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ON THE ORDER-STRUCTURE OF THE REAL NUMBERS
IN NON-STANDARD MODELS OF THE ANALYSIS

MARCO FORTI
Dipartimento di Matematica, Pisa

' §1. The order-theoretic and topological properties of the real axis in non-

standard models of the analysis have been extensively studied by E.ZAKON in [7].
Further results, including partial answers to (7, Questions 1-5], can be found in [3],
(4], (3], [6].

This note surnmariies the achievements of a joint research, carried on in this
area by F.HONSELL and the author: more details and complete proofs will appear in
[1] (see also [2}).

Given any non-standard model of the analysis, we consider the order-types:

W, A, v, A7 of ‘N, R, *™N, 'R (the standard and non-standard naturals and reals);
X of Go={xe'R|IneN Ixi<n} (the galaxyof 0);

p of My={xe*R| VneN [x|{1/n} (the monadof 0):

8 of *R'/G, (the positive infinites modulo equivalence);

T, of Tx ={ye0|y<x} (the initial segment determined by x in 6).

We are mainly concerned here with the symmetry of 6, the equality of 6 ard
T, (resp. of A’ and p), and the possibie cofinalities of these order-types. We shall

also consider some connected questions about pseudometrizability and completeness

of the natural group topologies on "R (all these problems have been posed in [7]).
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§2. We recall that the order-types u, X’, Ao, T, are symmétric and satisfy the
following identities, where &* denotes the converse order-type of & (see {7)):
v=w+(wt+w)0, XN =2 (0*+1+8), p = A0+1+X,0% 0= rx+1+6, Ao = HA,
hence cof v =cof X’ =cof 6 and cof p=cof r = cof 6%

We begin by considering the following eight equalities:

(1) 8=06% (2) 6=06+1+0, (3) 6=0"+1+0, (4) XN =p, (5) cof 8 =cof 6%,

6) 6= T, for some x, 7 6= T, for any «x, (8) T, = ry for any x, .y.

The following theorems give an almost complete insight of the connections exis-

ting among the above conditions.

'1'1-]EOREM 1. The implications of the following diagram hold in any ronstandard
model of the analysis:
1) +— 2) +—> (3) — (@)
™ I l
6) +— (7) — (8) (5)
Moreover, if cof 8 = w, then (5) implies inturn (4}, and any one of (1)-(3),
(6)-(7) is equivalent to the conjunction (5)&(8).

On the other hand we obtain, via the models of section 4,

THEOREM 2. let «, and k, be regular cardinals. There are norrstandard

models verifying both
2.1) cof 0=k, cof 6*=k;, and
(2.2) Irxl # Iryl for suitable %,y (hence 6 # 0%).

If k, =, , then there are also models verifying both (2.1) and
(2.3) 0=y (hence 6=0*=X).

Moreover 18] can be any cardinal not less than 2%, in models of (2.1) &
(2.3), and any cardinal not less than ZKwk, in models of (2.1) & (2.2).

THEOREM 3. Apart from compositions, no arrow can be added to Diagram (¥)
except perhaps (5) —» (4).
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Notice that, although the equivalence between (4) and (5) is claimed in [3,
Lemma 3.2], the proof given there works only if © has countable cofinality; thus
also the implication (1) — (4) lacks a proof in [3].

Moreover, the consistency of (1) is proved in [3] and in [6] only for saturated
models, hence, in fact, under the very strong assumption {6] = cof 8 = x* = 2%,

The remaining non-trivial assertions of Theorems {-3 seem to be new, except
the implication (3) — (4), which follows from the proof of [6, Theorem 2.12],
ard the independence of (5), already stated in (5, Theorem 4.4] and proved in a
similar way also in {3, Theorem 2.7].

Finally, the questions are open, whether any of the implications (5} — (4) and
(5)&(8) — (1) holds for arbitrary cofinalities, and whether (8) can hold with
arbitrary values of cof € # cof 6* and [6]. A connected problem is the consistency
of 8=6%#p. ‘

§3. Any isolated subgroup A of *R gives a uniformity U(A) with basis
{Ex) | x e*RN\A ), where E() ={ (u,v) € *R?*| Ju-v] < x }.
In particular the natural Hausdorff topology on *R as a dense ordered group is given
by the uniformity U(Q) (the Q-uxﬁformity of [71).

If we define the rank of x as R = {ye™R|3neN {/nx/y{n}, the iso-
lated subgroups of *R are in 1-1 correspondence with the Dedekind cuts in the (mul-
tiplicative) ordered growp of the ranks. K = *R*/R, , whose order-type is €*+1+86.

Forany x € *R*, let A7 (resp. 4] ) be the largest (resp. least) isolated sub-
group of "R to which x does not belong (resp. belongs): then U, = U(A]) and
U; = U(A;) are two "adjacent” uniformities, associated to the cuts determined in K
by the rank Rx' Other uniformities correspond to the "monadic” gaps of *R, i.e.
those gaps which break no rank (see 7, §§5-6]).

Pseudometrizability and completeness of the uniformities U(A) depend on simple

properties of the order-types € and A’, namely: U(A) is complete iff *R/A has
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no regular gaps and U(A) is pseudometrizable iff *R*™\A has éountable coinitiality.
Hence one has in any non-standard model:
LEMMA 1. (i) All wniformities U, are pseudometrizable;

(i) - any uniformity Uy is pseudometrizable iff cof 6* = w;

(i11) the Q-uniformity U(0) is metrizable iff cof 6 = w;

(tv) any increesing or decressing sequence in @ is associated to a pseudo-

metrizable uniformity U(4).

It follows from Theorem 2 that, without the comprehensiveness hypothesis, U(0)
as well as all U;’s can be or not be pseudometrizable; moreover, there are in any
model pseudometrizable uniformities which correspond to monadic gaps of *R: this

answers completely Question 1 of {7] {partial answers can be found in (3] and [5]).

The question on completeness is more intriguing: we only derive here two suf-
ficient conditions from the followig general lemma on dense ordered groups:

LEMMA 2. Let A be any dense ordered group. Then:

(1) A has no regular gaps if it has a least positive gap;
(i) cof A~ {'min {cof X, cof Y*} for any regular gap (X, Y) in A.

THEOREM 4. (i) All wniformities U, are complete in any non-standard model.
(i1) . Assume that in X’ there are no cuts (X,Y) with cof X =cof Y*=«: then
U(©Q) (resp. any U;) is complete whenever cof © 2 k - (resp. cof 6* 2.k}, More
gererally, U(8) is complete unless cof (R™\4) < «.

Note that (i) above providesa new proof of a-conjecture of Zakon’s, which was

already settled in[3, $4].

We conclude this section by remarking that the models ja »-given by Theorem 5 -

below, have regular gaps both in '@ and in A’, whenever « is an ordinal with
countable cofinality; hence - (J(0) and all U;"s are incomplete there. Unfortunately,
no models are ‘known, where any of these uniformities can be proved complete:

therefore Questions 2-3 of 7] are still waiting for a satisfactory answer.

T
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§4. We need only quite general model-theoretic techniques in order to obtain
structures fulfilling the desired order-theoretic properties; hence all the results of
this section hold, ne matter what kind of structures we consider as models of the
analysis. We assume an arbitrary ground model 9%, to be fixed throughout the
section and we consider only elementary extensions of %, , which we call simply
models: thus our models can be elementary extensions of the "superstructure” HQ(R)
or simply of R, but further conditions can be also required, e.g. that of being an
enlargement (see {7, §1]).

We use the subscript O when referring to the order-types of the ground model,
and we reserve the usual notation for entities of the various models we introduce in

the theorems below.

The first theorem, which gives "symmetric" models, can be proved by taking the
direct limits of elementary chains obtained by adding at each non-limit step a

suitable set of constants and "filling" some cut.

THEOREM 5. For any limit ordinal a there is a model o Verifying
4.1) cof & = cof 6* = cof a;
“4.2) - O=p;
(4.3) 16} = lal|pol.
Moreover, if (4.3) is weakened to
44 o< (6, . |
then \ja can be taken such-that any cut (X,Y) , either in © or in X°, verifies
at least one of the equalities ’
(4.5) cof X =cof a, cof Y*=cof a.

N Note that, if « is inaccessible, then bovth» (4.3) and (4.5) hold: actually, in

this case, 6, y and X’ are ngSets of Hausdorff.

In order to obtain "asymmetric" models, we state the following lemma, which

improves [3‘, Lemma 2.3] and {5, Satz 2.1]:
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LEMMA 3. Let D bean w-incomplete ultrafilter over | and let F be any fil-
ter of partitions of . Let 9% and 9, be the corresponding ultralimits of the
ground model My and of the standard model, respectively. Then 9%, < & | hence
in particular RI/D|-< *RI/D| , and
(1} i T is an initial segment of *N,, then TI/D| F is an initial segment of "N;
(#) v, is an initial segment of v, hence 6 = 8, + (0,*+14+68)t , where £ isa
dense order-type without endpoints;

(i) B, is cofinal in © (resp. coinitial in O\©,) iff F is coarser than the filter

of all partitions of | in less than cof @ (resp. cof 6% pieces.

Taking the limits of elementary chains obtained by suitable applications of the

above lemma at each non-limit step, we get

THEOREM 6. Let a be a limit ordinal and « any cardinal less than cof 6.
There is a model %K’a such that:
(1) O, iscofinal in 8 (hence cof 6 = cof 6y),
(i) cof *=cof a,
(111) 181 < (lall6eh",
{(iv) for any ordinal decomposition a = f + y there is some x such that
- K
(L _6%-{1& .
THEOREM 7. For any limit ordinal a there is amodel R such that:
(i} "™, is an initial segment of *N, hence 0 =6, + (0p*+1+6,)¢, for a suitable
dense order-type § without endpoi;zts (in particular cof 6* = cof 6,%);
{i} cof §=cof a;

@ le| < 2/allkel

As remarked in §1, we still lack a general procedure for constructing models
where all intervals of 6 are isomorphic and cof @ # cof 6* are arbitrarily fixed.

However, in order to completely state Theorem 3, any model of (8) & non-(5) suf-
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fices now, and a suitable direct limit of a sequence of «-saturated models gives

CORCLLARY 7.1. Let « be aregular cardinal verifying 2K =2 lol. Then
there is a model’ [’,K such that:
(1) Bl=cof0=x;
(ii) cof O*=w

G t = T for any x,y.
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