137

Estratto da

Lo

R. Ferro e A. Zanardo (a cura di), Atti degli incontri di logica matematica
Volume 3, Siena 8-11 gennaio 1985, Padova 24-27 ottobre 1985, Siena 2-5
aprile-1986. - ' '

ON THE LOGIC OF SENSES
AN ANOMALOUS USE OF BELIEF SENTENCES
ITS RIGOROUS AND FORMAL TREATMENT

Disponibile in rete su http://www.ailalogica.it ALDO BRESSAN

Padova

N1. Introduction.

This lecture was concerned with the theory of sense logic
developed in the work (2] on synonymy for extensional languages, in
its extension [1] to the modal calculus McY presented in [ 4] , in
the memoir [3] on a generalized synonymy notion and quasi senses
(substantially) for MCv, and especially in L5 where a general
interpreted language 53; is introduced in order to treat e.g.
iterated belief sentences, whose 1iteration -orders may Dbe
transfinite, but smaller than the ordinal A . Furthermore :fx:
contains descriptions, modal operators, non-logical operators, and
wfes - i.e. well formed expressions - having both types of all
finite levels and (sense) orders represented by all ordinals
<a. ()

In{ 6] an axiom system valid in Zﬁ’; , and hence a logical
calculus, say {'C; ; 1s considered.

The main aim with which &x; was constructed was to reach a
strong expres§ive power. On the other hand, in both [ 5] and (6 3} it
is written not to claim that any completeness theorem should hold
for {G; . It can be added that certain axioms valid in ordinary
extensionl calculi and e.g. in the modal claculus MCy, hold in

‘Sf; only in case the sense orders of certain designators
occurring in them are equal or satisfy certain simple conditions.

In some cases this is natural and also compulsory; in others these
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restrictions can be justified on the basis of the ontglogy
underlying the semantics of :ff; , but they seem to bekavoidable by
means - of suitable changes in this semantics (and ontology).
Therefore it 1is natural to consider such changes in order to
improve the general theory presented in {5] and { 6].

Since the afore-mentioned problem concerns (sense) orders, in
order to concentrate on it better, it is convenient to consider the
extensional part of {i; , deprived of non-logical operators. Let
us call g.:, the sense language thus obtained, or more briefly,
La

X X X

The first aim of the lecture was to present two successive
changes  in xd's éemantics, which turn :(q‘ into other two
interpreted languages: X&‘ and (a”._ Thus the hyper-intensional
axiom

(1.1) f=g = (V‘xl,...,xn).f(xl,...,xn)=g(xl,...,xn)

(imp=q=, p=aq)

to x_ have the larger

(2)

where f and g are functors or relators and Xy

of the orders of f and g, is succ}essively improved. In more
detail, both the D-part of (1.1) and its‘ converse can be asserted
for Id only in case f and g have the same (sense). order. This
continues to be true for x; as far as that converse is concerned;

~ but the D-part of (1.1) is valid in :f; no matter which orders
(¢ ) f and g have. Furthermore the whole wff (1.1) has this
validity for Z:

At the lecture the last assertion above was considered only
disregarding descriptions and l.—operators; its complete proof was
performéd only later. Therefore the whole subject mentioned above
is planned to be published elsewhere.

The second aim of  the lecture was to show, so to say, an
anomalous use of belief sentences made in the ordinary language
-'see N2 - and a rigorous treatment of it based on e.g. £y . The
procedure used to reach this goal can easily be applied to most
hyper- intensional languages.

The afore-mentioned treatment = see N3 ~— is based on and
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practically consists in a certain extension ¥-» Kg of a widely
arbitray formal language { capable to deal with belief sentences.
One can identify g with e.g. fd s i: , or 51; Since so- far only
:S’i; is available in publications.;,in N4 the extension ;f-)fw is
rendered explicit for ¥ =€X:( : the semantics for x‘y:fxf (=D
{K:w) is given there directly ' in rather full detail,” by
presupposing only NN2-4 and some conventions in [5], E.g., by the
formation rules ( ?1_10) for 53:: written there and the operations
(1) and (2) in N3, the formation rules ( Villo) for 3f£ are
completely clear.

The semantics  for :ff: - see N5 in f5] -~ 1is based on a
uniqueness theorem - see Theor.6.1 in [5J] - which has not been
explicitely proved so. far. Therefore its extension for &‘f: is
included in Theor.6.1 proved here. As preliminaries, in N5 some
semantical theorems are considered. In particular Theor.5.2 is
proved, where some equalities and strict inclusions among the sets
QeP, o1, ana st (tely, fcd ) for :S’i,}’ are asserted. Its
restriction to 533 (strictly) includes the relations of the above
kind asserted in [5 ] without proof.

In N7 333 is shown to be richer than fﬁf; in QSs of order f3
for Ogfi<d, and in QEs and QIs of order 3 for O<fi<d.

Since the language 83: , presented inL 5}, is referred to here,
a brief errata corrige is written for it here, as well as in( 6],
in the Appendix. Of course- the corrected designation rules for

83; are also included in the designation rules for &fg written

here in N4.

N2 Some ambiguous and anomalous uses of belief sentences.

The example presentedﬁbelow, quite possible in every~day life,
shows an anomalous use made with belief assertions of any natural
language; and thus the example also contributes to show the variety
of ambiguous uses made with such assertions.

Assume that

(a) C. Rossi is charged with murder,
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(b) Mr. T will witness, knows that C. Rossi is guiltless, and is
honest,

(¢) Mr. T. ignores that C. Rossi is Pete's father,

(d) Pete's neighbours know (a) to (c¢), and

(e) Pete asks his neighbours about his father's situation.

By (a) to (e), it is natural for Pete's neighbours to answer as
follows: your father's situation will improve, because Mr. T will
witness, he is honest, and

(f) he knows that your father is guiltless.

In speaking with Pete it would be unnatural to refer to his
father as "C. Rossi". Therefore Pete's neighbours assert the
pragmatic sentence (f), whose descriptive counterpart is

(g) Mr. T knows that Pete's father is guiltless.

Note that, under a normal (usual) reading, assertion (g) - as
well as (f) - is false by (cf, and Pete's neighbours are aware of
this by (d).

The use of (f) made in the example above, shows that (f), as
well as (g), is ambiguous. The most interesting feature of this
ambiguity is that the reading of (f) made within the example =
hence the one of (g) - is, so to say, anomalous and it does not
comply with the semantics of usual formal theories of belief
sentences (or those of {f: or &; ). This happens in spite of (g)
being ‘a simple (non-iterated) belief sentence, to which (in
connection with its usual reading) also Carnap's theory written in
{73 can be applied.

In fact (g) is substantially meant in the example in accordance
with the following anomalous evaluation of the sense of the
assertion ) ‘

Pete's father is guiltless;
one regards "Pete's father" as synonymous with "C. Rossi", i.e. one
attributes it an ostensive (technical) sense: C. Rossi's extension;
then the usual rules are applied. Incidentally, when ostensive
senses are identified with thé corresponding extensions (or
intensions in modal languages), which is technically useful, one

ought to spéak of (technical) senses.
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N3 Rigorous treatment of ambiguities and anomalies of the preceding

kinds.

Let us consider e.g. the interpreted modal sense language Sx:
- see [5] and N4 -. It has the formation rules ( ql_lo) and rules
(hl-lO) C (91_10)3 which assign every wfevA of 5:; a
quasi-intension 4 = des:w,(A) [a quasi-sense 4 = sens:W(A ) ] at
every c-valuation 5 and v-valuation V¥, i.e. at all assignments of
(admissible) values to variables and constants - see [ 5] pp. 438,
451, and 452. In order to turn 53: into an interpreted language
53;0, briefly ng , capable to deal rigorously with ambiguities
and anomalies such as those considered in N2, the following four
operations suffice:

(1) Add a new symbol, say @,

(2) Duplicate rules ( ¢

[
1-10 (3)
(\Y;Q) rule (Wl) holds and ct@ , vtn(Qe E, (Bca, tely,

O<MC A+w),, or O MC )3+wo if preferred, ne N*:D N—{O});(A)

( W;p) the antecedent ( *h)A of rule ( Yh) implies that Ah,
_Ah(9 [ Etk (h=2,...10), where Ah is (the wfe arising from rule
(40, i.e.) A(Al,---,An), ( xl,---,xn)'A, ~p, poq, Udp,

. i D . h .
(ﬁfv@n)p, (Qvgh)p, [31= AZ’ or ()} xl,n.;xn)Z\, while t is t, &, O,
0, 0, 0, t, 0, or (tl,...,tn,to> for h=2 to 10 respectively.

-
1—10) in 5] p.438, by turning them into

the formation rules (¥ ) below respectively; -

(3) For r=1,...,8 require every wfe A(r) that arises by means of
rule (‘ff ) and fails to end by (9 , to satisfy the old designation
rule (hr); furthermore endow A(P)C7 with the same
quasi-extensional designatum as A(r):

(3.1) desw.(A(r)ﬁ) = despr (A(r)).

(4) Lastly, for r=1,...,8 require the arbitrary wfe A(r) above

>to satisfy the old rule (fr)'for Q8- designation; furthermore

endow A =5 A(F)G) with an ostensive quasi-sense as follows !
= = A = A, (9.
(3.2) X sensﬁu_ (A) des_ﬂv( (r)) (A b (r)(9)
Incidentally,.on the basis of operation (4) A(F)QQ can be read

as A(r) meant in an ostensive way (or sense).

w ©
It is obvious that the interpreted language 53; reaches the
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aim by which it has been constructed.

Furthermore, given any sense language 4L (modal or extensional)
it is rather obvious how to construct K@ by means of the analogues
for 4 of steps (1) to (4). In fact (1) simply introduces "(®" and
(2) to (4) duplicate in a simple way the rules of formation and the
designation rules for quasi-intensions (or quasi extensions) and
quasi-senses.

By regarding & to contain a suitable part of ordinary English,
assertion (g) can obviously be translated into ‘,4’.0 by

(go) Mr. T knows that (Pete's father)(d is guiltless.

N4 An explicit presentation of the rules of QI- and
QS-designation for -Si" .

Here NN2-4 and conventions 5.2-2 in {5} are presupposed - see
fnt.4. The HQEs (hyper-quasi-extensions) and HQIs (hyper-
quasi-intensions) for &fd based on the proper individual domains
):i to 3),, and the set [’ of possible cases - see (4.2) in [5] - will
turn out to be more than those for XX; -~ see N7; hence the same
occurs with the v- and c-valuations.

By' rules (lfl_s) in't4l), p.438, and steps (1) and (2) in N3, Et
denotes here the class of the wfes in 'Si&? that have the type t
(€Ty). Similarly, by Qlf, QEf', and Qs{’, we denote here the
classes of the QIs, QEs, and QSs respectively for 512 , of orders
s?, (&) and type t (C:'Ty). The definitions (2.4)1_2 in{5] of EB
and wfe'ﬁ are here still in force, but they refer to «5’3;’

Let ’5&2 be the 4-th segment of ‘ng , i.e. the language whose
wfes are the wfe‘-)‘s, i.e. the wfes of ﬁg whose orders are < pe .
More in particular the semantics for gig will be determined by
regarding —SX;’ as a theory belonging to ’SI:?,all of whose constants
are primitive — see f5], pp.444-445 where 83; is ‘referred to)and
consider the analogue for 53‘9

In order to determine the semantics for 'Klff based on the sets
‘hl to B, and i _see (4.2) inl5] - we want to define, for
0 g Bel<ok:

143

(1) QE? . QI? , and the class A{? of the entities thai: can be
assigned to the variables and the (primitive) constants of type t
(€% ) and orders < §,

(2) the class v [IJ'_] of v-valuations [c-valuationsJfor &f)‘_’,

(3) the QI K: desW(A) (or des%’v(A)) designated by any
AeEtd - see (2.3) in(5] - at any ¥e1* and Vevt (t €Ty ),

(4) the Q@S 5 = sensov(A) (=sens,;1u-(A)) designated by any
Ae Et‘"at any §e 1 ana VevF (t e, ),

(5) es” (tel), ana

(6) the intension 6‘—I (or I3 (#)) of any wfe('\ 4, whose @S is ¢

We do this by simultaneous transfinite induction on A (0¢A $®&)
and ﬂ (= 2). More precisely we can consider separa'telyﬁj:he cases
where L is a limit ordinal, and the remaining case. Here the
former is considered first, simply because it can be treated wery
briefly. In fact, in it the objects (1) and (5) are already known
for ﬁ<2. We can introduce VJ'[I'LJ as the set of the functions
U L’]J defined (only) on the %/ariables C constants ] of orders < 1 ,
whose restrictions 'U"j L‘TSJ to those of orders <:5. are in V‘S [15]
for 0< $<1. Then, for any wre® A with $<2 and for any W1t
and ‘l)’eV", we can set,e.g. for § = fAa+1: :

(4.1) des;'v( A) = de5'§3,§_vt.')ﬁ(.’l.),sens;0(A) = sensgij,uiéf(’A'},

Then (4.1), , hold for any § with f<<Z.

Lastly the determination of the function % - FI for 8:;? ,
i.e. I_l' can be defined as the union of its determinations for
53? ($<2): 1y = Upeq 1p .

Thus all objects (1) to (6) can be determined for 'th@ when
A is a limit ordinal.

Now assume that A is the successor of an ordinal. Then we can
simply assume .1:)5+1; furthermore the objects (1) are determined
recursively, for t €& 'Tp ,» by the initial clause

(4.2) GEP = D_ (t=0,..., ) - see (4.3) in 5]

and the recursive clauses - see (4.1) int5]3
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p _(a® n o
(4.3) QEce i bt © (At,x‘“x“tﬂf") Qg wird .
no_ j)
(4.4) QI = (M- QE ),
and
B _ 4D <H o _ A0
(4.5) AL = QIy v @S¢ (hence Al = QI ),
where

(4.6) (Q’Ef= QEtn - §ri.

Thus we can introduce V& [I)'_] as the set of the functions U
[ %] defined (only) on the variables [ constants ] of 513 for which
- see fnt.4 -
$ $ . )
@7 Vv rend, (cf nead (5<d, t6T, neng,

and either O M < liw , or 0<M< o +Ww

0 O)'

In order to determine the object (3), let us first accept the

determinations (4.1) for - any wte<f® A and any J¢ 1% and

Ve V)‘. Then let Ny lbz the number of occurrences of (logical or
non-logical) operators in the arbitrary wfe A of 53’({9 .. Now we can
define K = destm(A) for A€ Eg* ., Yer1d, and Ve vi, by
induction on Ny (¢ N) and recursion on t (L‘-?,'),by means of rules

(h ) below, regarded to hold for all entities that satisfy

1-10
assumptions {i) to (v) below.

(i) A, AO to A, A, and Jl are wfes having the respective

n
orders ﬁ, 50 to én’ 5', and ‘S;ﬂ. , and the respective types t, tO
to tn, t', and t , where to = tl,...,tn,t), : tJL =

(t,,vee,t 3t',t) - see (2.2) in{51 -, neN,, and O<H < (x+w_  (or
1 n = — ¥ — 0 =
< § +u)O if preferred - see ftn.4).

(i1) x, to x_ are n varibles and x, € ES¢ ¥ (i=l,...,n) - see
(2.3) in [5).

(111) The orders £, §g,--., 8., §', and & are < A while
e 1% and Ve v

(iv) One uses e.g. des (A ) for [des

AUy (B)J(y) and the

W

definitions
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ly)
(4.8)*[ = % ("gl,..., gn' (gv); ‘f =

g

|

i~

des ,(.A') £F
%e (i=1,...,n)3

1

sensé,u. ( A, )

are accepted for XE r , where

(4.9) y' = VU

hence

1

100

..

S X,

- see Convention 5.1 in [SJ;

o $

n

M
£0Y) ; ¢ Q€.
.10) - Tx...xA™ & = .
(4.10) { € (At‘x xAtné—-) ‘[ (2 LNy vel)
g

Sg
QS +

where(s), by writing ? for (f yovay ?n),

avfw): sup { (_f(a‘)J (§)°rd l f e;)f(v)}’

dp = sup{'d“” { Xe‘"f 3

and - see (6.1),. below -

(4.11)

2

dg =

(4.12)

sup {g(?)”dl ; G‘bg }, whence

£fly)

e85, <1 (yel.

(v) One accepts the additional definitions

(4.13) z' = desdv_

(4.14) A - -[
1

and, for i=1,...,n,

~

A,
J

sens

wo

des

U

(&), & = des (),

= de ('AJ) (j=or---1y)y

s
w

(A.) if (Ai)ord £ (Ao)ord

( Ai) otherwise.
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At this point we can define X = de (A) for every wre A of
AV

Rule (T2 A s then A(¥)=doy}.  (A)=da?, (A0)is | At
/ ] 55 o - then 4(¥) MOVJ(A) M”J( ) : 'Sig by' means of rules (21_10) below, which are regarded to hold
(‘R’i) th L- Ct)‘ J y C"I(ﬁ) where nd ZV(.V»G [ &= for all entities that satisfy assumptions (i) to (iv) above; they
3(( ” m case 0'6&9“” e N are also based on the definitions
A ct’her‘waSe ~see (4.11) belo«v C(4.15) § = sensﬁv_ A) , Je sens, (Jl)
(£s) | 4, ui;ma A«), EA( )]( 1 IZ,,‘)T— see (5,8) in : \J. = sensﬂv( ;) (§=0,...,n).
' | 53 and (4, 14), . .
1 ; 4 ‘ u 1f ; th AQ) 15 des i
(R3) | R (e, 2a )4 mmzm’g RTINS Ml e |18 445 en sense(AD) s deey 14, while
=seusy, (A) is
CJC(V)]({’ otherwise — 5¢¢(5,8) in AN
L[5 (4. 8),and (4.12), (6) R A
; o i e ,
) |~ &4 (t,=0), F LTl i€ A(5)isT [FI. | () Awi or ¢y L V() or S respectively.
01424, (tatyzo), | T3 B=For LOST; thorwie SRR GV ENCYPIRY IS P LS A0 NV P 9
(4e) :C\A) T ift U (A )-l £or all ¥ ér‘ (§3) (ﬂx{,.’,,x,‘)A’ y € ‘SJI )ﬁ)g} — see (h.8), .
Fo herw.se, ;
) ' . i FARS :"' h 3 - ‘ o - ~
(£4) L("‘“«)A (t=0), Tife s 5( J=T, where U (Eegli~ A, 028, JOAd <~ 4,7 ,< D’A’JA3>1<U:51>7
ﬂ ; ’i ) ‘U'( )f()/‘ ATl ?é}’ $e QChCI‘WJ;e ‘t' \9‘4)6' ,o¢ (1%’)5’ <y ?> o) ('),?)T€$PC¢BV?«])/ wheve
) )l (e o), ") ‘;5:1 is ti;e t:::q;:v f:;”:"g:)‘ for 12020 2 | 1i0.8), amdd (4.9) hold with n=1.
A48 : .
of & s u’q) A4:A2 (tazt:&), £ —,A47.A2
n=%@) (M= Em,a e.n: LB(?)]w)J |
i case ¥z 8, [ 40§ ]-se | o) |t Ay | <X, g5 = see h-Bh
{.449) below - anc e oy (A)= '
T for V'z V( )7 F if mo such
unigue 4 exuts
() | A=4, (6=t), [T 48 B (5)=B,000; F otherwise,
(ﬁaof (fx‘l_“’hmi \ 4(” -~ 5e€ (’1;,9)1 .
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Now the class QS,_ can be defined, for t¢ T, , by
(4.16) st’ {sens (A)]‘Jel)' v evd, Ac—Ef‘} ( 1= B+1).

On the basis of Theor.6.1 below, we can extend the determination
of G‘I, already known for ¢ e(,)S“}a ( = U

QS'<ﬁ) to the case
t ’
¢eqsPt.

tet,

oI
(4.17) =°desm)_(A ), where ¢ = seng A

’W
for some (constant-free) wred A and some 'U—EVJ' and QEII In
other words we define IZ,( ) to be Iﬁ(é" }, for & €QS<};, and to be
the object C"I determined by (4.17), for c'éQSSK

N5. Some semantical theorems, mainly on strict inclusions, among
HQEs, HQIs, and QSs.

THEOR.5.1. Assume that O<Jclsd . Then theses (a) and (b) below
hold.

(a) The restrictions ‘U"‘S Cﬂ"s] of the valuations Vévd [3 € I’ll
to. the variables[constants] of ordery(é are the valuations in V9
[1d1.

(b) If A is a wre®, ¥evd, Aemd, yrevd AeId, and ¥ [ 4]
agrees with ‘V [5_‘( on the variables [constants] that occur in A R
then

'SU'(A) =‘ desﬁV(A), sensn,v’,(A) = sensﬁv( A).

Indeed thesis (a) follows from (4.7) and thesis (b) has a proof

(5.1) des

admittely cumbersome, but as obvious as:the one of its analogue for

extensional languages. q.e.d.

By (4.16) the knowledge of the QSps requires the applications of

rules (h

) and (g ) to wfeﬁs; only the first application

1-10 1-10
involves the function ¢¢& , and for c'eos‘f’; i.e. it involves
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the function Ip. The existence of I will be proved by Theor.6.1.

41
Incidentally Theors.5.2 and 6.1 below can be stated separately by

the considerations above.
From (4.2-6), rules (fl_lo), and (4.16) one sees at glance that

(ot) ¢ 1is an ostensive QS, i.e. "¢ HQI, only if ¢~ ‘has the form

sensJ,U.(A ) where either A ends by ¢ or A's length equals 1. and

(ﬂu’U’ J(A) is ostensn/e‘, ’whlch certainly occurs - for A d—O hence
Qs*-HoI # @ for M<d, by rules (&2_10)
Furthermore, if also (4. 8) is taken into account, one sees that

() the QSns, i.e. the elements of QS” are sets constructed

(within pure set theory) starting out from some QI’“G and some

symbols of &I; (in the form of nested structures made with finite

sequences - see (&

1-10) — and functions - see (4.8), -)3and

» <d _ o f3 B e Y,
(5.2) Qsy A QI = (,?St N QIt (f<d, teTy).

In fact (5.2) can be checked by inspection on the forms of the
HQIs -~ see (4.2-6) - and those of the Qst that are not QI{‘S

- see rules (¢ ) and (4.16).

1-10

Theor.5.2. Let O$$<ﬁ<d and K<ol. As a conseguence
5 o »o_ o _ .
(5.3) QEt = QEt , QIt = QIt (t=0,...,% ),
M Y o) 2 M 5 '
(5.4) QI C @5, , QIy C Ay, AYC Al (teTy),

(5.5) QEJC e?, QI’S c QI” H QE:pC e, oIfcﬁc QI{’
(telv-io,...,v} ),

5 <fs 5 <P _gred B _gr<d s T Y.
(5.6) @S2 'C @8, @SSY-QI{"C @Sy -QI; (teTyp);

and, 1fﬁ is. a limit ordinal, then

. a<Pe B s .
(5.7) Aiﬁ=Af (t=0,...% ); AP C & (teT,-10,...0]).
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Indeed relations (5.3) hold for <& by (4.2) and (4.4).

Let (S.r)g denote the nonestrict counterpart of the strict
inclusion relation (5. r) (r= 4,...,7). Then. (4.7), (4.5), rule
(el), and (4.16) easily y1eld (5. 4)"“ . In addition also (5.5-7)%
are implied by (4.2-7), (:1_10), d (4.16) at glance.

Furthermore, by assertion (& ) above some & is in' QS,: — QI <a
/(SQSf—-QIt‘d). Therefore (5.4)€ and (4.5) imply that the strict
implications (5.4); , hold for O<fic o and M <&X. ‘

Now choose 3 <« arbitrarily and assume that (5.4)3 and (5.5-6)
hold for all § and £ with 5<j’9<ﬁ . Furthermore suppose é<ﬁsﬁ.

Note that by (5.2) we have the disjoint decompositions

3 _aré <3 '3 B )3 e <a
(5.8) L =QI v (QSt" -QI¢ )y AL =QI{ v (QStﬁ -QI¢ ).

Since now J<Bsf, by (5.4),, (5.6)F , ana (4.5),

) 3 <fo -,
(5.9) QI C s cesifc ad ;

hence, by (5.2}, (5.5)7 , and (4.5),

<
2

(5.10) QIi C Afn QI:d' .

By the inductive hypothesis, (5. 6) and (5.6)% yield
es5 -1 ¢ osf -qride s QI“’
Hence ; by (5 5)5 and the disjoint decompositions (5.8), we have

(5.4) (for O<51<ﬁ<f&)

Now choose any t = (tl,...,t to)e 7 . By (5.5)% for t=t, and
(4.6), we have Q‘E" C Qf . Furthermore, by the inductive
hypothesis, (5. 4) 1mp11es A“ C Aﬁ’ (i=1,..,n). Then' by (4.3) we
have (5.5)1. Hence (4.4) 1mp11és (5.‘5)2

If_. ﬁ is a successor ordinal, then (5.5)3_4 are practically
included in (5.5)1_2. Now let ﬁ be a limit ordinal. Then some
subset S of Cﬁ, where CE = Ai x...xAin for ¢g<gl , contains an
element. of each CE (e<f). Furthermore we know that

3 1)
@f:ﬁs the for all ¢ <ﬂ . Then, by (4.3),
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Thus (5.5)3 holds. Hence, by (4.4), (5.5)4 also does.

In order to prove (5. 6)1, consider the wfe: O = vf1 (vfg),

-] ‘e

where f_( T -{o,...,v} and t, = ¢ tl,t) By - (5. 5) for some
Ve Vﬁ+ we have /U' € QIﬁ* . Then, for any Te Iﬂ+1, by rule
(iz) A = sens,J,U.(A) is a non—osten31ve QS_{' consisting of a

sequence formed with a QI outs:Lde QI‘G {(and with othér objects).
Hence - see assertion (f3) A éQSd; On the other hand pord, S,
so that A QS};. Thus (5. 6) has been proved. By rule (2 } the
above QS A is obviously ou’csmle QI‘OL. Hence (5. 6) implies (5 6)

Let now B be a limit ordinal. Then U3<ﬁQS ’S- QS"’. Hence
(4.5) and (5. 3)2 yleld (5. 7) Furthermore, noting that (5.2)
implies QS‘”nQI‘ﬁ nQIJ‘, (4.5) and (5.5), yield (5.7),
q.e.d.

I

N6. On des (4d), sens (A), and the function ¢ ¢
raiaiiii i ‘D‘v‘ ’ 51)— ’ v

Among the properties stated by the following theorem, the
implication (6.1)3 is essential for defining g - {;“I, or the
function I} (0<2gad).

Theor:6.1. Assume that O<.'2§cx, 'jre I)‘, 'U;eV), A is a
b

wfe<d | Z = des (H6), and A = sens (4) (r=1,2).
Then(s) : d’l’U’; i F d"'v;z' ’
(51)Keqxd‘Z—K-(Z)“%(Z)“dZ A_>A 4
) 1 =4 1Ty 1 ~ 1 1~ %2
so  that, for C“eQS‘J, .’,"I -i.e. I3(6) - is_determined, and we

have - see rules (g, ..) - ¢ €QIS* if and only if &= ¢.
€1-10 if and only if

-Remark that, if ‘feQI: so that f&QSt‘ by (5.4)1, then ¥ has an
order, "a, as a QI and an order, b, as a QS - see ftn.8. Hence

%€QI; , so that§ ¢ @S . Then a=b by (6.1)
ord

1-2* This justifies to

denote a and b with the same notation: €

Proof of Theor.6.1. Fix 1 with O<MM$d, and assume the theorem
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to hold for O<Q¢h. If ¥ is a lirﬁit ordinal, then Theor.6.1
obviously holds for O<Ag . Hence it suffices to assume that
(a) O<N<d and (b) Theor.6.1 holds for O<lg{t, and to deduce that
Theor.6.1 holds for A =74+1. Therefore we assume (a), (b), and
(c)  =f+1. As preliminaries set (for r = 1,2) - see fnt.8

(6.2) w = A ord, 1= length of Ar’ 1= Amax(ll,l'z), L= fi+1;
hence

(6.3) (& >°"d\‘w L () w s (e-1,2).

Ir w1<ﬂ [and w, <M too],then (4.1) yields (6.1)1_2 L.(6.l)3']
immediately. Hence, by symmetry, it suffices to prove (6.1)1_2
[(6.1)3] under the assumption wl= M [and wz»sﬂ].

In order to prove (6.1)1 for w1=i‘( » let us first show that, for
1,=1,

(6.4) A, = (Al)IC:Zl] for ( Xl)m‘d <N [=r3 (w= 1, 1,=1).

Indeed, for ll=1' Al has the form c':}‘ or v:n;

momentarily set &= (Byv VU )( A ) - see ftn.7 -, so that ¢ = Al

by rule (i‘l),whlle rule (h) implies that Z I EZ1= ¢] for
°rd<ﬂ [6°F% nl. Thus (6.4) holds.

Now assume K I"l . Then - see (5.2) — inspection on rules
(21—10) shows that either 11 =1 or (l >1 and) Al ends by (2. In
the former case, for C..ord{,‘ where ()’: Al’ wlu‘e haJve {)’I=0’ by the
inductive hypothesis, so that (6.4)l yields A1= Al;
alsa holds for & =1 by (6.4),. Thus (6.1)l holds for w1=71 and
l =1,

and we can
-

this equality

In the remaining case (ll> 1), by rules (g2 10) A has the form

L e ~
A®  angd Al = des,J 0 (A), vwhile by rules (h2 10 Al =
des,J U’(A) whence (6. 1) . Thus (6.1), holds for ‘”1 .
4 —
Now let us prove (6 1) 2.3 for w =1 and w €M by using

induction on 1 and. by noting as a preliminary, that (6.»1,)2 holds
. A

or‘d=ﬂ (&= A ) - see ftn.8.

R A

For (1=) 1,=1 and G_,ord

trivially for (/4

<|'l we have Al= u"I by (6. 4) and by

the inductive hypothesis, (6.1)1 and (4.4%) yield 6' =& . Then

A1= Al and (6.1)2 is easily checked for ll=1.
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In order to prove (6.1) for 1=1, set ,

(ss)cA 52 (w_."l >w,)

Then A eQI“" by (g,), so that (6.1); yields A A (r=1,2).
Hence (6.1)3 holds.
Now fix 1>1, Assume (6.1)2_3 to hold for all 1< I, and put 1=1.

First consider the case when, e.g., & ends by @ so that, as was

1 e d ~
shown in the 2nd paragraph below (6.4), Alzél' Then (€ QI")‘;

o 4
hence (6.5) and (6. l)l yield A =A . Thus (6.1) holds.

It remains to consider the case when both A and AZ fail to
end. by@ . Let A arise by rule (&i), so that Zl arises by rule
(h.).

* ord

Case i=l, whence 11_1 and l =1=1>1. 'If ¢ =0, by (5-4)2
lad -
A1=A1 (=52
(El 10) we see that 12_1, while 12> 1. Therefore we consider the

case a,ord( n. ir w2<1‘l by (6.5) and the inductive hypothesis

(on] ), (4.17) ylelds A G‘I. On the other hand, rule (h ) yields

-~

Al= (:'I, hence A A and (6. 1) holds. It remains to consider the

subcase

). Hence A eQI‘d', so that by inspection of rules

(. ) Gor‘d h =W, (= wl) hence, by (h ) and (£ ),
06 & (ApT (=¢H.

Assume further that ?3 arises by rule (é.).

For j=1, we have 1
For j=2, A

rd

where 30=AO° and ’Al = sensdlv- (A ) (1=0,...,n). Since ¢

both g, and (‘Ko)ord to (A )Ord

can choose n+l (distinct) wfes BO to B of the respective orders
v yord = Jord

$ o and (KD to (K )

,» We can perform sultable changes on the
values of OZ and 'Ué outside the constants and the variables that

2—1 by rule (y,1 ,whlch is absurd.

has the form Aj(A,...,A ) and &= (J0.Ag, - ,h ),

°d<h,

are <« I -~ see rule (h2). Then we

d L4
occur in Az, by which (i) A1=B1=D sensﬂa,u;(Bl) (1=0,...n). Hence,
by (52)1
(6.7) & = sensfj U (D), where D =p BO(Bl""’Bn)'
. ord s . .
Since D < il , by the inductive hypothesis - see (4.17) -

~ I ~ ~
(6.8) D = c]es'3 vﬁ(D) = ¢~ , hence Al: D by (6.6)4_5.
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On the other hand, by the inductive hypothesis on 1 (2 l)

(6.1)3 implies, by (i):i D des, \ (A) = h = des:),l}.(irz1
(h:O,..,n) (even if Ahor‘ =9 for some l-né-zl,...,n}) Since Ao
ord ¥ _¥ 4.14) & -8
= .50 = By o, A=B, and Ah B1 (30,...,n), by ( ) Ap=By
(h=1,...n). Then, by rule (h ),
(6.9) 5 = & »» hence A = A by (6.8,

Thus (6.1)3 holds for 3-2. The remaining values of j will be
treated in similar ways.

For j=3, A has the form (.ﬂxl,...,x )& and @ = (S,ﬁ_ ,g),
where condltlons (4.8)2 and (4.15)2 hold for ﬁ 5 and ’U 'U
Since c’”“cﬁ

(6.10) g <" L%, S <M - see (4.12)).

Then there are wfes O and D' with oord SJL and D'° ( T , such
that, setting D =5 (Oxl,...,xn)D', we have D =p sensglv, D) =¢&
after. a change of *‘)2 and ‘U'z of the above type. Hence, with
obvious notations, © =a ; furthermore 52, 'U;, and D' [ 4]
satisfy condition (4.8)2 (and (4.9)) in 3,V , and A'. Then

(6.11) g( & ,...,}n) = senson.(D') = sens,’i ‘(N)

for all ?iekii_. (i=1,...n),
where (4.9) holds for V=,. ‘ '

By (6.10)3 and (4.11-12), (6.11)3 implies that the QS
g(fl,...,‘f ) has an order < Tl . Then, by the i‘nductive hypothesis
on 1, (6. 11)2 ylelds des U"(D ) = des,hv..(t)) whenever (6.11)3
holds. Furthermore let f()‘) ff(z)] A [p'], "Jl, and 'v-l satisfy
conditions (4.8)2 in £(3),4 , | , and U . Then f(y3)=£(y); and, by
the arbitrariness of y¢l' , f=f.

By applying rule '(hs) to A2 and D,and by using an obvious
symbolism, we obtain that, for all ‘X&F ,

(6.12) &) = Ch (] €AP,25)F ana Bp) = O] (¢ A°e 30t
if 5g<ﬂord (= oord), and

[»fi(g)](f)1 and 6(3’) = fﬁ(x)](f)‘t otherwise.

(6.13) sz

o -

Since Q =J , by the inductive hypothesis on 1, (6.1)3 yields
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=4. Hence the equality f=f and (6.12-13) yield (6.9) 1°

Since D° <ﬁ we deduce (6.8) in the above way. Hence (6.8)3
and (6.9)1 yield (6.9)2. Thus (6.1)3 holds for j=3.

For j=4,5,6, AZ has +the form ~Pys P;DPy  OF  @p
respectively. Furthermore by (6.5-6) there are wffs 9 and Ay of
orders ¢ # such that by a change of ') and 'V2 of the above type
we have that A =B =5 dess A (D), where D is n-ql, qlqu, or
L‘lql respectlvely. By (2J) thls is equivalent to p o= 'qr 5
sensnz_.u;(qr) for r=1, and for r=2 too if j=5. Then, by the
inductive hypothesis on 1, (6.1)3 yields p qr for r=1, and for
r=1,2 if j=5; and rules (h4_6) yield (6.9)1. Since Dord<n (6.8)
and (6.9)2 can be deduced as in the case j=3. Then (6.1)3holds for
j=4,5,6.

For j=7,8, A2 has the form ('Vxl)A‘ or (‘1x1)A‘ respectively;
and (4.8), (with (4.9)) holds for n=1, t'=0, ¥=4,, ana V= 1]
Furthermore, by (6.5) and (6.5)1, vsl=x ordem o~ see rules (g

)
1 7-8
F<H

p, after changes on ﬁz and V of the above

— and, for some wf 5

type, we have (6.9)1, where

= (Vxl)p or:D = (1xl)p
(6.14)

=14
I

= sens%,v;l (D) (D = desﬁ:;v;(D)).

Then, by rules (t,7 8 A [ol, 62, and 1); satysfy condition

(4.8) in A 5 and Y, for n=1 and t'=0. Hence - see (4.9) for

U'z’U'2_

(6.15) g(fl):senssﬂva(A) = sens:j U,(p g(? ord(ﬂ for fEA“

Therefore, by the inductive hypothesis on 1, (6.1)3 yields

s (A,) for § EAS‘

(6.16) desu;v‘ p) = de"J | 1 'i:‘ )

4
Furthermore let f(y) [f(y)] A rpj 5 and ’U' satisfy
condition (4.8)1 (with (4.9)), for yef' Then we ea51ly see that
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f=f. Hence, on the one hand, (6. 14) implies by (h } that, for all
yer, A (¥) = T=> £(H)(¥) = T (¥5 €A')<"> £T(Ng) =T
(¥§, € ap)<=> B(y) = 7. Thus (6.9) holds. K

On 1:he1 other hand, by applying (h8) to A2 [D7 in the case
(6.14),, we have that, for all yé€rI,

(a) L(b)] A (3) fD(})] is the unique %E(Q‘f such that for
some S Al @ M-S 1r ¥ 5., while m-¢' g ir ¢,
and (¥ lf(z[)] (%) —Tr[f(zs)](?) =T],provided such unique 9 exists;
and K (§)=F [D(D')—F] otherwise.

Since f(§) = £(¥), A (¥) = D(a’), and by the arbitrariness of

el (6. 9) holds again. At this point, since Dord<)( (6.8) and
(6.9)2 can be deduced in the above way. Thus (6.1)3holds for j=7,8.
Fo; j=9, A2 has the form Al A2, by (6.5) and (6.6)1, for some
<

[ o
wfe D, D= A2 - see (6.9)2 - after changes on U and 1}'2 of the

above type. Hence, by (El__lo), D has the form B B furthermore,

H
by using (here and in the sequel) an obvious symbollzsm of the above
kind, we have that E;:Xr and Brord< n (r:l,z). Then, by the
inductive hypothesis on 1, (6.1)3 yields #B'r=Ar (r=1,2). Hence,' by
applying (hg) to A and D, we obtain that, for all 3’6'1 , A (y)=T
fF]x..>A (9 -L;eJA (X <=> B. 1) -E#JB (¥)<=>» D‘b’) =T EFJ

Hence (6.9)1 holds. Furthermore (6.8) and (6.9)2 can be deduced
as before. Hence (6.1)3 holds for j=S. ,

For j=10, AZ has thev form ().pxl,...,xn)A. By (6.5) and (6.6)1,

for some wf‘e<“ D, 5: A - see (6.13)3 - after changes on 62 and

2
'U'of the above type. Hence, by (£ ), D has the form

(), yl,...,y )D More, one easily sees -th;tlgt can be chesen of the
form (Px,...,x ). At this point (£ ) implies that 4'[D'1, J,,
and VZ satlsfy condltion (4.8)2 in A' s j ,  and A" . Hence (6.11)
holds.

By (6.5) and (6.6);, & <M - see (4.11-12) and (4.9) for
V= 'V'z. Hence (6.11)3 yields g(g ,...,E )ord N, so that, by the
inductive hypothesis on 1, (6. 1) and (6. ll) yield

(6.17) des, 4.(D') = des ,(A) - see (4 9) for V- V
,JQU '3 v 4 V’feAé‘ (1—1,...,r1).

ity

Thence we deduce f=f in the usual way, where f [f] is the function
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determined by the requirement of satisfying condition (4.8)1 in T,

A, %, ana U, together with &' [p'], ’52, anf ‘U'z. As a

consequence, by (h ) we have, for all Y€l , that 42(() = f(y) =

£(y) = D()’) so that (6.9)1 holds. We can deduce (6.8) and (6.9)2

as before. Thus (6.1)3 holds also for j=10, i.e. it holds for i=1.
X X x

Now let us prove (6. 1) for (1=) l1 = 1 »1. We can consider

only the case ford< i (G' A )} - see two paragraphs above (6.5).
In it {e A: for some teT,,. Hence we can choose ’32. (Ué, and A2
in such a way that (6.5) holds for W2=Tf and 12=1. Then, by the

lad -
analogue of (6. 4) for A A2 = (A )I = G“I. Furthermore (6.5)2

and (6.1) imply Al Az; hence Z-.-c' . By the inductive hypothesis

I ord ord L
onN, (¢7) € 4 7%, Hence (6.1) holds.
At this point we can assert the valldlty of (6. 1) 2 for any wfe
Al of order €M ; and the one of (6.1)3 for A Ord<'ﬁ lrsi

(r=1,2), and i=1.
X x b3
In order to complete the proof of Theot“,S.Z,it is sufficient to
prove (6.1)3 in the case b‘{l='ﬁ>,W2 and ie{2,...,10}, so' that
11>O. To this end assume (6.5) again. By symmetry it is sufficient
to consider the subcase j »1, hence 12'>l. By (El—lO
Jj=i. The treatments of the afore-mentioned cases will have some

) this implies

features in common; e.g. (6.5) is assumed.
Case i=2. By (6.6)2 (and (22)) Ar- has the form

'Ar'O( Arl"""Arn) (r=1,2); furthermore, by (6.5)2,

A

ord ord re e :
10 ‘Azo ’ A1h= A2h’ where

(6.18)

Krh = sensﬁn,v. ( Arh)' (r=1,2; h=0,...,n).
Va

Then, by the inductive hypothesis on 1,

~ ~

A2h where Ar‘ = desﬁ v, ) (r=1,2; h=0,...,n).
a a

By (6.17-18) we have A = A2h’ th=1,...,n) - see (4.14). Then

(6.19) I1h=

lh
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~ ~ " .
rule (h ) yields ; Alo({_) = rAlo(b’)]( All" . Alq')r o
3)]( 421,...A W= Az(g) for all ¥él'. Hence A, =

2n 1
Then (6.1)3 holds.

For i=3, 'Ar can be regarded to have the form (Jfl xl,...,x )A
rd d
L (9) so that by (23) A (ﬂ or
v : i .
J"r’gr>’ where g, Ar’ 5r, 1};, and Ur satisfy cond;tlon (4.8)2
in g, N , 3 , v , and U’ (r=1,2); and, by (6.5), for some “i and

£t €Ty (i=1,...,n)

with x. to xn independent of r,

ord pord § _§ _ S:4,. . o )
(6.20) 'ﬂ1 =f, s A=, 8,=8,, x,€ ES® (i=1,...,n; r=1,2);
} [
in addition — see (4.9) for U= 1); ana V= U; -

(6.21) gr(fl,...,*:’r;) = sensq V A
forall f 3 At" (i=1,...n; r=1,2),

. i
For r=1,2, define fr' by requiring that fr' Ar’ 31" and Ur

should satisfy condition (4'8)1 in f, A: ) , and V. Hence

(@®) for ali ygef and YcA (i= l,...,n) - the HQE

(3’)](?1,...,‘5]1) equals the HQE Eies .U-o( A )] (¥), where (4.9)
holds for 'U-= 'v' and ’U' 1" whenever the latter HQE E =} F; _a_n_(_i_

the former HQE is inexistent otherwise.

By the inductive hypothesis on 1, (6. 1) and equalities (6. 20)
and (6.21) l for r=1,2, yield that des,‘svi( A ) = desﬁ,V'(Az) for
all §eA‘s (i=1,...,n). Hence (d ) vield fl f2 This equality
and (6 20) ‘imply, by rule (hy), that A 1) = 2 oY) for all yelv,

~
i.e. A1 = 4,. Thus (6.1), holds.
For i=4,5,6, Ar has the form A-pr, pqur’ or Dpr_ respectively
[ . o i
(r=1,2). By (6.5) (and (24_6)) p,=p, and, for i=5, ilso aQ;=q,.
Then, by the inductive hypothesis, (6.1)_, implies p,=p, and, for
3 MPries PPy

A=A Thus (“5.1)3

. o~ N~
i=5, also q;=0,- Hence, by rules (h4e6)’ 1 X

holds.
For j=7,8, Ar can be regarded to have the form (’Vxl) A'r
(1x1)A; respectively, with x independent of r — in a  sense

1 -

analogous to that explained in ftn.9.«; hence, by (g ), A is
7-8 r
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<’h‘-,gr) or (1,gr> respectively, where (1-1.8)2 and ('4.9) are
regarded 'i:o hold for n=1, t'=0, 5= ﬂ U= "f 'U'= ’U" and g=g
(r=1,2). Then, by (6.5), g = g2 Hence the afore—mentloned validity
of (4.9) yields senss A ) = sens U-(A ) for all % eA?_:
Hence, by the 1nduct1ve hypothe51s on l (6 1) yields deso 1, ( A )
= des U—( A ) for all § € A‘S‘ . Furthermore, for r=1,2 deflne f by‘

the requlrement that ‘

(ﬁ for all yel' and f GAJ‘ the HQE [f (X)](f) equals the
HQE Ldes,’ V(A )_] (¥) whenever the latter HQE is # F, while it

fails to exlst otherwise.

Then f1=f2. Now it is easy to check by rules (h ) , that
N 0T 7-8" 1
A-A. Hence (6.1). holds.

1 2 3

For j=9, 'Ar has the form Arl= ArZ; and by (6.5) ajld (i ),
using an obvious symbolism, we have that, for s=1,2, 4 A

is”~ 25;
hence, by the inductive hypothesis on 1, (6.1)3 implies I AZs

(s=1,2). Then K—Z by rule (h ). Thus (6. l) holds.
For j=10, Ar can be regarded to have the form ().p XpseeesX, )A
with X to X independent of r — see ftn.9 —; hence, by (2 ) Ar‘
= (),p,gr) where g , A'r, "U;,.and 'Ur satisfy conditions (21.8)2
and (4.9) in g, 4 , YV, and V' (r=1,2). Then, by (6.5), 8,78y}
hence —by the afore—mentioned validity of (4.9) - sens{"u‘,( Ai) =
sens Va( A for all f GA'“ (i=1,...,n). Then by the inductive

hypothes1s on 1, (6. 1) ylelds des:s Ut( A ) = des,s vﬂ( A ).

Furthermore, for r= 1 2 define f by condltlon (d ) above. Hence
f f2 Now it is easy to check by rule (h )  that X 2. Hence
(6.1) holds. q.e.d.

a2 Y »
N7. Comparison of the HQIs and QSs for J&§ with those for :f;fa

We want to show that t";e HQIs and QSs for &‘f" are more than
those for ‘S}io( , and that this occurs through the Q@Ss of e.g.
universal operators. To this end set, within the ordinary language,

(7.1) o =,
or, from a perhaps less intuitive or more rigorous point of view,

m+l>n , where m=n2 (n€& N);

denote the standard name of n in the ordinary language by T, and
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use ‘pn' as the expression: ;1_2] "+1 >"J TN, for all neN - see ftn.3.
Furthermore consider the intuitive assertion

(&) for every né€N, P, (holds).

It has the following translatlon into :fx ,' to be regarded as of
order zero.

(7.2) A=, (¥n) n 20 +1> n (A€ Eg),
where n is a varlable running over N, e.g. in that n is v?2 and

11
Dl=N. By using an obvious symbolism, rules (31_3) yield

(7.3) K: (V,g) , where g{n)= (511 =) ( > ,(+,n2,1') ,n} for neN.

Incidentally, if "@ " in (7.2) would be crossed out, then "n2"
in (7.3) ought to be replaced by e.g. " (exp,n,2)".

As an hypothesis for reduction ad absurdum let K be a Q3 for
{i: Then K:g, where B has the form (Vx)c+l>x and the term c¢
has an ostensive QS. Hence ¢ is a constant or a variable. The first
case must be discarded because n2 is not constant. The second case
is' also unacceptable, because n2 fails to run over the whole set N.
Hence 7\’ fails to be a QS for :fx: , which proves the underlined
assertion at the outset.

By (4.2-6) it is now obvious that the QEps [QIts ]for ‘ﬁfd are
more than those for {ja in case té€’ —{O,...,v} and O<ﬁ<d.
This and the example above imply the analogue for the QSSs in case
t €Ty and 0g ficdk,

Of course, by (5.3) the QEﬂ s LQIB s] for &T.a are those for
Sﬁu in case t=0, ...J)’ and O<f§<d Furthermore, by the semantical

rules in N4, the same can obviously be said of the QE s and QI s

te ).

If for some purposes, presently unknown, one likes to consider a
finer (weaker) basic semantics for ffs , in which e.g. "32(9 "
fails to be synonymous with "9", this obviously causes QSs to
increase strictly. Instead the strict inclusions proved above are

nontrivial.
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APPENDIX ON PAPER 5

Since my the present work is tightly based on {5]:the following

errata~corrige for it - already written in [63 - is included here.

p.433, 1.18 lg,8 — 1g,8
p.438. 1.14 pet, — FeTy
p.443. 1.7 - see (A) - —> according to (A)
p.447, 1.2b (2) —> (2), then (3) and (4) for A°Td < f3,
‘ B, ; B
p.448, 1.7 (&) the QEt S — (&) the QIt s
p.449, 1.7b S<fp —» §28
p.450, 1.5 (5.1) and (z'x.s)3 —_— (5.1)
.sensIv"(A V£F ; ;sensjt_'(ﬂ )
p.450, (5.13) = . —_— L
'deswi‘(—d)(ve'l") : des., (A)#F (¥er
p.450, (5.13") gI — gI(‘a’) QIIE? -—*, QIJ(”
p.450, Replace formula (5.14) with
-5y T -
(5.14)-[ = vsup{-’lk L
I ord
a (§) [ @] 5 yg](a

for g: (‘gl,...,fn).

p.451, (h,) A isT —5 'Al'(b') is T
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p.451, (h5) A1=F or A2=T — A1(5)=F or 2()’)=T
0.452, (g,) Ao — <50 A,

o L
P.452, (E,) (L —> <‘SJ1)J1
p.452, 1.7b HQSs —~— HQIs
p.456, (e) from {ﬁ; ~—» from a% ,
p.457, (7.3) = 0*xHp = pxtip. —

wo1) 1 1 1 1 1, )
= (¥x7)p” = (%, x;)p", where p =, P[x/x"] and x"€ B,V ... VE,.

p.459, 1.8 for pE—"D Bl(A,z=ﬂl) —

for pZ BU(A,z=03)) and z€E v ...V E,

p.459, 1.9-12 p —_ p(z)
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FOOTNOTES

- (%) The present work has been performed within the activity
sphere of the CNR (Consiglio Nazionale delle Ricerche) in group
n.3, during the academic year 1984-85.

(1) In the papers mentioned here and in the present one only
formal theories are considered, where any wfe A has one (hyper-)
extension and one sense. Several wfes, e.g. "3", "5-2" . and "lg28"
have the same extension, 3, and different senses. The simplest
among these can be called ostensive - see i3], p.484, for more
detail ~. It is often identified with its extension, 3.

(2) In X:g and gf: the equality of two propositions is
equivalent to the equivalence of these. Suppose that f and g are
relators (of the same sense order), and that one of them is the
relation in M and p: the man M believes that p. Then it is clear
that the variables in (1.1) have to take quasi-senses as values (or
something equivalent). This justifies the name given to (1.1).

(3) By e.g. "AG" it is meant AJ@ (to be read as 4
juxtapposed to (¥ ) where aJb =5 (al,...,ar,bl,...,bs) for a =
(al,...,ar) and b = <b1""’bs.> .

(4) However, in [81, p.438 -~ see rule (i-fl) -, the index. M in
Ctﬁj‘ is allowed to run from 1 to & +wWw),. If preferred, we can regard
it to run from 1 to fi+w,. Thus the J-th segment of 5, i.e. the
language formed with the wfes of fafg that have orders ¢ 3, turns
out to be of the same kind as i‘g (O<1sah)-

(5) By (4.10-11) we have f(y)¢ QEX Furthermore

Ctyyoon,ty,t?y
(4.12) and rule (£14) below imply that ()_p,g)e

eQS(t,,...,t,,,t') S

(6) By rule (?‘10) below, A = des’j’l}’[(lpxl""'xn)A'] = (A.p,g>
so -that, by ftn.(5), (Z')ord =D‘§g' Furthermore, by rule (hlo),’z";-o
= N p ’ -
= deswl_(,l xl,...,xn)AJ = f. Thin the consequent of zule (l:s) can
also be framed as follows: A(y) = ... is ZJI,(J)](A’) if
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(Z’ )ord<lﬁord; L.JL\(K)] (i") otherwise.

(7) Since 4's length is 1, 4 has the form
Furthermore 4uV  is a function and (S ¥V )(d) 1
'U'(v:n) respectively.

(8) The order § ord of the HQI # [QS ¢ ] is the least among the
orders of the wfes ) that can designate it, i.e. such that & =
desw(A) fe - sen;aV(A)J at some ¢ I** ana VUev<®- see the

remark below Theor.6.1.

®
ct}l ox;‘ v
s 5(ct}‘) or

s 4 I
(9) More precisely x. to X All, and A2 can be so chosen that,

1

for r=1,2, Ar has the same QS-designatum (sens{sv

QI-designatum (g J y TR
( eson,v;) gs ('ﬂrxl""’xn)Ar'

) and the same
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