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I. BACKGROUND

Type theory was developed in the 70’s by the swedish logician Per Martin-L&f [8].
His motives have been to clarify the syntax and semantics of the mathematical
language. For him, the only way to do this is to analyze constructive mathematics.
This was mainly developed by Brouwer during the beginning of this century. The -
basic difference between classical and constructive mathematics is that the classi-
cal meaning of a proposition is its truth. value (which is either true or false) while
the constructive meaning is spelled out in terms of what a proof of it is. For
instance, Av—A is in general not constructively- valid since we have no method
which can be applied to an arbitrary proposition and yield a proof of it or its nega-
tion.

The explanation in type theory of what a mathematical proposition is fits well
with Heyting’s [6] who explains it by explaining what counts as a proof of it. It
also fits well with Kolmogorof’s [7] who looks at a proposition as a problem and
explains a problem by explaining what counts as a solution to it. But it is not only
the notion of proposition which has to be given a precise meaning in type theory.

Also concepts like set, function, equality, element of, assumption, natural number
have to be analyzed.
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A. The relevance of constructive mathematics for Computer Science

It is not necessary to take a standpoint in the foundational discussion about
mathematics to see the advantages of constructive mathematics for computer pro-
gramming:

— The notions of computation and method is basic for constructive mathematics.
For instance, the function concept in constructive mathematics is exactly the
same as in Computer Science; it is a method which when applied to an argu-
ment of the right kind will output something of the right kind. The function
concept in classical mathematics (a subset of a cartesian prgduct with certain
properties) is not what programmers use!

— From a constructive proof of a proposition it is possible to construct a program
which computes relevant information from the proof. For instance, a proof of
an existential proposition 3x. P (x) will yield a program which computes an
object a which has the desired property P (a).

Other researchers who have proposed constructive mathematics as a basis for
programming are: Bishop [1], Constable [2,16], Goto[S], Sato[13] and
Takasu [15]. Goad [4] has used computational information in constructive proofs
to obtain more efficient programs.

B. The relevance of type theory for Computer Science

For me, type theory is a good conceptual framework for Computer Science. We
are trying to build a new science and it is extremely important to start with a firm
foundation. Type theory is a part of this. ‘'We have to be precise and must have
analyzed basic concepts like program, type, specification,. equality, evaluation,
abstract data types, etc.

Type theory can be seen as a programming logic, a logic for the process where
programmers write a program for a certain task and give arguments why the pro-
gram is correct. It is an important open problem in Computer Science whether it is
feasible to use the computer not only for editing, storing and executing programs
but also to check that the programs are correct. To do that means that we must be
able to write the task of the program in some formal language. This specification
language must be powerful enough to allow the programmer to express problems,
without having any idea how to solve them. We must be able to say what without
knowing how. So a programming language will not do. Therefore it must also be
possible to formalize the arguments why a program meets the specification so that
the computer can check that the arguments are correct. Type theory suggests one
way for doing this.
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II. SYNTAX AND SEMANTICS OF TYPE THEORY

A. How to understand type theory

The basis of type theory is a little theory of expressions which explains what an
expression is and when two expressions are (syntactically) equal. The semantics of
type theory is not described using denotational semantics or in some other model
theoretic way. Remember that the purpose of type theory was to be a clarification
of the syntax and semantic of mathematics. It would only lead to a vicious circle
to try to define it in terms of mathematical objects like sets and functions. Instead,
these notions must be explained in some other, more direct, way. The semantics of
type theory is explained using the notion of computation; the purely mechanical
way of finding the value of an expression. There are canonical and noncanonical
expressions. A canonical expression is already computed, it needs no further
evaluation. Examples of canonical expressions are: Ax.x+2, 3, true, <3,5> and
examples of noncanonical ones are: apply (Ax.x, 3), if x then 3 else 4, 5+12.

There are four different judgement forms in type theory:

A set

A =B

AeA
a=beA

and these are explained using the primitive notion of computation.

Then there are different set forming operations which are defined using the
meaning of the judgement A set. The formal rules of type theory are justified
using the semantics of the different forms of judgements. Type theory is inherently

an open system. It is possible to extend it with new program forming expressions
and new set forming operations.

B. The Syntax of Type Theory

The traditional way of looking at the syntax of programming languages is that pro-
grams are formed from primitive n-ary constants and variables using application.
Not distinguishing between different ways of writing application (like prefix, infix,
postfix and mixfix) a program is then always to be considered to be of the form
c(ey,....e,) where n20, ¢ is a primitive constant and e, ...,e, are expressions
built up in the same way. This is the way programs are dealt with in syntax
oriented editors and it was also how expressions were built up in earlier versions of
type theory. A problem with looking at expressions in this way, is that variable
binding operations are not treated in a uniform way.

In Siena 1983, Martin-Lof suggested that we should look at expressions as
formed by abstraction and application from variables and primitive constants. But
not in the way this is done in Combinatory Logic [3] or untyped A-calculus where
any expression can be applied to another expression. This would lead to serious
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consequences. ‘One is that it would be possible to apply a function like sin to arbi-
trary many arguments and form expressions like sin (1,2,3), although the sin-
function has only one argument place. It would also be possible to form expres-
sions like sin(sin). Self application, together with the defining equation for
abstraction

.d)e)=d[x:=e]

where x.d is the abstraction of d with respect to x and d[x :=e ] denotes the result
of substituting e for all free occurrences of x in d, leads to expressuys in which
definitions. cannot be eliminated (for instance @E.xGx)E.x(x)) =
(x.x(x))x.x(x))= ...). A third consequence of this view is that it would not be
decidable if two expressions are deﬁnitibnally equal or not. This will have serious
consequences for the usage of formal proof rules since it must be mechanically
decidable if a proof rule is properly applied. If it is possible to make explicit
definitions, then the same meta-variable in thj proof rules stand for definitionally
>B A
B
cand of the first premise must be definitionally equal to the second premise. So
definitional equality must be decidable and definitions must be eliminable.

Instead of having just one syntactical category of expressions, as in Combina-
tory Logic, the expressions are divided into. several categories according to which
syntactical operation is applicable. There is an arity associated with each expres-
sion, showing the “functionality” of the expression. Expressions like 0 and sin (x)
which cannot be applied to an expression are called saturated, they have arity 0.
The unsaturated expressions have different arities depending on:what arity their
argument must have and depending on what arity the expression applied to its
argument has. For instance, sin has arity 0—»0 since it expects a saturated argu-
ment and when it is .applied to a saturated argument, the resulting -expression is
saturated. The arities are mductlvely defined by:

— 0 is an arity

equal expressions, for instance in the rule we mean that the impli-

— if o and P are arities, then a—»p is an arity.

Expressions with arity o[ are expressions which only can be applied to expres-

sions of arity Q. N

Each variable and constant have a unique arity associated with it. I will write
a .o to mean that g is an expression of arity a.

We allow abbreviatory definitions (macros) of the form:
c=e ‘

where ¢ is a unique identifier and e is an expressions without any free variables.
In a definition, the left hand side is called the definiendum and the right hand side is
the definiens.

Examples:
0:0
x:0
sin : 0—»0
+ : 0-—»(0—>0)
[: 050-5(0—0)—0))

In general, expressions are built up in the following way:
1. Ifx is a variable of arity o then x is an expression of arity c.
2. If ¢ is a primitive constant of arity o then ¢ is an expression of o

3. If ¢ is a definiendum with deﬁmens e of arity o then ¢ is an expression of
arity o

4. Iff :a-»Panda :othen f (@) : B.
5. Ifx is a variable of arity and e : B, then x. e : a—»B.

The following syntactical conventions will be used:

- 0—»B—»y will be written instead of a—»(B—»Y)
£ (a)() will be written instead of (f (a))(b)
S (a,b) will be written instead of f (a)(»)
x.y.c will be written instead of x. (y.¢)
(x)e will be written instead of x. e

I will use the notationa = b : o for @ and b are equal expressions of arity. o
The rules for equality of expressions of a certain arity are:

1. Variables. X x is a variable of arity «, then

X

1

X o
2. Constants. If ¢ isa constant of arity o, then

(4

i
o

D 0 4

3. Definiens = Definiendum. If a is a definiendum with definiens b of arity
o, then ‘

a=b:a
4. Application]. If @ = a’ : a—»B and-b = b : «,then
ab)=d®):p

5. Application 2. (B-rule). If x is a variable of arity &, @ an expression of
arity otand b an expression of arity B, then

x.b)a) =blx=a] : B
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6. Abstraction 1. (E-rule). If x isavariable of arity o and b = &’ : B, then
x.b =x.b :o0-»B

7. Abstraction 2. (o-rule). If x and y are variables of arity o0 and b an
expression of arity B without occurrences of y, then

x.b =yblx=]:oa-»p

8. Abstraction 3. (W-rule). If x is a variable of arity B and b is an expression
of arity o~ , then

| /
x. (b)) =b : o»p
9. Reflexivity. If a : ot,thena =a : o
10. Symmetry. f a = b :o,then b =a . .

11. Transitivity. f a = b :oand b =c :a,thena =c¢ & o

From a formal point of view, this is similar to typed A-calculus with one ground
type.

C. Computation

. As I mentioned before, the program expressions are separated into canonical and
noncanonical expressions. - A closed saturated expression is always definitionally
equal to an expression of the form:

cley,eq....6,)

where n20 , ¢ is a primitive constant and e, ,..., €, are expressions. In type
theory, the distinction between canonical and noncanonical expressions can always
be made from the constant ¢. Therefore, also the primitive constants are divided
into canonical and noncanonical. The canonical constants are called constructors
in Computer Science and the noncanonical constants are called selectors. To each

- selector in type theory there is a computation rule explaining how a program
formed by applying the selector to its arguments is computed.

The general strategy for computing expressions is lazy evaluation, i.e. expres-
sions are computed from without and the computation process will continue until
an expression which starts with a constructor is reached. So, an expression is con-
sidered to be evaluated when it is on the formc (e, ..., ¢;;) where ¢ is a constructor,
n>0 and e,,...e, are expressions (not necessarily canonical). For instance,
suce(2+3) and cons(3, append (cons(4, nil), nil)) are considered to be evaluated.

It may seem a little counter-intuitive that an expression is considered to be
evaluated even if the parts of it are not evaluated. One reason is that when variable
binding operations are introduced, it is sometimes impossible to evaluate parts of
an expression. For instance, to compute the body of Ax.e would be like trying to
compute a program which expects input to continue executing it without giving it
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any input. ‘There are examples of well defined functions where the computation of
the body of the function would not even terminate. Another reason for this kind of
evaluation is that no extraneous computation is performed.

In order to have a notion that more closely corresponds to what one normally
mean with a value and an evaluated expression, a closed saturated expression is
called fully evaluated when it is on the form c(e,, e, ..., ,) where ¢ is a construc-
tor and all the parts e, , ..., e, which are saturated are also fully evaluated.

D. Different judgement forms and their semantics

The judgements are the things we prove. For instance, the forms of judgements in
predicate logic is "A is true” and in Hoare logic "A is true” and " {P }Q {R }”. In
type theory there are four different forms of judgements:

A set
A =B
aeA
a=bed

In general, judgements may depend on assumptions. A simple assumption is
always on the form x € A where x is a variable of arity @ and A is a set. To make
an assumption corresponds to declare a variable in a programming language and to
assume that a proposition is true in predicate logic. Being a set may in general
depend on variables, so in general one assumption may depend on earlier assump-
tions. The hypothetical judgements have the form: -

Ay, .x,)setx; € Apx,€ Ay(xy), ... x, € Ay (xq, s X))

Ay, X, ) =B (X1, X,) [x1€ Ay,xp € Ay(xy), ... x, € A, (x4, ...,x,,_l)]v
a(xy, .. X,)€ A(xy, ... %,) [x1€ A xp€ Aj(xy), ... X, € A, (X, . X, )]
a(xy, ..x,)=b(xy, ... x,) € A(xy, .., X,) '

[x1eAx26 Ay(x)), Xy € Ay (X oen Xp_p)]

I will start by giving the semantics of the different judgement forms when they
don’t depend on assumptions.

A set

We understand that A is a set when we know how to form the canonical elements
of the set and know when two canonical elements are equal.

A =B
If A and B are sets, then A =B means that the canonical elements of A are canon-

ical elements in B and equal canonical elements in A are equal elements in B and
vice versa. This explanation makes sense, since if we know that A are B are sets
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then we also know their canonical elements and when two canonical elements are
equal.

acA
If A is a set, thena € A means that the value of a is a canonical element in A .
a=beA

IfA isaset,thena =b € A means Lhat the values of @ and b are equal canonical
elementsin A.

The meaning of the hypothetical judgements are given by an induction over the
length of the assumption list. To illustrate the general principle, I will give the
meaning of the judgement forms when they depend on one assumption. -

B()set[x e A]

If A is a set then B (x) is a family of sets indexed by elements in A means that
B(a) is a set for an arbitrary element g in A . It also means that B is extensional in
the sense thatifa =a’ € A then B(a) =B (a’). Since we know that A is a set we
also know the meaningof a € A anda =a’ € A.

B(x)=C@x)[xeA]

IfA isasetand B(x) and C(x) are families of sets indexed by elements in A then
B(x)=C(x)[x.€ A] means that B (a) = C (a) for an arbitrary element @ in A.

bx)e Bx)[x e A]

If A is a set and B(x) is a family of sets indexed by elements in A then
b(x)e B(x)[x € A] means that b(ad) € B(a) whenever a € A. Tt also means
that b is extensional in the sense that b(a)=5b (a )€ B(a) whenevera =a’ € A.

b(x)=b'(x)e B(x)[x € A]

If A is'a set and B(x) is a family of sets indexed by elements in A then
b(x)=b'(x)e B(x).[x € Al means that b(a)=">'(a) € B(a) whenevera € A.
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E. Propositions and types

The judgement a € A can be given different readings:

— a is an element in the set A

— ais an object in the type A

— a is a program for the task (specification) A

— a is a proof object of the proposition A .

This is not just a formal coincidence. The reason is that the notions set, type, task

and proposition are explained in the same way. Let’s look at Heyting’s explana-
tion of the logical constants:

A proof of: consists of:

A&B a proof of A and a proof of B.

AvB a proof of A or a proof of B.

ASB a method which when applied to an arbitrary proof of A yields
aproofof B.

VxeA.B(x) a method which when applied to an arbitrary object @ in A
yields a proof of B (a).

dxeA.B(x) an object a in A and a proof of B (a).

Let’s compare this with the explanation of some types:

An object of: consists of:

AXB pair(a,b), where a € A and b € B, i.e. an object of A and
an object of B.

A+B inl(a), where a € A or inr(b), where b € B, i.e. an object of
A or an object of B.

A—-B Ab), where b(x)e B if x € A, ie. a method which when

applied to an arbitrary object of A yields an object of B.
IIxeA.B(x) A(), where b(x)e B(x),if x € A, i.e. a method which when
‘ applied to an arbitrary object a of A yields an object of B (a).
ZxeA.B(x) pair (a ,b), where a € A and b € B(a), i.e. an object a of A
and an object.of B (a).

So we see that conjunction is explained similarly to the cartesian product, d15]uric-
tion similarly to the disjoint union etc. We therefore make the following exphcn
definitions:

A&B = AXB

AvB = A+B

ADB = A-5B
VxeA.B(x) = IIxeA.B(x)

dxeA.B(x) : erA.B(x)‘



In order to express atomic propositions, we must have sets corresponding to L (the
absurdity), T (the truth) and one to express that two elements @ and b are equal in
asetA. We have no proof of L, so it corresponds to &, the empty set. We always
have a proof of T, so any nonempty set can be used to express it. Finally the set
Eq(A,a,b) is nonempty exactly whena =b € A.

If we have a set A which we are going to read as a proposition, then we are
usually not interested in the elements in the set, only in the fact that the set is inha-
bited, i.e. that the proposition is true. In that case I will write A prop instead of
Asetand Atrue instead of g € A. / '

HI. AN OVERVIEW OF SOME SET FORMING OPERATIONS

In the rest of this course I will talk briefly about the most important set forming
operations in type theory. Intuitively, we have the following set forming opera-
tions:

2xeA.B(x)= {pair(a,b)laec A, be Ba)}
AxB = {pair(a,b)lae A, be B}
IMIxe AB(x)={Mb)ib(x)e B(x)[x € A]}
A-B ={Ab)Ib(x)eb[xeA]}
A+B = {inl(a), inr(b)laec A, be B}
N={0,succ(@)la € N}
List(A) = {nil,cons(a,b)la € A, b € List(4)}
T={tt}
1={}
Eq(A,a,b)={eqla=be A}
{xeAIB(x)} ={alaeA,beB)}

These equalities should be read in the following way: The canonical elements in
the set Zx € A. B (x) are of the form pair{a,b) wherea € A and b € B (a) etc.

In the formal system of type theory there are first some general rules about
assumptions, equality and substitution of variables. Then for each set formmg
operation F there are four kinds of rules:

The formation rules for F describes when F(Aq, ..., A,) is a set and when
F@A,..,A)=F@,,..,B,).

The introduction rules for F defines F in the sense that it describes how the
canonical elements of F(A,...,A,) are formed and when two canonical elements
are equal.

The elimination rules for F expresses an induction principle for F(4 1, ..., 4,,).
If C(x) is a family of sets indexed by elements in F(4,,...,A,) and p is an ele-
ment in F(A,,...,A,) the elimination rule gives conditions for the judgement
€ € C(p), where ¢ is (in general) a noncanonical expression involving the selector
associated with F. If we read C (x) as a property of elements in F(A, ... 4,) we
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can see the elimination rule as giving conditions for proving that C(p) is true for
peFA, ... A).

The equality rules for F is a formalization of the equalities between elements
which the computation rule for the selectorof F gives rise to.

I will only give the most important rules and justify one of them. For a more
complete treatment I refer to Martin-Lof’s Hannover paper [8] and his lectures in
Padova [9]. In Goteborg, we are currently writing an introduction to type theory
for computer scientists.

The rules will be given in a natural deduction style:
P, P, .. P

n

or

P,

o

where the premises P, ..., P, and the conclusion C are judgements. The judge-
ments are in general hypothetical, but only those assumptions that are discharged
in a rule will be presented. If a rule has a conclusion of the form @ € A then the
premise A set will not always be given.. Similarly, if the conclusion is of the form
a=b e A then the premises A set, a € A and b € B will sometimes be left
implicit.

A. The disjoint union of a family of sets: the existential quantifier, the carte-
sian product of two sets and conjunction

In order to form a disjoint union of a family of sets we must have a set A and a
family B of sets over A, i.e. B(x) set [x € A]. The primitive constant I of arity
0—»(0—»0)—»0 will be used to form a disjoint union of a family of sets, so
Z(A, B) is the disjoint union of B over A. It will also be written BxeA)B (x) and

Y. B(x). The formation rule for the set is:
x€A



Z-formation: .
A set B(x)set[x e A]

2(A,B) set

A=A’ Bx)=B'()[xeA]
I(A,B)=II(A",B")

The canonical elements in X(A,B) are of the form pair(a,b), where a € A and
b € B(a). Two canonical elements are equal if their components are equal:

Z-introduction: \
acA b e B(a)

pair(a,b)e X(A,B)

a=a'eA b=b"e B(a)
pair(a,b)=pair(a’,b") e B(a)

I will sometimes use the following abbreviation: <a, b > = pair(a, b).

The selector associated with X is split of arity 0—»(0—»0-»0)—»0. The
expression split(p,e) is computed by first computing p. If the value of p is
pair(a, b) then the value of split(p, ¢) is the value of e(a, b).

The remaining rules are:

2-elimination: ) ,
pPeXA,B)  e(x,y)e C(pair(x,y)[x €A,y e B(x)]
split(p,e) e C(p)

p=p’'e X(A,B) e(x,y)=e’(x,y)e C(pair(x,y)) [x € A,y € B(x)]
split(p,e) =split(p",e") e C(p)

Z-equality:

aecA b e B(a) e(x,y)e C(pair(x,y) [x € A,y € B(x)]
split(pair(a,b),e)=e(a,b) € C (pair(a,b)) :

In the following I will not present the formation-, introduction- and elimination-
rules involving equality, they are always in the same style as the ones for the Z set
former. They state roughly that two elements (sets) are equal if their components
are equal.

As an illustration how to justify these rules, I will show that the first elimina-
tion rule is correct. Assume the premises p e X(A,B) and
e(x,y)e C(pair(x,y))[x e A,y € B(x)]. We must show that the value of

split(p, e) is a canonical element in C(p). What would we get if we compute

split(p , e)? We first compute the value of p. But since p € X(A, B) we know that
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the value of p is a canonical element in Z(4,B), i.e. of the form pair(a ,b), where
a €A and b € B(a). But in that case, the value of split(p,e) is the value of
e(a,b). The meaning of the second premise gives now that the value of e (@, b) is
a canonical element in C (pair(a, b)) sincea € A andb € B(a).

So we have shown that the value of split(p,e) is a canonical element in
C (pair(a,b)). What remains to show is that C(p)=C(pair(a,b)), because in
that case, the value of split(p, e) is also a canonical element in C (p) (by the mean-
ing of type equality).

We know that p = pair(a,b)e X(A,B) since the values of p and pair(a,b)
are equal canonical elements in (A, B). Finally, from the meaning of the implicit
premise C (z) set [z € Z(A,B)] we get that C (p) = C (pair(a, b)).

1. The existential quantifier

We get the existential quantifier by reading the judgement B (x)set[x € A] as
B (x) is a proposition for x € A, or equivalently, that B is a property of elements
in A.

We get the rules for the existential quantifier by using the explicit definition
dxeA.B(x)=Z(A,B) and by also reading Z(A , B) as a proposition and the family
C(z) in the elimination rule as a proposition (no longer depending on objects in
2(A,B): ‘

3-formation:
A set B(x)prop[x € A]
IxeA.B(x) prop

J-introduction:
aec A B (a) true
dxeA.B(x) true

J-elimination:

IxcA.B(x)true . C true[x e A,B(x)true]”
C true

2. The cartesian product of two sets

We get the cartesian product of two sets A and B as a special case of £(4,B)
when B is a set instead of being a family of sets indexed by A. We get the rules
for AxB if we make the explicit definition AXB = X(A, (x)B) (where x is not free
inB):
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x-formation:
A set Bset{xe A

AXB set

x-introduction:
ae A beB
pair(a,b) e AXB g

x-elimination:

p e AxB . e(x,y) e C(pair(x,y))[x € A,y € B]
split@,e) e C(p)

3. Conjunction

We get conjunction by making the explicit definition A &B =AXxB and reading
both A and B as propositions. The rules we get is a slight generalization of the
ordinary rules for conjunction:

& -formation: )
A prop B prop [A true]
A & Bprop

& -introduction:
Atrue B true
A &B true
& -elimination:
A &B true C true [A true, B true]
Ctrue

The generalization is in the weakening of the second premise in the formation rule.
To show that A&B is a proposition it is enough to show that A is a proposition
and that B is a proposition under the assumption that A is true. This is important
for Computer Science applications when dealing with partially defined functions,
we want for instance to be able to write propositions like:

(x#0) & (z/x)x =N z)

where the second conjunct is not a proposition if x = 0.

There is a similar weakening of the second premise in the elimination rule.
The assumption that B is true may depend on the assumption that A is true.
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B. The disjoint union of two sets

If A and B are sets, then the canonical elements in the set A+B are of the form
inl(a), where a € A or inr(b), where b € B. The arity of + is 0—»0—»0 and the
arity of inl and inr is 0—»0.

+-formation:
A set B set

A+B set
+-introduction:
aclA beB
inlla)e A+B inr(b)e A+B

The: selector for elements in a disjoint union is the constant when of arity
0—»(0—»0)—»(0—»0)—»0. The expression when(p,d,e) is computed in the fol-
lowing way. Compute first p. If the value of p is inl(a), then the value of
when(p,d,e) is the value of d(a). If the value of p is inr(d), then the value of
when(p,d, e) is the value of e (b).

The remaining rules are:
+-elimination:

peA+B de C(@inl(a) [aecAl e € C(inr(h)) [b € B]
when(p,d,e)e C(p)

+-equality:
ae A de C@inl(a))[ac A] e € C(inr(®)) [b € B]
when(inl(a),d,e)=d(a) e C (inl(a))

beB de C@inla))[ac A] e € C(inr(»)) [b € B]
when(inr(d),d,e)=e(d) € C(inr®))

We will later see that it is possible to define a restricted disjoint union of two sets
by looking at it as a disjoint union of a family of sets indexed by a set with two ele-
ments. But in order to form the family of sets indexed by a set with two elements
we need the set U which I will talk about in the last lecture. ’
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C. The cariesian product of a family of sets: the universal quantifier, the set of
functions and implication

If A is a set and B a family of sets over A then the canonical elements in the set
ITI(A,B) are functions A(b) where b(x) € B (x) if x € A. The primitive constants
IT and A have arities 0—»(0—»0)-»0 and (0—0)—»0, respectively. The set
II(A, B) will also be written IIxeA. B(x) and J] B (x). Two canonical elements

x€eA
A(b) and A(b") are equal if b(x) =b'(x) [x € A]. The formation and introduction
rules for the set are:
\

IT-formation:
A set B(x)set{x e A]
TI(A,B) set

IT-introduction:
bx)e Bx)[x € A]

Ab)e II(A,B)

The selector associated with IT is funsplit of arity 0-—»((0—»0)—»0)—»0. The
expression funsplit(p, ¢) is computed by first computing p. If the value of p is
AMb) then the value of funsplit(p,e) is the value of e(b). This selector
corresponds to a pattern matching operation in functional programming languages:
funsplit(p, u.g) corresponds to an expression like cases p of A(u) : g endcases
where u is a variable of arity 0-—»0 and g an expression which may contain
occurrences-of u. We get the ordinary operator for function application by the
explicit definition: S

apply(f ,a) = funsplit (f ,u.(u(@)))
The elimination and equality rules for the type are the following:

I1-elimination 1:
pelld,B)  ewe COW)[utr)e B@)[x e A]]
funsplit (p,e) € C(p)

IT-equality:
bx)e B(x)[x e A] ewe CAMw)[ux)e Bix)[x e A]]
funsplit (A(b),e)=e(®) e C(A(b))

In these rules I have used a more general way of making assumptions than the sim-
ple assumptions of the form x € A which I talked about in the previous lecture. It
is not difficult to show that the following rule can seen as a derived rule:

I1-elimination 2:
p e Il(A,B) aec A

apply(p,a)e B(a)

TR

299

1. The universal quantifier
The universal quantifier is introduced by the explicit definition

VxeA.B(x)=II(A,B)

and we get the rules for V from the rules of I by reading B as a property of ele-
ments in A and reading the family C in the elimination rule as a proposition (no
longer depending on objects in [1(4, B)):

V-formation:
A set B(x)prop[x € A]

VxeA.B (x) prop

V-introduction:
B(x)true[x € A]
VxeA.B(x) true

V-elimination 1:
VxeA.B (x) true Ctrue [B(x) true [x € A]]
Ctrue

From the derived IT-elimination 2 -rule, we get the ordinary elimination rule for V:

V-elimination 2: ,
VxeA.B(x) true aeA
B(a) true

2. The set of functions from a set to a set

If x is a variable which is not free in B then we can make the following explicit
definition

A—B =TIA,x.B)

and we get the following rules for the set A —B of functions from A to B ;
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— formation:
A set Bset[xe Al

A —B set

— introduction:
bx)eBxe Al

Ab)e A>B /

- elimination 1:
peA—B ew)e COMu)) [u(x)e B [x € A]l
funsplit(p,e) e C(p)

— elimination 2:
peA-SB acA

apply(p.a)e B
Notice the weakened second premise of the formation rule. In order to show that

A —B is a set it is sufficient to show that A is a set and that B is a set if A is non-
empty.

3. Implication

We get the implication A>B by making the explicit definition ASB =A—B and
reading both A and B as propositions:

o-formation:
A prop B prop [A true]
A>Boprop
S-introduction:
Btrue [A true]
ADBtrue

S-elimination 1:

ADBtrue Ctrue [B true [A true]]
Ctrue

>-elimination 2:
A>Btrue Atrue

B true
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D. The natural numbers

The canonical elements in N are 0 and suce(a), wherea € N. If ¢ =a’ e N then
succ(a) =succ(a’) € N. The selector associated with N is rec, the primitive recur-
sion operator. The arity of N and 0 is 0, the arity of succ is @—»0 and the arity of
rec is 0-—»0—»(0-—»0—»0)—»0. The noncanonical expression

rec(p,d,e)

is computed in the following way:

First compute p. If the value of p is 0, then the value of rec(p,d,e) is the
value of 4. If the value of p is succ(a), then the value of rec(p, d, e) is the value
ofe(a, rec(a,d,e)).

If we have made the following explicit definition:

f&)=rec(x,d,e)
wherex e N,de A, e(y,z)e A[ye N,ze A]

then we know that

fO =deA

f(suce(x)) = e(x,f(x)) e A
There is no operator in type theory which corresponds to the general recursion
operator. This may seem restrictive, but we know that the primitive recursion
operator together with the possibilities of using higher order functions give us the

possibility to express all provably (within Peano arithmetic) total functions. For
instance, Ackermann’s function can be expressed in type theory [10].

‘We have the following rules for the set of natural numbers:

N-formation:

N set

N-introduction:
N
0Oe N _aenN
€ succ(a)e N
N-elimination:

peN de C©0) e(x,y)e C(suce(x)) [x € N,y € C(x)]
rec(p,d,e)e C(p)
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N-equality 1:
de C)
rec(0,d,e)=d € C(0)

N-equality 2:

aeN e(x,y)e C(succe(x)) [x € N,y G\C(x)]
rec(suce(a),d,e)=e(a,rec(a,d,e)) € C (succ(a))

If we in the elimination rule read C(x)set[x € N] as that C is a property of
natural numbers we get Peano’s fifth axiom:

peN C(0) true C (succ(x)) true [x € N, C (x) true]
C(p) true

The rules in type theory corresponding to Peano’s third and fourth axiom can be
derived within the formal system.

Examples:
x+y =rec(x,y, uwsuccw))

xy =rec(x,0, uw.(y +w))

E. Lists

Lists are defined similarly to the natural numbers. If A is a set then List(4) is a
set. The canonical elements in List(A ) are nil and cons(a, b), where a € A and
b e List(A).

List-formation: ]
A set
List(A ) set

List-introduction:

nil € List(A) acl b € List(A)

cons(a,b) € List(4)

The selector for lists is the primitive constant listrec of arity
0—»0—»(0—-»0—-5»050)-»0.

The expression listrec(p, d, e) is computed by first computing p. If the value
of p is nil then the value of the listrec-expression is the value of d. If the value of
p is cons(a,b) then the value of the listrec-expression is the value of
e(a,b,listrec(b,d,e)).
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The remaining rules are:
List-elimination:

p € List(A)
d € C(niD)
e(x,y,z)€ C(cons(x,y) [x € A, y € List(A) ,z € C(y)]

listrec(p,d,e)e C(p)

List-equality:

d € C(nil)
listrec(nil, d,e)=d € C (nil)

ae A
b € List(A)
e(x,y,z)e C(cons(x,y)) [x € A, y € List(A), z € C(y)]

listrec(cons(a,b),d,e) =e(a,b,listrec(b,d,e)) e C(cons(a,b)

F. Enumeration sets: the empty set, the absurdity, the one-element set, the
truth, the set of Boolean values

If we have n canonical constants i,,i,, ...,i,, for n20, then the enumeration set
{i{,...i, } has the canonical elements i 1 - ip. The selector associated with the
set is case and case(p, ey, ..., ¢,) is computed by first computing p. If the value of
D is i, 1<k<n then the value of the case-expression is the value of ¢;.

We have the following rules:
{iy,...,i, } -formation:
{ig i, } set
{iq, ..., }-introduction:
ile {il""lin} .. l.,"e {il"""in}
{iy, ..., i,, } -elimination:

pe {iy.iy} e e Ciyp e, € C(i,)
case(p ey, ...e,) € C(p)
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{iq, ..., iy }-equality:
€1 € C(il)
case(il,el, ...,e,,)=e1 € C(il)

e, € C@,)
case(i,,€y,...e,) =€, € C(i,)

1. The empty set
For n=0, we get

{ } -formation:

{}set
{ }-introduction:
{ }-elimination:
pe {}
case(p)e C(p)

2. The absurdity

Reading { } as a proposition, we get the absurdity, the proposition which has no
proof. So we make the explicit definition L= {} and get the natural deduction
tule for absurdity from the rule for { }-elimination.

1-elimination;
1 true

C true

where C is an arbitrary proposition.
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3. The one-element set, the truth

There are many sets which are non-empty and hence can be used to represent the
proposition which is always true. We make the following definition:

T= {tt}
and get the following rules as special cases of the {tt}-rules:
T-introduction:
T true

T-elimination:
T true C true

4. The two-element set, Bool
We make the definitions:

Bool = {true, false }
ifp,d,e)=case(p,d,e)
and get the following rules for {true,false}.

Bool-formation: -
Bool set

Bool-introduction:
true € Bool ‘false € Bool

Bool-elimination: ]
p € Bool ey € C(true) e, € C(false)
ifp,e;.ex) € C(p)

Bool-equality:
€, € C(true) e, € C(false)
if (true, e, e)) =e; € C(true) if(false,e;,e,) =e, € C(false)
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G. Propositional equality

In order to build up propositions from equality between programs, it is necessary to
have a set (proposition) which expresses that two elements (programs) are equal.
This set is Eq(A, a, b) and it has eq as canonical elementifa =b € A.

Eq-formation:
A set aeA beA

Eq(A,a,b) set

Eqg-introduction: ’
a=beA

eqe Eq(A,a,bd)

Eq-elimination:

c e EqA,a,b)
a=beA
Eq-equality:
ce EqA,a,b)
c=eqe Eq(4,a,b)
H. Subsets

Many programming problem are of the following form:

Find a function f which takes input @ from a set A and outputs an element
b from a set B such that Q (a, b) holds.

This is almost expressed. in type theory as:
Vxea.dyeB.Q(x,y)

or, equivalently
IIxeA.ZyeB.Q(x,y)

but this set doesn’t exactly express the problem! A program in this set is a function
J which when applied to @ € A yields a pair <b,c>, where b € B and ¢ is a
proof object in' Q (a,b). The problem is that the canonical elements in a Z-set are
pairs and in this case we are not interested in the second component of these pairs.
The situation becomes more unsatisfactory in programming problems of the form:

Find a function f which takes as input an element ¢ in A for which P (a)
holds and outputs an element b € B such that Q (a, b) holds.

This is almost expressed as:
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IIxe(ZzeA.P(z)).ZyeB.Q(x,y)

which is a set of functions f which when applied to pairs of the form <a,d>,
where a €A and de P(a), yield a pair <b,c> where be B and
c € Q(<a,d>b).

In order to cope with situations like these we have a set {xeA |B(x)}. The
canonical elements in this set are the canonical elements in A for which B (a) is
true. )

The following rules are easily justified:

subset-formation:
A set B(x)set[x e A]

{xeA I1B(x)} set

subset-introduction:
aeA b e B(a)

ae {xealB(x)}

subset-elimination:

pe {xealB(x)} ex)eCx)[xe A,y e B(x)]
e()e Cp)
So the subset {xe€A IB(x)} works almost like the set ZxeA. B (x), we just forget

the second component of the pairs which are the canonical elements in the E-set.!
We can now formulate the two previous problems as:

IxeA. {yeB 1Q(x)y)}
IIxe {zeA IP(2)}. {yeB |1Q(x,y)}

which express exactly what we wanted.

In situations like these, we are only interested to read a set as a proposition and
the elements in the set are not computationally interesting: It would be much more
convenient to have a formalized programming logic where we also have the judge-
ment forms A prop and A true. We would then have a language which is closer to
Martin-L5f’s logical language presented here in Siena a couple of years ago.

1. Notice that if we instead forget the first component of the pairs we get-a set forming operation
similar 10 a join of a family of sets.
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L. The first universe U

U, is a set which contains (codings of) sets as elements. In Computer Science we
need it for many specifications when the most natural way of expressing a proposi-
tion is to use recursion or conditionals. It is also necessary when defining abstract
data types in type theory. . —

Let’s look at the following example which is a specification of a sorting algo-
rithm. The problem is to find a function which outputs a sorted permutation of its
input.

Sort =TIxeList(N). {y e List(N) | Perm (x,y)& Sorted(y)}
where

Perm(x,y)=VzeN.(#zinx)=(#ziny)

#zinnil =0
#zincons(a,s) = #zins+(if(nateq (a,z),1,0)

Sorted (nil) =T
Sorted (cons (a,nil)) =T
Sorted (cons(a, cons(b, s)) = (a<bh )& Sorted (cons(b, s))

where nateq is a boolean function whose value is true if its two arguments are
equal natural numbers, otherwise the value is false. In this example, the proposi-
tional function (family of sets) Sorted is defined using primitive recursion over
lists so-we need a way to treat sets as elements in a set.

The universal set U, which will be defined here contains.codings of the sets
formed by the following set forming operations:

L,T,N,+,Eq,ILX.

Notice that U is not the set of all sets, Uy has a fixed inductive structure while
being a set is defined in a more general way (as I did in the first lecture). There is
no coding of U in U, this would lead to a circularity in the semantical explana-
tion.

When defining the set Uy, I will simultaneously define a family Set of sets,
Set(x) set [x € U] which decodes the elements in U g to the set they represent.

U g-formation:

XEUO

Uo set Set(x) set

U ¢-introduction:
 Le Up

T e Uy

N'e U,

aelU, bel,
+’(a,b)e Uo

aeU; beSetla) c e Set(a)
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Set(1) =1
Set(T)=T

Sef(N') =N

aeU, belU,
Set(+'(a, b)) = Set(a)+Set(b)

aeU, beSetla) ceSeta)

Eq'(a,b,c)e U,

aeUy bk)e Uylx e Set(a)]

Set(Eq’(a,b,c)) =Eq(Set(a),b,c)

aeUy b@xx)eUgylx e Seta)]

I'a,b)e Uy,

aeUy bk)e Uylx e Set(a)]

Set(IT'(a, b)) =II(Set(a), (x )Set(b (x)))

aeUy, b(x)eUgfx e Set(a)]

Z'(a,b)e U,

Set(X'(a, b)) = Z(Set(a), (x)Set(b (x )))

So there are 7 constructors in U y: the arity of L', T and N’ are 0, the arity of +*
is 0—»0—»0, the arity of Eq’ is 0—»0-»0—»0 and finally the arity of IT" and X’ is
0—»(0—»0)—»0. The selector associated with Uo is u-rec of arity:

0—»

0—»

0—»

0—»

0—>»0—0-»0—»0)—>»
(0—0-»0>0>»0)—>»
0—>(0-»0)>»0—»0-»0))—»
(0—->(0-»0)>»0—>»(0-—»0))—>»0

The expression u-rec(p, e,, €5, €3, €4, €5, €6, €7) is computed in the following way.
I will use the abbreviation g (x) =u-rec(x, e, ..., e7). First compute p.

1. If the value of p is L’ then the value of the u-rec expression is the value of e;.
2. if the value of p is T’ then the value is the value of e,.

3. If the value of p is N’ then the value is the value of e5.
4

. If the value of p is +%(a,b) then the value is the value of
e4qla.b,q@a),q®).

5. If the value of p is Eq'(a,b,c) then the value is the value of
es(a,b,c,q(a)).
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6. If the value of p is IT(a,b) then the value is the value of
egla,b,q(@a),v.qd)).

7. If the value of p is X'(a,b) then the value is thc value of
eq(a,b,q@),v.qg®M)).

The elimination rule is the following:

pel,
e, e C(L)
e,€.C(T)
. €3€ C(N')
esx,y,z,u)e C+'(x,y)[x € Upy € Upz € Cx),u e C(y)]
es(x,y,z,u)e C(EqQ(x,y,z)) [x € Uy y € Set(x),z € Set(x),u € C(x)}

es(x,y,2,8)e CAT(x,y) [x € Ugy(v)e Uglv € Set(x)].z € Cx)u(v)e Cy()) [v e Set(x)]]
ey(x,y,2,u) e C(Ex,y) [x e Upyw)e Uglv e Set(x)],z € Cx),u(v)e Cy®)) [v e Set(x)]]

u-rec(p,ey,€5€3,€4.€5,65€7) € C(p)

There are also 7 equality rules, one for each constructor in U'g.
It is now possible to define new types using conditionals and recursion. For

instance, if a,b € U, then the disjoint union of Set(a) and Set(b) can be intro- '

duced by the following abbreviations:

a+b =2XxeBool. Setif (x,a,b)
inl(c) = <true, ¢c>
inr(d) = <false,d>
when(p,d,e) =if(fst(p ), d (snd(p)), e (snd(® )))

where

Setif (x,y,z)=Set(if(x,y,2))
fst(p ) =split(p, xyx)
snd(p) =split(p, x.y.y)

(1]

[2]

(3]

(4]

(5]

{61
(7]

(81

9]
[10]

[11]

{12]

[13]

{14]

[15]
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Appendix A. Some Set-Forming Operations in Type Theory

Set Canonical elements Computation rule for the selector
L[ L={} There is no computation rule for case,
T T={a} case(p,b)=>q,if p=>ttand b=>q
_ ifp.d,ey=>q,if p=>true and d=>q
Bool | Bool = {true, false} i .d,e)=>q,if p=>false and e=>¢q
_ rec(p,d,e)=>q,if p=>0 and d=>q
N | N={0succ(@)la € N} rec(p,d,e)=>q,if p=>succ(a) and e(a,rec(a,d, e))=>q
_ when(p,d,e)=>q,if p=>inl(a) and d(a)=>q
+ | AsB= (k@) inr®)laeAbeBY | G il e)ng if polnr(b) and e (b )=>g
0 | 0@,B)= {(Mp)15(x) e Ber)x € A]} funsplit(p, d)=>q ,if p=>A(b)=>¢
I | ZA.B)= {pair(a,b)la € A,b € B(a)} | splitp,d)=>q,if p=>pair(a, b) and d(a,b)=>q
Eq | EqA.a,b)={eqla=beA}

I'have used the notation p=>¢ for “the value of p is ¢”.

Defined sets

MxeA.B(x)=TKA,B)

A—B =IIA,(x)B),if x is not free in B

IxeA.B(x)=Z(A,B)

AxXB =X%(A,(x)B),if x isnot free in B

Defined propdsitions

VxeA.B(x)=1IxeA.B(x)
ASB =A-B
-A=A>ol

JxeA.B(x)=3xeA.B(x)
A&B =AxB
AvB =A+B




