There has been attempts within

constructive mathematics to make space for infinitesionals

on the line; see e.g. the brief note by R. Vesley [16]. The

clue here is to let "very small'" mean '"not equal to 0 and not

known to be separated from 0".
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Modeling natural phenomena.

Having a richer pointset on the geometric line gives
us a frame for a geometric analysis of physical phenomena
on many scales and of physical phenomena that are too singu

lar to fit in a direct way into the standard frame.

Canards. Our first example concerns a new type of limit

cyclés in the van der Pol equation

ek + (x2-1)£ +x-a=0

We are interested in what happens when e¢+0 and a+1. The

usual Lienard substitution

us=PFlz)+ecax
F(z) = m3/3 -z
transforms the equation to the system

ex

u - F(z)

.
u

a - X

The standard approach is to use asymptotic expansions in po-
wers of e. Working on the extended line we choose ¢ to be
a positive infinitesimal and g =1. If turns out that for

certain values of g, viz.
a=1-¢/8 -en

for some n = 0, a new type of limit cycle, a canard, is ob-
served. Notice that et(a) = 1, so that the condition on a
has no immediate arithmetic expression in R. To "see" what

is happening we magnify the immediate or infinitesimal neigh

borhood of the slow manifold u = F(z) by the substitution
y = (uQF(x))/e, i.e. we transform to an infinitesimal scale.

This gives us a vector field

z =y
*) .
ey =a - 2 - (zz-l)y

It is easily seen that the standard part in the z,y - plane
of the slow manifold of the vector field (*) is the union of
the line =1 and y = -1/(x+1). The derivative of (*) at
1 . '
(1, '5) is
f-lezo ofon) = 2(1-a)/e

1
y=-3

-

A geometric analysis tells us that the new type of limit cy-
cle, the "canard", should be parallel (modulo an infinitesi-

mal) to y = ~-1/(x+1) as we approach (1, --g—) , i.e.
2(1-a)/e -~ 1/4 =« 0 ,

which gives the relationship
a=1-¢/8-¢€n
for some infinitesimal n.
Remark. Canards were discovered by a group of French mathe-
maticians, J-L. Callot, F. Diener and M.Diener. For an ex-

position of their work see Benoit, Callot, F Diener, M. Die-

ner [5], and also Cartier [7].

The relationship between a and ¢ also has a numerical
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content and tells us how to arrange an approximative calcu-
lation of canards. It is , of course, a well-known fact in
numerical analysis that various approximations, step-lengths,
often must be chosen to depend on each other in quite speci-
fic ways in order to exhibit a particular phenomenon. It
could be that the nonstandard theory is the '"right" way to

discuss this.

gingular perturbations. Let Ho = -A be the free Schrddinger

operator, where A is the Laplacian in Ed . It corresponds

to a quadratic form
Eo(f,g) = J(—Af)gdm

We want to perturb the operator on a '"small" set, i.e. a

set of measure 0 in &% . This means that we want the "free"
particle to feel a force concentrated on a small set, e.g.

a point lattice in *R® as in solid state physics, or a "thin"

d

submanifold of B®, or a Brownian path (Jm = {blu,t)|t e [0,1])

as in polymer science or quantum field theory.

.

Formally, this means to add to H, a singular perturba-

rion of the form

+ vV,

H = HO

where V in the Brownian path case would be

Viz) = -]A (z)6(x-b(w,t))dt,
)

. R . d
é being the é-function in R,

R
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In terms of quadratic forms this can be written as

E(f,g) = Eo(f;g) + IA fg de ,

clu

" where p(4) =ml{t e [0,1]]| b(w,t) e A}, m the Lebesgue measure

on the real line.

This case is studied in detail in [1], see also the
announcement [2]. Our approach is to 1ift the problem to a
hyperfinite setting and use the theory of hyperfinite quadra
tic forms that we develop in [1]. The result is that F
exists as a nontrivial, self-adjoint, lower bounded pertur-
bation of -a for 4 < 5. -We must choose X to be an infinite-
simal, positive function for d = ¢,§; for d < 3 any bounded real-
valued function A will do. The connections with polymer models

ar will as with quantum fields are discussed in [1].

The space-inhomogeneous Boltzmann equation. The Boltzmann

equation describes a gas of identical point molecules which
are interacting by a potential of finite range. The molecu
les move with unrestricted speed in some region A of.mz.
Assuming periodic boundary conditions we have as phase space
M=Ax Eg, where A = 1?3/23. Letting F(x,v,t) denote the densi-

ty of the molecules the Boltzmann equation is

— a_F_.L__(xag LZENE VF(z,0,t) = (QF)(z,v,t) ,

"where @ denotes the usual collision operator.

The first step of the analysis is to consider a '"trun
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cated" version by replacing ¢ by some suitable "cut-off"
qQ ,ne . It is then standard to prove that for suita-
ble initial data Fo(ac,v) = F(x,v,0) there exists a unique non-

negative L"-solution of the equation

t
F(x+tv,v,t) = Fo(z,v) + I QnF(m+sv,v,s)de.
0

By transfer we obtain for n € *¥ -I an internal solution f

of the extended equation. The main analytic part now comes
0

in showing that f has a standard part f. One can prove

that with the (internal) initial condition.

Fola,v) = min(*F,(z,0),m) + " leap(v?);

where ne *F -F and *Fo is the standard extension of Fpo
the standard part of of the internal solution f is nearstan
dard for Loeb-almost all (x,v) € *i x na(*.?Ra), where ns(*ms)
is the set of nearstandard points of *RS. Furthermore, the
standard part Qf satisfies the coriect integral equation;

for details see the exposition in [1].

This result was proved by L. Arkeryd [3] and is the

first general result of its kind in the space-inhomogeneous

case. Notice that % has everywhere standard values, but
it lives on an enriched or denser phase-space *\ x ns(*R°) .
But this, we claim, is perfectly acceptable from a physical

point of view.

Quantum fields. Constructing models for quantum fields is

no small task. A favored approach is to start with f£free

PRI — ——

lattice fields. Let & > 0 be a fixed positive real number
and define the lattice JDG with spacing § to be the set
1L6={n6|n e 29}, Let b5 be the standard discretization of

the Laplacian and introduce the covariance matrix

_ 2,-1
Cn,n' =§ (-AG + m )n,n’ »
where m is a positive real numbe‘r, the "mass". Let Agﬂd

be a bounded region and let A6 = A f\EG. We let LI denote
the boundary of A,. Ag is a finite set, let ¢ =lA6| be the

number of points in AG‘ Our measure space will be the fini-

A . . .
te product ¢y =R § equipped with the gaussian measure
6

-2/2 ) - .
dugyp (@) = (20 P 1getc)r? eape-1 1 (c 3Lt Guir )

ns,

!
nGeA6

where g e QAG’ dq = Ndq , and €" is the restriction of the co

variance matrix to Aa.

We may now introduce the random field ¢ indexed by

Ay as the map L A6 x QAG + IR given by

¢6(n)(q) = Qe 78 € Ag

It is called the free lattice field of mass m in Agi for an

exposition see Simon [15].

One may now show that as § - 0 the fields L "conver-
ges' to a gaussian random field. "Convergence" is here so-
mewhat problematic, changing § not only gives us a new ran-

dom variable, it also gives us a new measure space.

123
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And what is more awkward, in the limit the lattice disappears!
In the hyperfinite picture there is an easy way to

overcome these difficulties. 1In addition to the standard

finite approximations 'from the inside", we can also approxi

mate "from the outside™: Let §>0 be infinitesimal and let

Ag be a hyperfinite lattice in *R with spacing 6. By trans

fer we have a hyperfinite lattice field which we can easily

show to be a model of the free Euclidean field of quantum
field theory. What is noteworthy here is tﬁat the hyperfi-
nite field is pointwise defined. We still have infinities,
but they can be controlled through a consistent algebra, hen

ce lead to unambiguous and meaningful results; see [1].

The free field is of rather limited physical interest,
the goal is to construct fields which model various forms of
particle interaction. One way of doing this is to construct
suitable '"'local additive functionals" of the free field.

Let §>0 be a standard real and consider the lattice A, obtai
ned from a bounded domain A g;le . Let g be a positive func
tion with support in A and let us be any continuous real

function. We will study interactions of the form
) d
U% =2 L6 g(n6)u6(06(n)) »

where A, is a real constant, the '"coupling constant'". We

may introduce the perturbed measure

ezp(-U;) dPO,AG
R
ris [exp(—Ug)duo,AG
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on the space @ but keep the field @,(n)(q) =q .. We would

hope that under suitable conditions dug leads to a non-
s .

As
gaussian measure (either in the limit or in the hyperfinite

picture), hence to a model of an interacting field.

s

The function g in Ug represents a kind of '"space cut-

off", it could e.g. be the characteristic function of some

domain Ag in A. In order to obtain a nontrivial field we

now let § tend to zero while at the same time letting Asfﬂd.
To remove the "space cut-off" we let g converge to the cons-

tant function I on Bd.

This is the standard program. In the hyperfinite ver
sion it means that we want to choose §>0 infinitesimal, A&
a hyperfinite lattice and g an internal function such that
g(n§) =1 for all nearstandard né e Age We would then like

to extract from the internal construct u a non-gaussian

. gahs
measure satisfying the field-theoretic axioms; see[l].

We cannot carry through this in detail in this exposi

tion, the reades is referred to [1] for a full discussion.
We indicate a few steps to exhibit some of the parts that
come into play. Let uslfor simplicity choose an exponential
interaction ug(y) = expfay). Let us makek the following calcu-
lation to see what we have to do in order to control the pos
sible infinities. We assume that 6>0 is standard, thai A

$
is a finite lattice and that g > 0 has support in A:

v 2
as C_,
(+) WPau,  =22uS? 1 gmagmrere ™,
g o,AG §' " a
ns,
n'6eA5
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where 2
4% = eap (3 (2u)74 J ug(0) ),
Ts
d

where T, = [-v/8, 1/6]% and uk)? = 72d-2 1 coalk 8)] +nf.
i

Let d=2, choose §>0 infinitesimal and As hyperfinite,’
but keep a cut-off g of compact support., If a2 <47 we easi;
ly see that the sum on the right hand side of (+) is finite,
but the integral in Ai diverges. However, one infinity can
be balanced against another. The coupling constant is so
far left unspecified, so let us choose

1

5"
AGS)"(AQ)

where 1>0 is a finite real number independent of § and «.
With this choice the right hand side of (+) is nearstandard,

and it is not difficult to see that the. standard part is

A2 J glz)gly)e® ¢ gy |

P

where G(x-y) is the kernel of the operator (-A+m2)-1.

Remark. For the informed reader we note that the interaction

U; is more commonly written

ad, ()
U; =)z Gdg(nc) e S LN
uéé(n) -1 u%(n} .
where : e ;o= 1%2) e is the so-called Wick
ad, »)

renormalization of e
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Thus one important stage in the program is completed.
It remains to remove the space cut-off g. Let once more 8>0
be a standard real, As‘a finite lattice, and let g have sup-
port in A, The Schwinger functions associated with the mea-

sure u are given by
3

gshg
§ =
Sg(nld,..., nkG) = J 06("1) . °6("k)d"g,A6.
Let g,g' both have sﬁpport in A, assume that the support of
g is contained in the support of g’, and that g=g'’ on the
support of g. Then one may show that

0<8§ ,<8

s
g=% »

where Sg is the Schwinger function of the free field.

In the final stage of the program we pass to the hyper
finite picture and remove the finite space cut-off by choo-
sing an internal function g, such that g,(ns) =1 for all

finite n§.  Then we may prove that L(ug Aa)' the Loeb-measu-
w’

re associated with ug Ag is a non-gaussian probability mea
ml

sure. And using the inequalities established above we may
verify that this measure for d=2 gives us a model for a

quantum field with non-trivial interaction,

Remark. The book [1] contains further examples, e.g. a non-
standard version of the ¢§ model due to Brydges,

Fr8lich, Sokal [6], a construction of gauge fields in dimen-

sion 2; and a discussion of polymer measures and quantum

fields.
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On nonstandard praxis.

It has often been held that nonstandard analysis is
highly nonconstructive, thus somewhat suspect, depending as
it does upon the ultrapower construction to produce a model.
On the other hand; as we already remarked above, nonstandard
praxis is remarkably constructive; having the extended number
system we can proceed with explicit calculations. A case in
point is the Cauchy-Peano existence theorem for ordinary dif-
férential equations. In the standard approach one uses in
the final step the Ascoli lemma which asserts that every
bounded equicontinuous sequence of functions on an interval
I has a uniformly bounded subsequence. This part of the ar-
gument is lacking in the nonstandard proof, which makes it
more direct. And indeed it is in the following precise sen-
se. It is possible to recast the nonstandard proof to give
a proof of .the Cauchy-Peano existence theorem where the only
non-recursive eleﬁent is the Weak Kdning's Lemma which asserts
that every infinite binary tree, i.e. infinite tree of sequen
ces of 0's and 1's, has an infinite path. And this is a prin
ciple which is provably weaker, i.e. more constructive, than

the Ascoli lemma [14].
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