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0. Introduction

Most mathematical theories can be expressed in set theory. Hence a theorem prover
for set theory could be used as an all-purpose theorem prover or as a general proof-checker.
In this sense, the discovery of a resul} analogous to Herbrand’s theorem for predicate
calculus, but applying to set theory, would be of great importance (see-[Om]).

Herbrand’s Theorem. There exists an automatic procedure P, which, given an ar-
bitrary formuls of predicate calculus, produces an infintle sequence gy, g2, g3, .. of proposi-
tional formulas such that q 13 a theorem if and only if at least one of the g; ’s is unsatisfiable.

It can be conjectured that the relationship of set theory to the class of unquantified
formulas in the language including the operator U (binary union}, N (binary intersection},
\ (set difference), {-} (singleton), pow (powerset), Un (general union), 5 {choice function},
X (cartesian product) and the predicates = (equality), € (membership} is analogous to
the relationship of predicate calculus io propositional calculus. = A preliminary step in
finding such an analogue of the Herbrand’s theorem might therefore consist in proving the
decidability of the theory sketched abdve. - - '

We will review some partial results in this direction. More precisely we will deal with
the langage =, €, U, N, \ extended either by pow or Un. Partial decidability results for
this language have been found in [BF} and [F]. Here we describe a technique which allows
the general case to be solved (see [CFS1|, [CES2] and [C]). '

1. Maultilevel syllogistic and its extensions

The language MLS is composed using variables z,9, 2, ..., operators U, N, \, predi-
cates €, =. The MLS theory is then the set of unquantified formulas which can be built
up from the above constituents by observing the usual syntactic rules.

Normalizing formulas, it is immediate o see that we can limit ourselves to considering
only those formulas Q of MLS which are conjunctions of literals of the following types:
{€) zey

(€ =¢y
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(=) z=yuz,z=y\z
The following concepts play a crucial role in the solution of the satisfiability problem
for MLS and its extensions. :

Definition. A boolean function « defined on the variables occurring in Q is called a
place of Q if a(z) = a(y) V af2) (resp. afz) = a(y)d—a(z)) whenever the literal z = yUz
(resp. £ = g\ 2) occurs in Q. If in addition for a place @ of Q and a variable z in @
o(y) = 1 (resp. afy) = 0) whenever z € y (resp. z ¢ y) occurs in @, « is said a place of
Q of the vanbale z.

Since the number of possible places of Q is finite, the following theorem establishes
the decidability of MLS. ’

Theorem ([FOS]). @ is satisfiable if and only if there exist
(i) aset I' of places of @,
(ii) a correspondence 7 a, where 2 ranges over the variables of Q (after identification
of variables equivalent with respect to the equivalence relation ~r, defined by z ~r y
iff e(z) = afy) for all @ € T'), and o is a place at z,
(iii) an ordering < of variables in @ such that if z < y then ay(z) =0. 1
It can be shown that when conditions (i)~(iii) of the above theorem are satisfied, sets
% can be effectively associated with the places @ in T in such a way that the assignment
Mz= U @ satisfies Q.

a(z)=1
Strenghtning such construction, it is possible to take into account even cardinalily

constraints and the elementary arithmetic of cardinal numbers without loosing decidability.
This gives in particular the decidability of the satisfiability problem of MLS extended by
the singleton operator (see [FOS]).

2. MLS extended by the general union operator o

The theory MLSU obtained from MLS by allowing an unrestricted number of occur-
rences of the general union operator Un has been shown to have a solvable satisfiability
problem [CFS1]. Here we give a brief description of the techniques used in the proof.

Let Q be a conjunction of literals of the form (=), (€}, (¢), and (Un), v=Un(y).

In proving the decidability of MLSU decidable conditions are given on places of § in
such a way that a procedure of the type

$ INIZIALIZATION §
For every place o« let
ae—ad
end for;
Stabilize;
$ END INIZIALIZATION $

$ c-PHASE $
Following the order < of variables z in Q do
o, — %, U {Mz);, $ where Mz = U z$

Stabilize; o=

end do;
$ END c-PHASE §

can produce a model of Q if any exists.
To this end it turns useful $he following definition of Ugraph.

Definition. Given a conjunction @ and a set T of places of @ as above, the Ugraph
G of @,T is the graph whose set of nodes is I, plus one additional node {1, and whose
edges are 28 follows:

{i) A directed edge connects & fo {1 if and only if a(y) = O for every variable y for
which u = Un(y) is in Q. (Intuitively this means that clauses u = Un(y) of @ tells
us nothing about the set Un(@), which allows the proper initialization to start with
such places).

(ii) Otherwise, a directed edge connects the place o to the place 8 if and only if f(u) =1
for all clauses u = Un(y) such that a(y) = 1. (Intuitively, the nodes § such that
{,B) is an edge of G represent all the sets § in which elements of U'n(%) can appear).

Three kinds of nodes can be distinguished in the Ugraph. Those from which there is
a directed path which reaches {1 are called safe. A node is trapped if every sufficiently long
path from it eventually reaches a node from which no edge branches off {null node). Finally
a node which is neither safe nor tropped is called cyclic. Intuitively trapped places are
those places o whose associated set @ must satisfy severe rank restrictions. In particular it
can be seen that such places can be assigned only sets having rank at most one more than
the maximum length of a largest path forward from each of them to a null node. Therefore
only a finite number of possible choices must be checked. On the other hand it $urns out
that each nontrapped place @ can be assigned an infinite set @.

A rough description of the first initialization phase is as follows (for simplicity we only
consider the case in which no trapped place exists.) First of all infinitely many individuals
are associated with every place o of @ such that («,11) is an edge of the Ugraph G. Then
any safe place can iteratively be given an infinite supply of elements by drawing elements
from its descendants and forming their singletons.

The same technique can also be used fo initialize cyclic places, once we observe that
the null node oy must e on a cycle which can be given elements by successive formation
of singletons of the emptyset @ (which is assigned to @), and that, by the regularity axiom
of set theory, the null node must be rechable along edges of G from every other node. This
observation, which in substance is a condition for the satisfiability of Q, guarantees thai
proper inizialigation can be accomplished successfully. Once this phase is completed, all
literals of type (=) are correctly modeled; however for literals u = Un (y) in @ all we can
say is that Un U @} C U ®.

=1 © o a(s)=t .

To get equa.ligc)as in place claf)thee inclusions, the following stabilisation phase is then
performed. For each element p which has been put into & and for every clause u = Un (y)
such that e(u) = 1 (ie., intuitively & C Mu), an element A is found such that affer
inserting A into @ no inclusion of the type above is disrupted. Then the pair {p, A} is
inserted in a place § such that (8, @) is an edge of the Ugraph G.

We refrain from starfing the conditions which guarantee that such a stabiligation
phase can actually take place, since they are quite involved. The interested reader can find
a complete description of them in [CFS1}.
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An analogous stabilization is then performed in the €-phase.

3. MLS extended by the powerset operator

Let Q be a conjunction of literals of the type (=), (€), (¢), and (pow), p = pow (g).
Let 51,92,..., 5, be nonempty disjoint sets. Then we have

pow(s; UsU---Us,) = U pow” (4),
$£AC {5108, )}

where pow* {A) sbands for the set of those subsets of U s which have nonempty intersec-

E4
tion with every element of 4. !
Hence, if p = pow (¢) is a powerset clause in @, and @, .. ., a; are places of Q such that
ai(g) = - = a(g) = 1, there must exist places fy,..., 8 with f1(p) = --- = fe(p) =

and such that elements of pow® (&, ...,) can lie in §, UB, U-- - UBy. This relationship
is called a P-edge, {a,..., a1} is a P-node and §i,..., B are tasgets of {a1,...,eq}. If
a place is not the target of anly P-node, then it is called instial. (Intuitively, initial places
are those places which are not constrained by powerset clauses. It is reasonable to sbart
initializaion from these places.)

A first condition for Q to be satisfiable follows from the consideration that if s =
pow (t), then » €5 if-and only if 4 C ¢. In terms of places this translates as follows: “if
p = pow (q) occurs in @, then a;(p) = 1 if and only if for every place & such that a(z) =1,
we have a(g) = 17. This condition assures that during the €-phase; mserhon of Mz into
@, will not' disrupt any inclusion of the type

U anow( U ay,

a{p)= alg)=1
for any powerset clause p = pow (g) in Q.
“To force-equalities itr place of the above inclusions the stabilization assignments

Bepovt(@,...m)\ |J 7
: ’ {ar,..ar}-y
{where £.i3'a “special® target of {a;,..., a}) will take place each time a new variable z
is processed in the e-phase.

The initialigation phase can be described as follows: since initial places are not re-
stricted by’ any powerset clause, we can initialize them freely using a sufficiently large
numbers of md1v1duz.ls Moreover the empty set can be assigned to the place ay (we are
assuming that @ isa variable in Q designating the empty set). At this point proliferation of
elements can start. This will continue until each place has been assigned at least one ele-
ment. More specifically, for each P-node {e;, ..., oy}, with @y,..., % nonembpy, elements
in pow* (&y,..., &) \ U 7 are opportunely distributed among all its targets 7.

]

[CFS2] states condltml{ls which ensure that the initialization and subsequent stabilization
phases can execute properly.

Note, also that it can be proved that if m is.the number of distinct variables in Q,
then @ is satisfiable if and only if @ has a model of rank at most 22" +m+2 41

The same result can be proved also by allowing the singleton operator to appear
together with the powerset operator. However in this case initialization and stabilization

must be carried out simultaneously (see [C]).
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