Estratto da

R. Ferro e A. Zanardo (a cura di), Atti degli incontri di logica matematica +

Volume 3, Siena 8-11 gennaio 1985, Padova 24-27 ottobre 1985, Siena 2-5
aprile 1986. -

Disponibile in rete su http://www.ailalogica.it

\

413

FUNCTIONAL META LEVEL FOR LOGIC PROGRAMMING
(extended abstract)

DINO PEDRESCHI, PAOLO MANCARELLA, FRANCO
TURINI
Dipartimento di Informatica Universita di Pisa

1. Introduction

Logic programming is, nowadays, one of the most widespread paradigm for
knowledge representation [4, 2]. The reasons are to be found in its theoretically well
established background and the better and better implementations which are launched
every day on the market.

If knowledge engineering has to supersed, in the future, standard programming as a
better means of exploiting computers, knowledge engineering environments have to
allow the construction and the manipulation of large knowledge bases in an orderly
way. Put another way, if the tools and the methodologies for programming in the
large have been a (partial) solution to the construction of large conventional software
systems, there is greater and greater need for tools and methodologies for knowledge
engineering in the large. t

Our work aims at this goal, providing an environment where chunks of knowledge
can be represented as logic programming theories and the theories can be manipulated
via operators embedded in a functional programming language. In other words, logic
theories are added as first class objects to a functional, ML-like, programming
language. The functional layer can look at the logic theories in two modes:

« estensionally. According to this mode, logic theories can be queried in the
usual way allowing to evaluate sets of tuples which can be further manipulated
by the functional layer. This mode provides an integration between logic and
functional programming similar, in spirit, to the one proposed by Robinson for
LogLisp [6]. :

« intensionally. According to this mode, logic theories are considered as first
class objects. They can be passed around as functional arguments and
intensional operators can be applied to them. The class of intensional operators
include an intensional negation operator, which, given a logic theory, yields a
new logic theory which computes the effective complement of the original one.
Other operators allow to join theories together, to intersect them efc..

This mode allows to dynamically manipulate chunks of knowledge and, in our
opinion, provide a semantically sound way of knowledge engineering in the
large.

Rossella
vol3

414

The rest of the paper deals with the presentation of LML, a language defined around
the ideas described so far, with hints on its mathematical and operational semantics.

2. LML

The key idea of LML is to allow also logic programs (theories) to be first class objects
as well as functions. This is achieved introducing the type of logic programs equipped
with a set of operations to create, use and combine theories. The analogy between
these operators and the usual operators on functions is summarized in the following
picture.

functions | logic theories
A-abstraction | Horn clauses

application | set-expressions
composition | union, intersection, negation

The link between the functional layer and the logic layer is achieved through
set-expressions which allow to compute sets by querying logic programs. The
set-expression

{x| G[x] w.r.t. T}

denotes.the set of values resulting from the evaluation of the goal G within the theory
T.

Since set-expressions can evaluate to infinite sets, a lazy evaluation rule must be taken
into account.

The operators on logic theories allow to define a suitable class of intensional operators
on sets, thus providing an intensional calculus over denotations of sets which is one
of the most actractive features of the language.

In this respect, a very critical issue is finding a suitable treatment of negation inlogic
programs which, in turn, allows to define in a precise, semantically clear way some of
the set-operators.

The approach followed in LML, called intensional negation, is based on a
transformation technique which allows to explicit the negative information implicitely
embedded within a logic program {1].

For each predicate symbol p, intensional negation syntetizes the clausal definition of a
new predicate p~ such that p~ holds iff the proof of p(t) finitely fails under SLD
resolution. ‘

A new refutation strategy, called SLDIN-resolution, has been provided which is
sound and complete with respect to intensional negation.

With intensional ncgétion a complete symmetry in handling both positive and negative
knoewledge is achieved, allowing to express both positive and negative queries as

415

existentially quantified formulas. Notice that the notion of allowed queries, critical
when negation as failure [3] is adopted, makes no sense anymore in this context.

The following is an example of intensional negation which can provide the flavor of
the transformation technique, which is inductively based on the ability of negating
basic terms, i.e. composition of constructors.

Consider the following definition of the predicate LessOrEqual

LessOrEqual (0,X) «
LessOrEqual (s(X),s(Y)) ¢ LessOrEqual (X,Y).

Intensional negation yields the following clauses

LessOrEqual ~(5(X),0) «
LessOrEqual ~(5(X),s(Y)) « LessOrEqual ~(X,Y)

Intuitively, intensional negation builds a program which succeeds when the positive
program finitely fails. Finite failure is caused, at the end, by the fact that no clause
exists which is unifiable with the current goal. The idea is then to find out for the
negated predicate which terms do not unify with the terminal clauses. In the example,
the term s(X) can never unify with 0.

Due to intensional negation, each logic theory is implicitly extended with the clauses
defining the effective complement of each predicate symbol. Whenever two logic
theories are combined together, the negative information is taken into account. As an
example, the union of theories T; and T is computed by merging the clauses for the

original predicates and, then, syntetizing with intensional negation the negative
knowledge. Intersection, in a dual way, is computed by merging the negative
knowledge and, then, syntetising with intensional negation the new positive
information.

Polymorphic types and type-checking in the ML-style has been added [5]. In the LML
approach the result is obtained very smoothly by carrying over the typing features of
the functional layer to the logic layer.

Finally, it is worth mentioning that the mathematical semantics of the logic layer is
built on top of a domain which, again, takes into account both positive and negative
knowledge coded within logic theories, thus permitting continuous interpretations for
the intensional operators. In this context, some common extralogical features of
widespread logic programming systems (€.g. the assert and retract Prolog builtins) are
semantically well understood.

3. Conclusions)
LML offers a functional meta-level on top of logic programming in two ways:
» exploits the ‘logical layer as a way of extensionally computing sets,

» allows the intensional manipulation of logic theories as a formal way of
manipulating chunks of knowledge.

416

In summary, the motto of LML is putting logic theories together in a functional style.

References

(1]

(2]

3]

(4

(3]

(6]

R.Barbuti, P.Mancarella, D.Pedreschi, F.Turini, “Intensional Negation of Logic
Programs”, submitted for publication to J. of Logic Programming (1986).

A.Barr, E.A Feigenbaum (Eds.), The handbook of Artificial Intelligence, Vol. 1,
Pitman, London (1981).

K.L.Clark, “Negation as Failure”, in Logic and Data Bases, H.Gallaire and
J.Minker (Eds.), 292-322, Plenum Press (1978).

R.A Kowalski, Logic for Problem Solving, Elsevier North Holland, New York
(1979).

R.Milner, “A proposal for Standard ML”, Proc. of 1984 ACM Symp. on LISP
and Functional Programming, 184-197 (1984).

J.A.Robinson, E.E.Sibert, “LOGLISP: Motivations, Design and
Implementation”, in Logic Programming, K.L.Clark and S.A.Tarnlund (Eds.),
299-314, Academic Press (1982).

