Estratto da

R. Ferro e A. Zanardo (a cura di), *Atti degli incontri di logica matematica* Volume 3, Siena 8-11 gennaio 1985, Padova 24-27 ottobre 1985, Siena 2-5 aprile 1986.

Disponibile in rete su http://www.ailalogica.it

I MODELLI TOPOLOGICI NON SONO COMPLETI PER IL λ -CALCOLO

F. HONSELL, S. RONCHI DELLA ROCCA Dipartimento di Informatica, Università di Torino

Un *modello topologico* del λ -calcolo e' un oggetto riflessivo nella categoria cartesiana chiusa i cui oggetti sono c.p.o. (ordini parziali completi) e i cui morfismi sono le funzioni continue secondo Scott. Un c.p.o. D e' riflessivo se $[D \rightarrow D]$ (il c.p.o. di tutte le funzioni continue da D in D) e' un retratto di D, cioe' se esistono due funzioni continue $F:D \rightarrow [D \rightarrow D]$ e $G:[D \rightarrow D] \rightarrow D$ tali che $F \circ G$ e' l'identita' in $[D \rightarrow D]$.

Ad ogni modello topologico D e' associata una *funzione di interpretazione* []: $\land \rightarrow Env \rightarrow D$, dove \land e' l'insieme dei λ -termini e Env=Var $\rightarrow D$, dove Var e' l'insieme delle variabili.Sia $\xi \in Env$; [] e' definita per induzione sui λ -termini nel modo seguente:

 $[x]_{F} = \xi(x)$

 $[XY]_{\xi} = ([X]_{\xi}) \cdot ([Y]_{\xi})$

 $[\lambda x.X]_{\xi} = G(\lambda d \in D.[X]_{\xi[x/d]})$

dove, se d,d' \in D, d-d'=F(d)d' e $\xi[x/d](y)=se$ y=x olloro d oltrimenti $\xi(y)$.

Una λ -teoria e' una relazione di congruenza sui λ -termini, chiusa rispetto alla α e β -conversione. Ogni modello M del λ -calcolo induce naturalmente una λ -teoria, tramite la sua funzione di interpretazione. Piu' precisamente, se $[\]$ e' la funzione di interpretazione in M, la teoria indotta da M e' $T(M)=\{X=Y|Y\in [X]_F=[Y]_F\}$.

E' naturale chiedersi se la classe dei λ -modelli e' completa per il λ -calcolo, cioe' se, data una λ -teoria T, esiste sempre un λ -modello M tale che T(M)=T. Per quanto riguarda la classe dei modelli topologici (a cui per altro appartengono tutti i modelli noti del λ -calcolo) la risposta a tale domanda e' negativa; dimostreremo questo fatto mediante la costruzione di una λ -teoria che non puo' essere indotta da nessun

nessun modello topologico. Consideriamo la seguente λ -teoria:

 $T=\{X=Y|Y\in [].C[X]\rightarrow_B X\in \Lambda_0 \Leftrightarrow C[Y]\rightarrow_B Y\in \Lambda_0\}$

dove C[] denote un contesto, \rightarrow_{β} denote une sequenze (possibilmente vuote) di β -riduzioni, e Λ_0 denote l'insieme dei termini chiusi, cioe' senze occorrenze di veriabili libere. E' fecilmente controllabile che T e' effettivemente une λ -teorie. Sieno X e Z i seguenti λ -termini:

 $X=\lambda \times Z.\Delta\Delta(x(\Delta\Delta Z)(\Delta\Delta))(x(\Delta\Delta)(\Delta\Delta Z))$

 $Z=\lambda xz.\Delta\Delta(x(\Delta\Delta z)(\Delta\Delta z))$

dove ∆=\x.xx.

Dimostreremo che $T\vdash X=Z$, mentre non esiste un modello topologico D tale che $T(D) \subseteq T$ e $D\models X=Z$. Per dimostrare $T\vdash X=Z$, useremo alcune proprieta del modello P, definito come segue:

Definizione. $P \sim [P \rightarrow P]$ e' il modello topologico ottenuto come limite inverso della "torre": $\langle P_n, \langle i_n, j_n \rangle \rangle$ (notazione $P = \lim_{n \to \infty} P_n$), dove $P_0 = \lim_{n \to \infty} P_n$, $P_{n+1} = [P_n \rightarrow P_n]$, e le funzioni $P_n \rightarrow P_{n+1}$ e $P_n \rightarrow P_n$ (n \(\text{\$\te

 i_0 = $\lambda x.se x=T_0 allora \lambda z.z altrimenti <math>\lambda z.L_0$, j_0 = $\lambda x.x(L_0)$,

 $i_{n+1}=\lambda x.i_n\circ x\circ j_n$, $j_{n+1}=\lambda x.j_n\circ x\circ i_n$.

[]P e' la funzione di interpretazione di P.

Ricordiamo che l'insieme degli oggetti di P e' $\{\langle x_n \rangle | x_n \in P_n e | x_n = j_n (x_{n+1}) \}$ (n \geq 0)}, e l'ordine parziale in P e' l'ordine parziale componente per componente. Questo modello e' stato proposto da Park [2].

Definizione. L'insieme A(X) degli *approssimenti* di un termine X e' cosi definito:

A(X)={A|X \rightarrow_{β} X' e A e' ottenuto de X' rimpiazzendo ogni sottotermine di X' della forma (λx .P)Q con $\Phi(\lambda x$.P)Q}.

Gli approssimanti sono quindi forme normali di un linguaggio Λ^* che e' un λ -calcolo esteso con l'aggiunta della costante Φ . Dato un modello $D=\lim_{r\to h} D_n$, la funzione di interpretazione di D si estende facilmente a termini di Λ^* ponendo $\forall \xi. \llbracket \Phi \rrbracket_F = (\llbracket \lambda x. x \rrbracket_F)^1$, dove d¹ denota

la proiezione su D₁ di d∈D.

Teoremo di Approssimozione. Sio $D=\lim_{j_n}D_n$ e sio [] la funzione di interpretazione in D. [X] $_F=\sup\{[A]_F|A\in A(X)\}$.

Utilizzando il Teorema di Approssimazione, si dimostra la seguente :

Proprieto. $X \rightarrow_{\beta} X \in V^0 \Rightarrow \forall \xi [X]^p_{\xi^2} [\Phi]^p_{\xi^2}$

Teorema 1. T⊢X=Z.

Dimostrazione. Poiche' sia X che Z appartengono a \wedge_0 , dimostrare che Ti-X=Z equivole a dimostrare che, per ogni termine Q, $QX \rightarrow_{\beta} X' \in \wedge_0$ se e solo se $QZ \rightarrow_{\beta} Z' \in \wedge_0$. Ma, per la Proprieta', $QX \rightarrow_{\beta} X' \in \wedge_0$ implica $[QX]^P_{\xi} \supseteq [\Phi]^P_{\xi}$ e, di conseguenza, implica l'esistenza di Q' \in A(Q) tale che $[Q'X]^P_{\xi} \supseteq [\Phi]^P_{\xi}$, per il Teorema di Approssimazione. Quindi si possono considerare approssimanti invece di termini, e il teorema puo' essere dimostrato facilmente per induzione sulla struttura degli approssimanti, che sono forme normali.

Teorema 2. Sia D un modello topologico . Se $T(D) \subset T$, allora $T(D) \subset T$. **Dimostrazione**. Sia $[\]$ la funzione di interpretazione in D. Assumiamo T(D) = T. Questo implica:

- ί) [ΔΔ]-[ΔΔ])=[ΔΔ].
- ii) $\forall d \in D.[\Delta \Delta] \cdot ([\Delta \Delta] \cdot d) = [\Delta \Delta] \cdot d$.
- iii) $[\Delta\Delta] \neq [\lambda x. \Delta\Delta]$, cioe' $[\Delta\Delta]$ non puo' essere una funzione costante. Sono possibili due casi:
- 1) $\forall e \in D.[\triangle \Delta] \cdot e \subseteq [\triangle \Delta]$. Questo implice $[\triangle \Delta] \cdot \subseteq [\Delta X. \triangle \Delta]$ e quindi $[\triangle \Delta] \cdot \perp \subseteq [\triangle \Delta]$ (\bot denote l'elemento minimo di D). Consideriemo le funzione:

 $f(z)=se\ z\notin [\Delta\Delta] \cdot 1 \ ellore\ \lambda \times [\Delta\Delta] \ eltrimenti\ [\Delta\Delta]$

E' facile verificare che f e' continua, e quindi f∈D. Si ha:

([X]-f)- \bot =[$\triangle\triangle$], mentre ([Z]-f)- \bot =[$\triangle\triangle$]- \bot , contro l'ipotesi che T(D)= \blacksquare

2) $\exists a \in D.[\Delta \Delta] \cdot a \not\models [\Delta \Delta]$. Questo implica $[\Delta \Delta] \cdot \bot \not\models [\Delta \Delta] \cdot a$.

Consideriamo la funzione:

 $f(z)=se\ z\notin \Delta$ allora Δ altrimenti 1.

f e' continua e quindi feD. Si ha:

([X]-f)-a=[$\Delta\Delta$]-1, mentre ([Z]-f)-a=[$\Delta\Delta$]-a, contro l'ipotesi che T(D)=T, e quindi il teorema e' dimostrato.

Doi teoremi 1 e 2 otteniomo il seguente:

Corollario. I modelli topologici non sono completi per il λ -calcolo.

Questo risultato e' parte del contenuto dell'articolo [1].

Bibliografia

- [1] Honsell F., Ronchi Della Rocca S., An Approximation Theorem for Topological Lambda models and the Topological Incompleteness of Lambda Calculus, di prossima pubblicazione su: Journal of Information and Systems Science (1986).
- [2] Park D., The Y-combinator in Scott's Lambda Calculus Models, Theory of Computation Report 13, Univ. Warwick, Dept. of Comput. Sci.(1976)
 [3] Scott D., Continuos lattices, "Toposes, Algebraic Geometry and Logic", Lecture Notes in Mathematics 274, Springer Verlag, pp. 97-136(1972).