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Introduction

The theory of abstract recursion introduced by
Foschovakis is of interest in two fields: the models of
this theory include most of the generalized recursion
thebries studied in logic and the basic computational
models of theoretical computer science (including those
of the fixed point theory of programs, database theory
and complexity theory). Reciprocal influence of the
research in these two fieldé are fruitful. More speci—
fically, recursive program schemes can be treated as
particular functionals.

In this paper, structures are introduced with full
generality: particular structures, the so called
"standard",are those in which }L-abstraction, recursion
and iteration have the intended meaning. The logic
defined allows to deal with partial objects and trans-
finite recursion ( in particular, non terminating
programs) and is based on maﬁy—sorted languages with
a specific sort for ordinals.

Various assertions and specification languages have
been proposed which are extensions of equational ones,
or extensions of first order languages. Our approach
seems to provide an unified framework for such proposals.
The formal systems considered could be used for 'proving



Rossella
vol3


378

programs" or "programming proofs'", as suggested by >
Kreisel.

The kind of completeness theorems that can be ob-
tained for such logics of prograsms (or of specifications)
is one of the basic issues which characterize the various
approaches in the fields of logic of programs and the
theory of specification. Accordingly the distinction
between the "logicsl" (provable by first order means)and
"mathematical" (second order properties), two basic ap-
proaches can be considered: one approach deals with
finitary rules and (essentially) non standard models,
another appvoach deals with infinitaéry rules and stan-
dard models. This paper can be seen as a further deve-
lopment of this second approach, by benefiting of the
results obtained by Girard in proof theory.

Summa_ry of the paper

1) A B-similarity type ¥ consists of sorts (the

sort On of ordinals, a set So of "basic sorts" among

them the sort 232} s 8 set 81 of "composed sorts" i.e.

the set of all the configurations @o,...,sn.bﬂ of ele-
ments of So), of constants and function symbols (among
them 0,1,Booleq,if...then...else,Ap) with their aities

(# configurations @o,...,sn.:s) where s €S, and siGSouS1),
and of predicate symbols (among them £ for each sort 8,
son s, and others).

2) For each P-similarity type € we define s language
L(Z ). The alphabet has variables for each sort in & ,

all the constants, function symbols and predicate syhbols
in ¥ , the usual connectives and quantifiers, and the
operators JA,R,I « The terms are constructed as usually
by means of variables, constants and function symbols;
moreover, if t is a term of basic sort s, and VseeesV,
are yariables of basic sorts SgseesSys and v is a ve-

riable of ‘bor% (so,...,s - s), and d is ‘a varisble of

n
sort On, then Avo...vn. t , Rvvge.ev .t and
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T'vv e..v .t are terms of sort (so,...;'.sn..\ s) (where Vs

«s+yv_ are bouded variables, and v is a bounded variable

in thg last two terms, and @ 1is free). In the construc-
tion of the formulas, the quantifiation is allowed only

on variables of basic sorts.Thus, L(3) is obtained from
an usual elementary (first-order) many-sorted language,
with the addition of the operators A ,R,I .

%) For each P-similarity type & we defihe the struc-
tures for L{E ). Roughly, a structure M for L(ZF) is

a structure for the underlying usual many-sorted language
of L(E¥ ) together with a fartial function EVAL y (t,e)

(evalustion of a term t under a valuation e of the va-

riables) and a relation 'm,_e_lég (the formula 4 is sa-
tisfied under the valuation ¢ of the variables), s.t.:
- the function symbols are interpreted as partial

functions, so that if t is a term and e is a valuation

EVALq\(t,e) may be undefined;
- EVALmét,e) is defined as usually, if t does not contain
ASR, 15
-m,e#t1§t2 iff EVAL,(t,,e) and EVAL.(t,,e) are defined
and are in the relation éhn H

~-M,e lgA i8 defined as usually, when 4 is a molecular
formmla.
Remark that 7n(so,...,sn.hs) needs not to be the set
1ﬂ*lso,...,snrhs) of all the pPartial functions from M(so)
Ko o o R 'm,(sn) toM(s); dbut, for each xem.(so,...,sna s)
(a "program") we may consider the partial function EXT(x)
from ’m.(so)x...ie h(sn) to M(s): )

KysveosXy »\aTR(Ap)(x,xd,...,xn).
Thus, it general, to each function symbolr of L(E) we
may associate a pertial functional én M . We say that
two objects of composed sort x,y are s.t. x ¥y, iff
EXT(x) € EXT(y) ;5 thus we may say that a function symbol
is interpréted in M as a "monotone" partial function;
EAT(x) = _EXT(y) means that the values of EXT(x) and
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EXT(y) afe in the relation gm when the functions are

applied to the same arguments.

@ A structure M for L(T) is_stendard iff M is

a P-model, all the relations .'E-.,m are "congruence rela=

tions", all the function symbols are interpreted as

"monotone!" partial functions, and the interpretatiors of

0,1,Booleq, 4p, if...then...else, A ,R and I are the

standard ones. This means, in particular:

- EVAL,A(AV seev ety e) is an object, s.t. .
M (4Ap) (EVAL ()\vo...v .t, e), sXgs e esXy ):gm

EVAL (t, e [" "'Vn] )3

- if t is a term of basic sort s, and VgseeesV, are
variables of basic sorts Sgreecs®, s and v is a variable
of sort (s N s) then the partial function

Xy XgpeeesX, ~y EVAL (t, e[ e vn])

is a monotone function ( in the varlable x) from ME,,.,44>9)
x'ﬂ\(s Yoo ac'M(s ) to m(s) and induces a monotone partial
fu.nctlonal 3T from 'm(s seees8 38)x m(s YeosoWs )
to M(s); then: :
EXT(EVAL (I VeV oty e)) = I e(d)

(where I“ is the p—th iteration of ¥ )
EXT(EVAL."\(RVVO...vrl .t, €)) ;m Ioo

(where & 1is the closure ordinal of the iteration).

(Ther condition " Mis a p -model" assures that the ite- -
ration is standard).
9 We give a set AXREC(Z) of axioms in the language.
L(S), and we prove that if M is a structure for L(Z')
and ‘M 1s a P—model then

m |= AXREC(Z) iff M is standard. o
Therefore, if A is & formula of L{( & ) and ¥ is a set of
formulas of L( &), then are equivalent:
- "4 is true in every standard structure 7’[ for L{Z)

which is model of M" , M h‘ﬁs A

- "A is true in evefymp -model of Axy REC(E) and M,
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&) We define - following Girard - the concept of " P-

M structure for L{(Z) ", M,Ax

proof " in the langnage L(E ). KRemark that "recursive
P -proofs" in the language L( &) are syntactical .

objects.

We prove the following completeness theorem:

For every{recursive) set of formulas M of wny),
for every formula 4 of L{(¥):
* .

M, A%gaa (g ) A iff |

there is a (recursive) B - prroof of A from M V

AXREC(Z) in L(¥) .
(Remark that the Girard's P-completeness theorem can-

»

not applied directly, because h’ is not the usual
sempatic relation). ‘ »
Therefore, if t, and t, are terms of sort s of L(g),
then: )

» : ‘
l::s t1§t$ iff there is a recursive @ -groof d’t1-§—t2 from

AXREC(S) .

7) ¥oschovakis introduced the concept of "recursion
structures of signature 6° ", and the language REC( o)
{(in fact, & programming language) together with a par-
tial function Val( &,@,t) ( @& recursion structure, a
valuation of variables of REC(0) , t term of REC(O")),
in order to define for each recursion structure @ the
class of the functionals "recursive on @ ". Moschovakis
raksed the guestion:
"If X is a class of recursion structures of signature
0 and t is a term of sort bgol of REC(0"), we put
Xk t iff for all @ in X and all valuations & in @,

Val(@,a ,t)2 1
We would like to find natural axioms and rules of infe-
renee which will prove Xk t when this holds, at least
for special cases of X &and t "
We investigate the retationships between "signatures"
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and " B-similarity types", languages REC(9*) and .
languages L(& ),"Pecursion structures" and "standard
structures for L{(Z )"; so that our completeness theorem

gives a partial positive answer to the question raised
by Moschovakis.
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