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A SHORT COURSE IN INTUITIONISTIC METAMATHEMATICS '

A.S. TROELSTRA
Department of Mathematics - Universiteit van Amsterdam

The text below is a shoriened version of the two lectures presented. Full
details may be found in the book "Constructivism in Mathematics” by A.S.
Troelstra and D. van Dalen, chapter 9.

It will be shown how to prove that certain "derived rules” well-known to
hold for many intuiionistic formal systems (such as the disjunction
property and Church's rulel hald for an interesting, not too complicated and
in many ways typical example, namely the operator-part of Feferman's
theory of operators and classes. We call the theory APP, and although it is
proof—theofeticaﬂg of the same strength as intuitionistic and classical

- first-order arithmetic, we have to woark harder to obtain the derived rules.

Preliminaries.
HA is intuitionistic firet-order arithmetic, similar to classsical

= Tirst-order arithmetic PA, and formalized with sumbels for all primitive

recursive functions. EL is an extension of HA with function variables o, 3,
¥, ..; the domain of functions is supposed to be closed under "recursive in®,
i.e. we have the axiom schema of quantifier-free choice

QF-4C Znam Aln,m) = 3a¥n Aln,an) (A quantifier-free).

Elementary recursion theory can be formalized in HA (for partial
recursive functions) or EL { for partial recursive functionals).

Elementary inductive definitions relative to HA, EL or APP can be
replaced by explicit definitions. We can profit from this fact since it is
aften easier to handle the inductive definitions with the correspanding
induction principle for the defined classes directly, instead of working
with the corresponding explicit definitions.
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Description of APP.

APP is a first-order theory based on E*-logic, that is intuitionistic
predicate logic with a predicate E for "exists” {so Et means "t exists or "t
denotes™); the deviations from ordinary predicate logic {in the form of a
natural deduction system, say) consist in modified ¥-elimination and

J-introduction rules:
1 Al) Et Alt) Et
oEf ———— JE —
A(t) Ix Alx)

and an axiom "variables exist”

Ex.
For equality we have
Etet=1,

and we define "equal and equally defined” by
t=s:=(EtvEs) = t=s

The language C{(APP) contains:
variables %,y,z,u,v,w for operations,

Individual constants k, s {(combinators), p, py. B, {(pairing and unpairing
operators), 0 (zero),5 {successor}, P {predecessor), and d {definition by
numerical cases).

There is also a binary partial operator Ap for application: if t, s are
terms, so is Ap{t,s); we write ts for Ap(t,s) and t, ..t abbreviates
({0t 0t). ,
Predicate constants: = for equality, N for the natural numbers, and E for
axistence. :

Prime formulas are of the forms t = s, Et, Mt {also writtent € Nj;

formulas are built from prime formulas by -, A, v, ¥, 3. We use some

Apbreviations. 1 := (0 = 50), and we may regard v as defined by
AvB: = IkeN({{x=0->A)A(x20-B})).

Furthermore the numerals are introduced as usual, and we sometimes
write (s,t) for pst, (t); for p;t.

n, m are often used for variables ranging over N, i.e. ¥n, 3n abbreviate
¥n(neN = ..}, InlneN A ).
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Axrioms and rules of APP.

t=z = Et AEs, Nt - Et;

Eits) = Et A E5.

Et  Ix(x = 1),

Nt atzs - Ns;

SEfra) mt =g = rt=rs;

Eftr) At=g = tr=sr

‘Bt =+ kst = g;

<Et & Et' = Efstt’), stt't” = 11" {t't");

Et = pplptt) =t EU = p(pt't) = t;

(0EN, teN—-SteN, Stz
PO=0, teN—=PleN, P{St)=t;

)

lEt, AEt, AteN A UEN A tat = dt ittt =t A dt ittt = t,

I.A('ﬁ) A FueN{An) = ALSK)) = ¥xeN Alx) (induction).

The standard mode) of APP is PRO, the (codes of} partial recursive
functions; the application operator Ap is partial recursive function
application.

WwWe can now adopt many technigques familiar from combinatory logic. As
in combinatory Togic ohe shows that for each term t there is a term,
written as ax.t, such that

APP - E(axt) n (Es = (aut)s = t[x/s])
There is a fized-point operator fix satisfying

APP F E(fix(x)) A fix(si(y) = (fin(x)¥y),
and from this we construct a recursor r such that

EtU=rit'o=t,

HE = et (St = t(rtet”
and a minimum-aperator. Thus all total recursive functions are available
in APP, and HA can be embedded into APP as a subsystem; EL can also be
embedded into APP. In fact APP is a conservative extension of "HA, as may
be seen by interpreting APP in PRO.
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Term models.

CNF3 is the model of closed terms in narmal form with application
defined by strict reduction.

A strict reduction sequence is a sequence where always the leftmost
minimal redex is converted; and a redex is minimal if it does not have a
proper subterm which is a redex.

Normal form, reduction sequence etc. are defined in the usual way from
the conversions ‘

kit conv t, sttt conv tt"(t't"), py(te.ty) conv t, (i€{0,1}),
dtt'nn cony t, dit'nm conv t' if n 2 m (7, M are numerals)
P(St) conv t, PO conv 0.

Let >, denote one-step reduction, # reductionin general. t and t' are
r-equel if there is a sequence t=ty, ty, t5, .. ,1,=t such that foralli<n
t; < 4, or ti,y # t;. The Church-Rosser thearem holds for this reduction
relation. wWe now define application tt" in the term model as the unique t”
(if existing) such that tt' » t" by a strict reduction sequence, t" closed
normal; the rest of the interpretation is obvious.

A variant is the term model CNFS™, o € N—=N. Here we consider terms
vith a single fixed free variable x* (with intended interpretation «J, and
extend our reduction relation by adding an infinite set of conversions

%*(310) conv S%M0  (or x*{R) conv an).

g-realizability.

Our next tool is an abstract modified version of Kleene's realizability.
To each formula A of APP we assign a new formula x g A ("x realizes A"),
x ¢ F¥{a); Fv(xq A) = {x}uFY(A), such that
(i) xqP:= Ex AP for P prime;

(i) xq(AAB):= (pgxgA) A(pxqB);

(i) nq(A->B):= Ex A Yylyga = xyqB)a (A - B);
(iv) x g (YyA): = Yylxyqa);

(v) %g(3yA) = Elpgx) A (pyx g A)Y/pyx].

PROPOSITION

(i) APPFtgA - AAEL;

(1) For 3-free A there is a term v, such that
APPF Ix(xqA) o 1, gA e A;
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(1) APP - A 3 APP |- t g A for some t, with FV(t) C FV(A) (soundness).
COROLLARY. APP |- 3xBx 3 APP Bt A Et with FY(t) Cc FV(B)\ {x}. O

COROLLARY. Let A be 3-free. Then

APP I ¥x{Ax — JyB(x,u)) > APP I ¥x{Ax - E{tx) A B(x,tx))
for a term t with FY(t) c FY{AJUFV(B)\ {x}. O
Note that we can take x € Norx € NN (i.e. YyeN(xy ¢ N)) for Ax.

COROLLARY. Let 3xeNC{x), A v B be closed.

(i} APPF 3xeNC(x) 3 APP F CA for some numeral fi .

(ii) APPF-AvB = APPF A or APPFB.

Proof. Suppose F 3xeN C(x}, then by the preceding corollary FC(t) A teN for
some closed t. This must be true in the term model CNF3, so t strictly
reduces to a numeral i; but then APP Ft = A, so FC(R). O

For further refinements we need to formalize some of our
metamathematics. For if ~¥n3m C{n,m), we obtain for each numeral
F3m Cth,m), and by recursively searching through possible proofs we can
find a numeral m such that FC(f,m), and so there is a recursive function f
such that for all i FC(fi,fn). But we need to do extra work if we want to
show that this function can be taken to be provably recursive in APP.

We now concentrate on the so-called continuity rule, since ultimately
“closure under Church's rule” is a special case of closure under the
continuity rule. .

Consider terms t with F¥(t)  {x*}. We can give an elementary inductive
definition of VAL®("t7,x), "X is the value of t under the assignment of « to

o ®* ", and where "t7 is the g@delnumber of t. The definition uses the
- tlauses:

YAL®("c7,c) for constants ¢;

VALS( %7 x);

VALS(TE, 7 20 A VALR(TE, 740 - VALt 1, vy,
The proof of the following proposition is not difficult if we use the
inductive definition. :

PROPOSITION. Let FY(tlv,x*]) c {v,x*}, then in APP
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() VALS(TLT x) A WaLS("t T u) = R =y
(i) E(tIn,al) » vaL("tln,x*1" tn,al);
(111) ¥neM Yoel wy(vAL*("t[A x*]"u) » tnel=w. O

Let SRED®(x,y) express "t with Tt7 = x strictly reduces Lot with R
y . We note that SRED* isre. inw and in particular '
F SRED™(x,"fi") & Ju(T*(w(x),u} 4 Uu = nj,
where T is a suitable version of Kieene's T-predicate, with a single
function argument a, ¥ primitive recursive in ¥ U is the result-extracting
function; we may assume that a computation with code number u uses at
most Fu, i.e. values of o for arguments less than u.

THEOREM (Continuity rule). Let Fv{A)C{x.al, then in APP
FooehNIxeN Ala,x) = FPoeNNIUTH(M,ul A Ao, Uul)
for some numeral m.
Proof. Let F¥aeNNaxeN Ale,x), then (g-realizability), for a suitable term
1% FyaelN{t*aeN A Ale,t*al). Hence in particular Fx* € M = {%y* e N;
if we interpret this in the term model CNFS® we obtain
F9oelNIneN SRED®("t*x*” "R°),
and hence
b 3u(T%(m u) A SREDS("t*x* ™ " u™).
But we also have VAL®(Tt*x*™, t*o), and with the propositions above
B 3ul(T®(m,u) A t*o = Uul
The conclusion of the rule follows. O




