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The purpose of the present work is two-fold: to offer a new algebraic approach for the
development of a universal syntax and semantics of formal languages (both machine and logic
oriented). and to define a new general notion of logic, called universal logic. The main motivation
for introducing such logics is clearly expressed in Barwise's paper [Barw 85]: “...there are many
topics [...] which are not usually considered part of extended model theory since they do not fit so
well under the general framework that has been developed in abstract model theory. [...] the most
glaring omission of this sort is- work on the semantics and logic of computer languages. [...] in the
long run, it seéms that a unified view. of logic and semantics will require us to come up with a
framework that encompasses both fields, but we are far from such a conception at present.”

Let U be a set of sorts. We say that A is a U-ser if A is just a set with a sort assignment,
which is a function s,:A—> U. The set A, = {a€ A:sa(a) = u) is called set of elements of sort u.

If A and B are U-sets, then a U-map is a function f: A — B such that sg ° f =54.1f A and B are
U-sets, it is convenient to denote by ABor (A — B) the set of all the U-maps from A into B.
1. Definition. An a-dimensional domain F of formulas is a quintuple <U,a,L,1,0> such that
@) U is a set of sorts;
(ii) o is a U-ordinal, called set of variables;
(iii) L is a set, called set of formulas, Given a formula F, the U-ordinal pF is called rank of F;
(iv)  Givena formula F, 1(F) = 15 pF ~ o is a U-map called assignment,
(v} .GivenaU-map &€ %, a(d)= 05 L »— L is a partial map called substitution.
The following axioms are satisfied for every F,G € Lande, Y, 8 € o
@ Ifoygis deﬂped on F (hereto denoted by csiF), then TcsF =8 R
® Ifyerp=Setp, then cYF =4 0gF: (Refer to the list of notation for the definition of =)
(© o©;4F=F (id: o — o is the identity function);
@ Oy5=0y° G5
@© .If c,Yl«F, o lFand 7, F =8 To P then 65, F = G, F.

® oz F=0g50G for two substitutions o5 and Ggp, then there exist H € L and oy

op such that "yl.H =Fand c.ﬂH =G. ¢ i

Eachelement F.€ Lis called formula of rank pF. If ’tFO\.) =¥, the variable v, is said to occur

free in the i place of F. The interpretation of the axioms is straightforward: ogF is the formula
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obtained from F by substituting, for every k € o the variable v, with the variable V5(i0)-

The following definition introduces a binary relation ¢ on L, which expresses the property: “to
have the same predicate symbol”.

2. Definition. Let F,G € L. We say that F and G have the same predicate symbol and we write

FOG iff there exist a formula H and two substitutions Og» Oy such that ogH=Fand GYH=G' ¢
Each equivalence class [Fy is said to be a predicate symbol. If G € [Fly, G is said tobe a

formula of predicate symbol [Fl¢ and, if A = T, we write F = [Flg(v°A).

3. Definition. A logic signature A of dimension a is a quintuple <U,a.,¥,1n,E> where

(@) U is a set of sorts; ’ (b) o is a U-ordinal, called set of variables;

(¢) X isan a-set, called set of non-logical operators;
(d) Z is an w-set, called set of logical operators,

(e) For every operator f, n|(f) is the set of variables quantified by f. If <i,A> € 1(f) (A € @), we
say that the logical operator f quantifies the variable v, in its ith argument;

(®) n{f) =0 for every non-logical operator f € X.

The index n € ® of an operator f € T U E is its arity and, ifn(f)-’-—{<i1,ll>,....]. wecallfa

quantifier on <ipA>,....

Some variables are possibly quantified by an operator f because of Property (e). For example,
the binary operation hyy, defined by by (F1.F2) = 3vi(F1) A Vvy(Fp) where Fq and F; are

first-order formulas, is a simple example of quantifier on the variable vy in the first argument and

on the variable v), in the second one.

4. Exvample ]

1. (first-order signature) Let U = {0}. The first-order signature A, = <U,a,1,=,, > of dimension
o éonsis_ts of the following logical operators: three sentential connectives: the disjunction
symbol v, the conjunction symbol A and the negation symbol — the existential quantifiers
¢, (K € ), the truth symbol Tq, the falsehood symbol F, and the equality symbols dm ((TRS
€ o). The logical operators have the following arity: Ep= (To'Fo'dxw"-]; E; = [—ieeeks
£y = (VAL NE) =10 =1(A) =1(FQ) =1(T) =) = B; M(e,) = (<130] forevery «.

2.  (A-calculus signature) Let U= (0}. The A-calculus signature Ay =<U,0.n,=5 > of dimension o
consists of the following logical operators:  the projection . symbols T (K€ ba), the
A-abstraction quannjﬁers‘ A (e o), and the application symbol App. The operatbrs‘ have the
following arity: Z¢ = {m,...}; £y = (Menu)s Zg = {App)in(ApP) = n(vtx) 2 nx) =
{<1,>] for every x € 0.

3. (computer signature) Let U= {0}. The computer signature A, =<U,an,=.> of dimension a
consxs}s of the following logical operators: the assignment symbols assngn'th (ux € o), the
sequencing symbo{ 3, the union symbol \V, the star symbol *, and the test symbols ?KP»
(x.1 € o). The operators have the following arity g = [assignm,...,?m,...); “E1={*k
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== (5. L) n(assigng) =n(") =nG) =( =n(2q) = B forevery ki € 0. ¢

Letp be ‘a subset of U-ordinal c.. We call a U-function 8 € %o suitable for Bif 8(A)=A for
every A€ B,and 8(A) ¢ B if A ¢ B. In the'sequel, we let “S is suitable for the operator f” stand for
“§ is suitable for (A : <t A> € N(f) for some 1}”.
S, Definition. Let A be a logic signature. By a A-language L of dimension o. we understand a
pair <F.L> where F is an a-dimensional domain of formulas and L is a (& u Z)-algebra of carrier
L (set of formulas). The following axioms are satisfied for every f € X W 'E, formulas Fy,....Fy €
L and function 8 € %ot suitable for f:
(a) quantification property : If F = f(Fy,....F), then

A & Rg g iff there exists an i such that A € RgtF and <i,A> ¢ 'n(f).

(b) endomorphism property : Whenever 6g(f(Fy.....F)) is defined, then f(ogF;,.. ,0'5 ) is also

defined and 6g(f(Fy....Fp)) = f(O5F],...05F). ¢

We generalize the standard notion of semantic domain or possible world so as to include those
logics which deal with computer languages.

6. Definition. The set Tp of derived types is defined as follows:

1. 0e Tp; 2.1f p € Tp, then Pow(p) € Tp;

3. If(p; € Tp:ie T) is an I-indexed family of types, then (Tlicp) e Tp. ¢
7. Definition. Let N be a U-set. Then the a-ary generalized Cartesian space p with base N
associated with (or induced by) the type p is defined as follows:

(i) 0 induces the Cartesian power *N = (x : x: & — N.is a U-map, i.e. xy € Ny iff s, () =u);
(i)  if p=Pow(p,) and p, induces p,, then p induces Pow¢'(p0) (i.e. Pow(p )\(D));
(i) ifp=(IT;¢1p;) and p; induces p; (i € I), then p induces nie 1P; (Cartesian product). ¢

If p is atype, pN“ will denote the a-ary generalized Cartesian space with base N induced by p.
When there is no ambiguity we write p% for pN“. It is possible to give now the definition of
possible world or semantic domain.

8. Definition. An a-ary possible world W with base N is the set (p® -» A) of the functions, the
domain of which is an o-ary generalized Cartesian space p* with base N, and the range is'a set A. ¢

For example, if U = o and A is a set, then the w-set N defined by NO =A; Ny= Pow(PA) for
every n > 0, is the base related to second-order logic: The possible world (0% — Bool) = Pow(*N)
is the semantic domain of second-order logic.

Let p® be an a-ary generalized Cartesian space and B < ovbe a U-ordinal, The composition
function «: po‘xﬁa = pB and the restriction function ] are def'med as follows, for every element x
€ p%, subset " coandmap A e Ba
BHp=0 ©xeA = X0k rk=r/x
2) p = Pow(py) : xA={yA:yex}; Fk=(Cly:yex);
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@ p=Tlie1p; (M) =xeA e D; @y =T (e D.

~ In what follows it is necessary to extend the substitutions also to possible worlds: (6gZ)x =

Z(xs8) forevery Z € (p& — A), x e p* and 5 e %a.

_ The generalized cylindric operations Qp~ (" < ©) on possible worlds can be defined (see [Sal
861). These operations generalize the usual cylindric operations of polyadic set algebras to each
possible world (p* — A): Q(2) is the generalized “cylinder” generated by translating Z parailel to
- the I'*? axis of the space p®. Furthermore, by using the following logical ‘imerpretalion of
generalized cylindrifications, -

Qr@)=2 (i.e. Z is a I-cylinder) iff Z does not depend from the variables vy withAe T,

the notions of semantic quantifier and interpretation morphism can be stated.

9. Definition. Let A be a logic signature and W = (p* — A) be a possible world with base N.

Then we say that .

() Disaweak-semantic set A-algebra of dimension o with base N (in symbols D € WSSN'A)
provided that D is a (¥ U Z)-algebra, the universe of which is a pdssible world W with base N.
D has to verify the following conditions for every operator f € JUE, ZyZp€ W, and
function § € %a suitable for f:

(a) endomorphism set property:
cs[f(Zl,...,Zn)] = f(cazl,...,cszn);
(b) quantification set property: let I" be a subsetof o, let Ty = (A € I': <iA> ¢ .1(f}, and let
Qr; Z; =Z; for every i=1,...,n. Then Qr fZqZy) = f@ZyeZy)

(ii) D is-a semantic set A-algebra of dimension o with base N (in symbols D € SSy .A) provided
that D = <D,f,...Qr:0§>T < ,5€ %o, and the reduct <D, f,...> is a weak semantic set
A-algebra with base N, ¢

Remark. Quantification set property clarifies the notion of semantic quantifier. If

+ thesetsZy,....Z; 1.7; 10+ ++Ly does not depend from the variable vy (that is, Q [Mzk =Z for
every k#i),

+ the setZ; depends from the variable v, (that is, Q [X]Zi #2;),and

« the operator f quantifies the variable vy m the i'h argument, then

@y does not depend from v, (thatis, Q o) f(Zl,...Zn) = f(Z1seZg)). ¢

10. Example.

(@) (Existential quantifier) The cylindric operation Cy: Pow(%A) - Pow(%*A), defined by
C\@D= {x €. %A : x[\/d] € Z for some d € A} is a semantic quantifier which quantifies the
variable vy (see E4.Q1)).

(b) (A-abstraction) A triple <A X,y> is called a A-calculus algebra if

« (AX) is an applicative structure (that is, A is a set and X is a binary operation on A).
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« y: (A > A) — A is a function verifying the condition y(f) xa = f(a) for every ae A and

every function f € (A — A) representable in (A X). A function f: A — A is representable.in

(A,X) if there exists m € A such that f(a) =m x aforeverya € A. Then; the A-abstraction

ACAA) - (%A —> A) associated with the A-calculus algebra <A,x,y>, is defined as

follows:

A @y=y(f) foreveryZe (*A— A)andeveryy Gy,

where the function f: A — A is defined by f(a) = Z(y[«/a]) for every a € A, Functicn A isa

semantic quantifier which quantifies the variable v, (see E4.(2)). ¢

The general notion of a semantic algebra is obtained by abstraction from the notion of semantic
set algebra.

11. Definition. Let A be a logic signature, By a semantic A-algebra of dimension 0. we mean an

algebraic structure D = <D.f...., qpi..., Sy->T'ca, ve %o, feTU E (in simbols D € SAa, A

such that <D, f,...> is a (X U E)-algebra, and q-and O, arc unary operations on D. The following

axioms are satisfied for every f € (X U E),, x,X(,...x3 € D, rQcao, and 756 %o

(P1) The reduct <D,f,..> is a (X w E)-algebra; ®2) ggx=x;

(®3) opgx=x; (Pd) o 5= oy° o§

®5) If (D) /1 ¥= (u\l")4 5, then o.dr = 954r+ (PO IfT ¢ Qand goyx = x, then qprx =x;

(P7) Iqrx=xandqox=X, t.henq(ru )x=x

®8) Ifde %o is suitable for f, then oglf(xgu.xp)l = J(ogX 005X ): _

(P9) Let " be a subsetof o, let T; = (A € T: <i,A> € n(f)}, and let qp; x; = X; for every
i=1,..,n. Then qp f(Xp,eenXp) = f&XpouenXp). ¢

12. Example. (A-calculus logic)

Let Ay be the A-calculus signature defined in E.4.(2) and <A X, y> be a A-calculus algebra (see
E.10.(b)). By the A-calculus set Axalgebra associated with <A X,y> we mean a weak seinantic set
Ay -algebra:

My=<(®A > A), APP, TL,, A,..>y ¢ ¢ Such that

(Z APP T)y = (Zy) % (Ty) (x is the binary operation on A); Ny =y

A is the unary quantifier defined in E.10.(b)
for every ZT € (*A — A) and every y € %A,

By a A-calculus semantic Ay -algebra of dimension ¢, we mean an algebraic structure
B= <B'App’"x’)‘x""’qr"ﬁf xe o,Fco,ye %o
such that the following axioms are satisfied:
1. B is a semantic Ay -algebra of dimension o; C2.qrm =T, forevery ' N (x} = @;
3. Oyt = Tt 4. kuy=u withk= A.KA'_LNK;
5.suyz = (uz)(yz) withs= xx"p)‘v[“x“v(”u"v)]; 6.exy=xy withe= (A‘cku(nxnu));
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7.ifVz (xz=yz), thenex = ey;
where xy stands for x App y, and (xx5....x,) stands for (...(xlxz)x3)...)xn). .
13. Example. (first-order logic)

Let A be the first-order signature defined in E.4.(1). By a first-order set Ay, -algebra of
dimension a we mean a cylindric set algebra of dimension . By a first-order semantic A, ,-algebra
of dimension o we mean an algebraic structure

B= <B'V"‘""To-Fo'cwdK}»""'ql""f xAealgoye “a
such that the following axioms are satisfied: 1. B is a semantic A, ,-algebra of dimension o
2. the reduct <B,V,A,ﬁ,T°.F°,cK,dK}~>K Aca is a cylindric algebra of dimension o
3.xadgy < Ope/ax Where x<yiffx=x Ay, and [k/A] € %ois so defined: [K/AJL= pif pex,

Aif p=x; 4, ‘Wix}, = dYK.‘Yl; S.eqr=qpif (x} cT. ¢
14. Example. (computer logic)

Let A be the computer signature defined in E.4.(3). By the computer semantic set A-algebra we -
mean a weak semantic set A -algebra: Bc = <Pow(°‘A><°‘A), assign
such that

e e PV P e o

<X,y> € assign,q_l iff ¥y, =X, for every A # %, and Y =Xy (assignment);

<X,y>€ ?,th iffx=yand X = X, (testing for =);

<X,y> € Zj ; Zq iff there exists z such that <x,z> € Ziand<z,y> € Z, (sequencing);

Wy>€eZ) U iff<xy>e Z 1 0r <x,y>€ Z, (non-deterministic union);

Z* = the reflexive and transitive closure of the binary relation Z (iteration).
By a computer semantic A-algebra of dimension o.we mean an algebraic structure

B=<B, assignm,?m. ;,u,*,...,qr,o?,(,u € a,Tcoye %

such that the following axioms are satisfied:

1.B is a semantic A.-algebra of dimension a; 2. (x3)5z=x3(y;2)
3.(?m;assignm)=?m 4d(xuyvz=xu(yuz)
S.xuy)=@yux) . 6. (x*;x)=x* and (x;x*) =x*
'7. c.r(assignm) = assigny(x)y(p) 8. GY(?KIJ) = ?'Y(K)Y(ll)' *

15. Definition. . An interpretation morphism from L to D is a morphism : L ~ D verifying,
for every Fe L and cle, the following conditions: (i) Q(a\R 2 TF)I(F) =I(F);
(i) 050 = Logh). +
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