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§ 1. Two types of semantics.

A semantics for a certain language L gives a
"meaning" to expressions of L. Not always all expressions
for the language will have a meaning, therefore this
semantics should be viewed either as a partial map or as
a total map with a specific element 1 ("undefined") in
its range.

There are two ways in which a semantics can be
given: as a relative semantics or as an absolute one.

In a relative semantics for L an expression E of

L (now called the object language) is translated into an

expression S(E) of the target language L'. A meaning of

expressions of L' is then supposed to be known. A well-

known example of a relative semantics in the translation
of a new natural language into our mother tongue. The
word "acqua" means "water". Similary the translation of

a higher order programming language like ALGOL into some
assemble language consists of a relative semantics.Landin
(1965) gave a different relative semantics of ALGOL by

translating it into the lambda calculus.
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On the other hand, the absolute semantics of a
language is obtained in the way we learn our mother
tongue. We are taught that water is something that comes
out of a tap, can be put in a glass, can be drunk and
can be used to wash ourselves with. Thereby we also obtain
(part of) the meanings of the other words in italics.
Wittgenstein's dictum "meaning is use" applies to the
absolute semantic. We understand the meaning of an
expression if we understand its appropriate use.

It often happens that semantic functions are
composed with each other. If we have a relative semantics
S of L into L', then this may be completed by giving an
absolute semantics S§' for L'. Alternatively, a relative
semantics S' for L' into L" may be given and only then
an absolute semantics S" for L". In the‘second case we
have the composition S" e S' o S which has become an abso-
lute semantics. Of course a relative semantics makes
sense only if it is completed eventually by an absolute
one. The nature of this final absolute semantics will be
discussed more in section 3.

Sometimes the distinction is made between denota-

tional and operational semantics. Denotational semantics

can be viewed as a relative semantics with as target
language set thedry. Expressions of the object language

are translated into expressions denoting sets .(or elements
of some complete partial order). When the abolute semantics
for set theory is taken for granted, the denotational
semantics becomes (after composition) also an absolute
semantics.

Operational semantics is an absolute semantics.

i
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The meaning of an expression in the object language is
explained by its operational behaviour.

Landin's relative semantics of ALGOL can be com-
pleted in two ways: 1. by giving an operational semantics
for the lambda calculus; 2. by giving a denotational se-
mantics for the lambda calculus. The first alternative
was followed by Landin himself; the second one by Scott

and Stratchay (1971).
§ 2. Use of semantics.

There is a well established example of the use of
semantics with an important industrial application: the
Boolean interpretation of circuit of logical gates.

On the logic levellof a computer circuits like the
one in fig.1 are needed a %illion times. By using the

Boolean semantics one obtains the expressions

A

B . and :B’ :I'

C

(A & B) v A v C which is equivalent to A v C. “Hence the

circuit in fig. 1 can be simplified to

A

or

C

This kind of application is often used in the form of
building up arbitrary logical funcions from only " nor "

gates.
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The above isa typical example of the use of seman-
tics. An equivalence relation is induced on the objects
of interest. Two objects (in the example the circuits)
are equivalent if and only if the semantics of these are
the same (in the example (A & B) VA v C and A v C are
considered the same because they have the same truth table; in
fact jet another semantics is involved). This induced
equivalence relation gives an abstract view op the objects,
words clarifying and program correctness. proofs.
Similarly the correctmess of programs and
program transformations may benefit from semantics. This
was one of the motivations behinds the work of Landin and
ofchott and Stratchay.

A more sophisticated application of these induced
equivalence relations is in the proof of the characteri-
zation of invertibility in the Afn - calculus. Bergstra
and Klop (19 ) have been using the denotational models
P , and P, for this purpose. The final result is purely
in terms of the ABn - calculus, while the models have
been used for obtaining the proper abstract view.

Summarising we state that althought semantics may
seen to be for away in Platonic heaven its use is down
to earth in the form of the induced equivalence relations
(and other abstractions) on the objects of interest.

~

§ 3. Absolute semantics.

Although . we have indicated the difference between
absolute and relative semantics in section I and some use

of absolute semantics in section 2, we did not say what
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exactly is an absolute semantics. This will be discussed
now. : v

Definition. An absolute semantics for a language
L consists on an axiomatic theory T within the language
L. The meaning of an expression E of L is the expression
E itself modulo provable equivalence within T.

T is not required to be a complete theory: properties
of the objectsmay be left undecided by the theory.

An axiomatic theory starts with primitive terms
and axioms about them. From the primitive concepts we
obtain defined concepts. From the axioms we derive the
theorems. The axiomatic theory cénsistsu of primitive
terms, axioms, defined terms and theorems. Euclid's view
on the primitive terms and axioms was as follows. The
primitive terms are concépts that are so clear that thay
do not require any definition. The axioms are truths so
obvious that they do not require any proof. Hilbert had
another, more satisfactory, view: on to him the precise
nature of the primitive concepts is irrilevant, as long
as they satisfy the axioms: "the axioms form an implicite
definition of the primitive terms". It is in this spirit
that we interprete the absolute semantics.

It is clear that a relative semantics depends on
an absolute semantics of thé target language and has to
be completed by takingthe compositions of the various
semantics involved. It can be asked whether the completed
semantics canbe given directly, without mentioning concepts
from the intermediate languages. In a trivial way this is
always so. However there are also interesting cases in

which this happens. In Coppo et-al. (1984) a lambda term
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M is interpreted as the set of (generalized) types that M
may have. In the appropriate setting this gives the same
semantics as Scott's Dcnnndels. By changing the structure
of the types involved, Coppo et al. obtained also an al-

ternative description of Park's (197 ) version of D in

which the interpretation of the fixed point combinator

is not the least fixed point operator. This all without

mentioning complete lattices or partial order.
Summarising, an absolute semantics consists of

our views that organize our data, our objects of interest.

Similarly the semantics of our mother tongue depends on

the image we have of the world.
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