Estratto da

A. Zanardo (a cura di), Atti degli incontri di logica matematica Volume 4, Siena 27-30 maggio 1987.

Disponibile in rete su http://www.ailalogica.it

ON DUMMETT'S LC QUANTIFIED

GIOVANNA CORSI Dipartimento di Filosofia - Università di Firenze

In § 1. we present a sequent calculus G-LC for the logic Q-LC that results from adding Dummett's axiom A -> B v B -> A to intuitionistic predicate logic and we prove the cut elimination theorem for it. Q-LC is valid with respect to the class K^{C} of connected Kripke models with nested domains.

In § 2. we extend the language of Q-LC by adding the existence predicate E and we give an axiom system, QE-LC, which results to be characterized by the class E^C of connected (Kripke) E-models with nested domains.

§ 1. The calculus G-LC.

Let L be an elementary language containing countably many individual variables x, y, w,.... (with or without subscripts), a non empty set of predicate letters P^n , $n \ge 1$, the symbol of falsehood f, the connectives & (and), v (or), -> (if ... then), the quantifiers \forall (for all), \exists (there is) and the auxiliary symbols (,). We use A, B, C as metavariables for formulas, which are defined in the usual way. The negation is defined thus: \neg A = $_{dt}$ A -> f.

The letters M, N, P, Q designate sets (possibly empty) of wff.

A sequent M —» N is an ordered pair of finite sets (possibly empty) of formulas and the notation M, A —» N is an abbreviation of M U $\{A\}$ —» N. M —» A, N is treated analogously.

In]: w is said to be the special variable of]:.

where $w_1,...,w_m$ are all different variables and none of them occurs in the conclusion of $L_{n,\,m}$ and $n,\,m\geq 0.$

 $w_1,...,w_m$ are said to be the special variables of $L_{n,m}$.

Let G-LC# be the calculus G-LC plus the following cut rule:

DEFINITION 1.1. Let Π be a proof in G-LC# where the last rule is the cut rule and no other rule in Π is a cut rule. Then Π is said to be simple.

DEFINITION 1.2. A proof Π is said to be *quasi-regular* iff the free variables occurring in Π are all different from the bound variables occurring in Π .

A proof Π is said to be regular iff it is quasi-regular and any special variable occurring in a premiss S of $L_{n,m}$ or of Ξ : occurs only in the subproof of Π ending with S.

LEMMA 1.1 Let Π be a regular and simple proof in G-LC# of the sequent M, P —» N, Q, then there is a cut-free proof Σ of M, P —» N, Q.

THEOREM 1.2 Let Ω be a proof of the sequent M -- N in G-LC#. Then there is a proof Ω^* of M -- N in G-LC.

THEOREM 1.3 A sequent M —» N is provable in G-LC iff Q-LC |- M -> VN for M, N $\neq \emptyset$. A sequent —» N is provable in G-LC iff Q-LC |- VN , for N $\neq \emptyset$. A sequent M —» is provable in G-LC iff Q-LC |- M -> f, for M $\neq \emptyset$.

PROOF. By theorem 1.2 and the fact that for any n, $m \ge 0$,

§ 2. The calculus QE-LC.

The axioms of QE-LC are the propositional axioms of the intuitionistic logic plus the following ones:

 $\forall x A(x) \& E(y) \rightarrow A(y)$ where y is free for x in $\forall x A(x)$

 $A(y) \& E(y) \rightarrow \exists xA(x)$ where y is free for x in $\exists xA(x)$

 $\exists x A(x)$

Inference rules :

DEFINITION 2.1 An E-model ME is a quadruple <W,R,D,V> where W is a non-emty set, R is a partial order of W, D is the domain function that associates with each $w \in W$ a non-empty set D_w , such that if wRv then $D_w \subseteq D_v$. Let $U = U \ \{D_w\}_{w \in W}$. V is an assignment function such that $V(P^n)w \subseteq U^n$, $V(E)w = D_w$ and if wRv then $V(P^n)w \subseteq V(P^n)v$.

DEFINITION 2.2 An interpretation μ is a function from the variables of the language into U. By $\mu^{(x/d)}$ we denote the interpretation μ' which coincides with μ except that $\mu'(x) = d$, where $d \in U$.

DEFINITION 2.3 The notion of a wff A's being true in M at w under μ , ME $\mu|_{=_{\mathbf{w}}}$ A, is so defined :

ME "|≠_w f

 $\mathsf{ME}^{\ \mu}|_{=_{W}} \ \mathsf{P}^{n}(x_{1},...,x_{n}) \quad \text{ iff } \quad <\mu(x_{1}),...,\ \mu(x_{n})> \ \in \ \mathsf{V}(\mathsf{P}^{n})w$

 $ME \parallel =_{w} A \& B$ iff $ME \parallel =_{w} A$ and $ME \parallel =_{w} B$

ME "|= A V B iff ME "|= A or ME "|= B

 $ME \stackrel{\mu}{=}_{\mathbf{w}} A \rightarrow B$ iff for all v. wRv. if $ME \stackrel{\mu}{=}_{\mathbf{v}} A$ then $ME \stackrel{\mu}{=}_{\mathbf{v}} B$

ME $\mu = \forall x A(x)$ iff for all v.wRv. and for all $d \in D_v$, ME $\mu(x/d) = A(x)$

ME $\mu = \mathbb{I}_{\mathbf{x}} A(\mathbf{x})$ iff there is a $d \in D_{\mathbf{w}}$, such that ME $\mu(\mathbf{x}/d) = \mathbb{I}_{\mathbf{w}} A(\mathbf{x})$.

DEFINITION 2.4 A wff $A(x_1,...,x_n)$ is true in ME, ME $|=A(x_1,...,x_n)$, iff for all μ and all w, ME $|=\mu$ $A(x_1,...,x_n)$. A wff $A(x_1,...,x_n)$ is E-valid iff for all E-models ME, ME $|=A(x_1,...,x_n)$.

THEOREM 2.1 The logic QE-LC is characterized by the class E^C of connected E-models.

COROLLARY 2.2 The logic Q-LC is characterized by the class K^{C} of connected Kripke models iff QE-LC is a conservative extension of Q-LC.

REFERENCES

- G. CORSI, 'Semantic trees for Dummett's logic LC', Studia Logica, XLV, 1986, pp. 199-206.
- [2] _____ 'A logic characterized by the class of linear Kripke frames with nested domains, sent to *Studia Logica*, Firenze 1986.
- [3] _____ 'A cut free calculus for Dummett's logic LC quantified', manuscript, Firenze
- [4] M. DUMMETT, 'A propositional calculus with denumerable matrix', *Journal of Symbolic Logic*, Vol. 24 (1959), pp. 96-107.
- [5] O.SONOBE, 'A Gentzen-type formulation of some intermediate propositional logics', Journal of Tsuda College, Vol. 7, 1975, pp. 7-13.