Estratto da

R. Ferro e A. Zanardo (a cura di), Atti degli incontri di logica matematica,

Volume 3, Siena 8-11 gennaio 1985, Padova 24-27 ottobre 1985, Siena 2-5
aprile 1986.

. Disponibile in rete su http://www.ailalogica.it

417

ILLOGICAL PROGRAMMING

GABRIELE RICCI

Summary. We motivate and report some work on automated pro-
gramming that yielded an experimentally tested program generator.
Its theory focuses the objects to be computed more than the program-
ming machinery involved. Thus, the tools developed for it differ
from the logical ones in their use and in some technicalities.

O A bottam up approach. A common feature of present appli
cations of Logic to programming is their high level globa
lity. E.g. in practical applications, Logic is used for
modeling or .inspiring a whole programming language and,
in theoretical ones, for formalizing its semantic (1J. On
the contrary, this communication concerns some work moti
vated by an approach complementary to the usual one. The
outcome of this work, in fact, is a (sméll) program gener
ator, viz. something closer to a single ready to use pro-
gram than to a wide programming language.

(Program generators, even as trivial as a printing
procedure with parametrized formats, immediately satisfy
user's needs, thdugh within a restricted field. Also,
they often provided the high level programming languages
with their building blocks.)

Two questions rise from a bottom up approach to high
level programming as ours. Does it work even for non triv

ial tasks ? Does it have something to do with Logic ?


Rossella
vol3


418

1 What got. An affirmative hint for the former quesg
tion is provided by a sample of output programs from our
generétor. Its input parameter is an algebra, to be pro-
vided by user procedures at now or, within a possible
high level translator, by declarations only. Here is what
the generator returns you after such an input.

Input algebra ‘ Generated program serves to
Finite vector space Integrating systems of linear difference
equations on a Galois field. (NEW)
Complete semilattice {21 of|Finding weakly connected components in a
union graph. (WELL KNOWN)
Boolean set algebra Decomposing an encoded clock (with dela-

ys) into "behavioral' components. (NEW)

Complete max and successors Scheduling of PERT projects.
on partial tables of natu- : (WELL KNOWN)
ral numbers ‘

The ability of performing such heterogeneous tasks
comes from a simple idea: get a program performing a sin
gle non trivial task (in our case, solving eigenvalue
equations) within usual vector spaces and "parametrize"

it by allowing algebras other than vector spaces.

2 Relevance to logic. As far as the latter gquestion
in O is concerned, our bottom up approach leads us to
two opposite findings. In fact, tools similar to the usu
al Logic ones do be needed, whereas their use and some
technical details conflict against the ‘usual ones.

A need for "combinators" rises while writing a pro-
gram generator as ours. In fact, the algebra parametri-
zation requires a lot of nAew theory oriented to computa-
tional purposes. This is difficult, since present Uni-
versal Algébra comes from a merely extensional view of
- functions, contrary to traditional geometry, where ana-
lytic geometry pr0vides an intensional view also (hence,

419

contrary also to Whitehead's proposal (51).

The only analytic tool (feebly) accepted by univers
sal algebraists (Menger's superassociative systems) is an
imported item, yet they did not pick up the accompanying
[3]1 proposal, about some kind of combinators, at‘ill.(Cog
binators, at least as a notational aid; do be useful for
expressing categorical constructs intensionally and spe-
cifically.) Thus, our parametrization demands some rebuild
ing of the very foundations of Universal Algebra. Yet,
there was no need for a wide rebuilding. E.g. Set-Theory
was not relinquished.

In such circumstances, the useful "combinators" dif-
fer from the logical ones. To begin with, we cannot throw
pairs away by Schdnfinkel repeated applications {(nor by
diads) easily. Then, we cannot consider C being a trivial
combinator, e.g. as a generalization of matrix transposi
tion. ) ,

(We can easily get it even in the case of classical
geometry. In fact, consider the function ¥ mapping a vec
tor v into the linear form yxv identified by its coordi-
nates. Thus, in the projective case, X is Pliicker isomoxr
phism between a space and its dual. Then, Cx does not
look a "transposed" x at all. It is the isomorphism from
"Cayley"” monoid of matrix product onto' "Klein" endomor-
phism monoid, see 2.6 of manuscript A inA3.)

A further difference, related with retaining pairs,
is that B comes to have two principal types. Probably, we
would not find difficulties of this kind, if we had an
embedding available of Algebra and Categories into Combi-
nators, viz. if somebody had solved a converse of the
problem tackled by Lambek (the equivalence between Combi-
nators and some Categories).

Programming our generator, i.e. purposefully choos-
ing its input algebra, pushes the user to approach other
Logic tools. Here, the problem arises from the input al-
gebra looking unrelated with the generated programs. It



420

looks like as the generator "invent" the algorithms it ge
nerates. Contrary to conventional programming, programmer
's intuition looses control over the logic of a generated
program. Likely, this problem will occur in any form of
automated programming.

Here is where Category Theory plays a role. In fact,
it offers conditions stating when output relevant objects
can be made to férm an input algebra and it hints how the
algebra has to be structured. However, these categorical
results are the low level ones, viz. the ones from the
applied categories of [2]. Moreover, a still lower level
and some intensional machinery would likely benefit the

programmer.

3 Available material and work in progress. The pro-
gram generator, its description and test runs are in C.
The relevant theory is in A and B. A also contains some
algebraic application and B some link with other Computer
Science problems. (All papers are manuscripts available
from the Author.) Some further theory, relevant to cer-
tain extensions done in C, is in {41,

A Universal eigenvalue equations, 1982.

B You don't need numbers to do integrations, 1983.

C A Whitehead generator: a new high level programming springs from a
an old conjecture, 1985.

At now, a faster algorithm (exploiting an extension
of superassociative systems) is being implemented for our
generator. (Indeed, the programs generated by the présent
algorithm are too slow, when they can compare with possi
ble conventionally programmed ones. The feasibility of
"illogical" automated programming would be shown even on

a cheap videogame machine.

References

£l H.P. Barendregt, The A-calculus:its syntax & semantics, North-
Holland, 1984.

[2] E.G. Manes, Algebraic theories, Springer-verlag, 1976.

[3]1 K.Menger, Superassociative systems and logical functors, Math.
Annalen 157 (1964).

[4] G.Ricci, P-algebras & combinatory notation,Riv.Mat.Univ.Parma,5(1979).

[51 A.N.Whitehead, Universal Algebra, 1, Cambridge U.ty Press, 1898.




