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The notion of a recursion category was introduced ( [1], [21)
as an easily characterized and rather general sort of object exhib-
iting the principal characteristics of classical recursion theory.
Examples were adduced to show that these characteristics were to be
found m settings with properties quite different from those of the
classical theory. These examples however were in general obtained
by modifying the classical one, leaving the possibility that the in-
creased generality was, after agll, just a matter of inessential

variation.

The case, however, is quite otherwise. Our principal result
here asserts that within suitable dominical categories are to be
found large families of recursion categories. We shall describe
L: here the constructions that lead to this result and point out some
examples which illustrate how far we have come from the classical
one. Detailed arguments will appear elsewhere.

We assume familiarity with the basic notions relating to domin-

ical categories and recursion categories as set forth in [11 .

1. IwrI-dominical categories; isotypes
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The categories in which we shall construct récu:rsion subcatego-
ries are dominical categories with a mmber of additional properties:

-~ they have binary coproducts, over which the near-product dis-
tributes, making them + -dominical;

-- their morphisms have ranges, respected by the near-product,
and are thus r-dominical;

-~ they satisfy the weak axiom of choice, which asserts that
partial monomorphisms have cross-sections, and are accordingly w-
dominical.

Those satisfying all of these conditions are wrt+ -dominical. We
shall want to consider two additional properties:

-- they have, in addition to + , countably infinite coproducts
I¥n = X0+Xi+ ... , over which thev near-product distributes, such
categories being I-dominical;

-- they are locally indecomposable, mak:mg them 1-dominical.

. The last property is defined as follows. A domain €€ DonX is
decomposable if € = e’y €', e'~ne" =0, ' 04" . A dominical
category is locally indecomposable (1-dominical) if every domain is

the supremum of its indecomposable subdomains.

A dominical category satisfying all of these conditions is
lwrZ-dominical.

Recursion categories are, inter alia, categories in which any
two objects are isomorphic. In ( {11, [2] ) such categories were
referred to, following a precedent, as ''semigroupoids." This ter-
minology now seems unfortunate. We shall, rather, call them isotyp-

ical categories or isotypes.

If a I-dominical category € contains an X » XXX, a fortiori,
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if Cr has a terminal object 1, we shall see that C conta;-ins many
isotypical dominical subcategories. If € is lwrl-dominical we shall
see that many among these are recursion categories.

The conditions we have just emmmerated may not seem familiar.
They are nonetheless satisfied by many familiar categories, whose
variety may be suggested by the following examples:

-- the category PCat of small categories, having as morphisms
functors defined on subcategories 7

-- for any small catefory K the category PSets K of functors
K-—>Sets and natural transformations defined on subfunctors

-~ for any field k the category Pcoalg—k of commutative co-

algebras over k and coalgebra homomorphisms defined on subcoalgebras.
2. B#— categories

The structure of an lwrI-dominical category € is only that of
a dominical category: the prefix refers to properties. A key to our
construction is the conversion of some of these properties into
structure.

The near product is already str?ﬁctural. It consists in a bi-
finctor X: ©>XC —> @ , together with natural transformations
Py pl , the projections, and A , the diagonal, on (L'IT , the catego- .
ry of total morphisms, having some additional naturality properties
on ©. The binary coproduct, we now demand, is to be a bifunctor
+: CXC-——> € together with natural‘transfom;ations iO , il ,
the injections, and V, the codiagonal, on €.

The distributivity is characterized by yet another piece of

structure, viz. a natural transformation d on (ET together with
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the two equations,

d(X"i0 X*iq) =id, (X>ij. Xxij)d=id
where of course
Kxig  X%¥ip) = VERIGK X1)) XXV RZ =X X(V4Z)

We shall say that Cp, provided with this structure, viz. the
bifunctors X, + and the seven natural transformations Pgr s d
is a B-category. To this we shall want to add additional structure
expressing not the existence of the infinite coproduct I but rather
a consequence of this, that of the free semigroup X# = XXXZF -0
: This gives us an additional functor #: €—> € , restricting to CT,
somé, but not all, of whose properties are to be expressed by equa-
tions involving seven additional natural transformations on G .

Briefly, these are the following:

-- the associative multiplication m of X# ;

-- the injection j of X in X# H

-- the homomorphism "removal of parentheses' e:XfH’e—éX# ;

-- the isomorphisms X# & X%Xx)dﬁ R X# = X# XX+X , assured by
natural transformations 1, r ;

-- the "diagonal parametrization' par: X% Yi—s (XKY)# ,

vwhich satisfies pl#par =P X*Y#-—>Y# ;

-- the isomorphism (u¥)¥ = Xyl oifx vt vhx xt
+x o syyla x ot vty i expressed by w.

The last is ‘familiar as the partition .of words in Xt+Y in texms
of their first and last letters. The equations relating these may
be deduced from their brief descriptions. -

A category supplied with all three functors X, +, #, and these

/3
fourteen structure transformations Ppr ++r » W is a B#r -category. A
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. subcategory closed under all this structure is a B# -subcategory. In

such a subcategory X and + are again product and coproduct, but #,
although its values are semigroups, need not have free semigroups as
values, since the properties guaranteed by the structurem, ... , w
do not assure the freeness of X' , that is to say the adjointness of
# to the forgetful functor. We shall describe them rather as for-
mally-free semigroups and say that a B# -category has a formally-

free semigroup structure.

3. Uniformly generated B# -isotypes

An object X of a B#-category B is isotypical if

X ~ XXX ~ %X ~ XF . For such an X the category BIX1 , the
smallest full subcategory of B containing X and closed under
X, +, #, is an isotypical i -subcategory of B. With regard to the
existence of isotypical X we may make the following remarks. Sup-
pose the functor # in B comes from an infinite coproduct, as in the
case B = (ET,whene C is I-dominical. Then -

(1) If B has a terminal object 1 and X ~ X4X (e.g. if X is

any countable copower Y+¥+ -:- ) then 1+X+X2+ «++ is iso-
typical;

(ii) 1If X ~ XXX then the countable copower X+X+ --- is iso-
typical.

Isotypical objects, in other words, are not uncommon.

Now, inasmuch as a st -category B is characterized by its
structure, it is clear that any class W of morphisms in B is con-
tained in a smaller B#—subcategory B#w, the BF -subcategory generated

by W.
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By a frame b at an object X of B we mean a family of isomorph-

isms
byX—> XXX , byiK—s XX, byX—s xF

together with their inverses. If, now, W is a set of morphisms in
B{X] then s* bW is m isotypical i -subcategory of B{X1. But
in fact we might as well consider subsets WeBX,X) alone, since
B#b is already isotypical. ‘B#b is of course the isotypical gt -sub-
category (rel b) with O generators; if W is finite then B#G-'NW) is
finitely generated. A moment's thought, however, shows that then
B oo = BFbuif}) for some £:X—s% |

We shall generalize this notion of finite generation. If
t:X%X——> X a morphism g:X—> X is an _JIE (re;l t) of
f:X— X if fpl = t(gxX). If f has an index (rel t) we shall
say that t lists f. The set L gt of such £ is the wniform list of t.

A B#-subcategory D of B is uniformly generated if

D = B#(buL]Dt) for some t in D.. It is easy to see that any fi-
nitely generated D is uniformly generated. The converse in general
is false: a finitely generated D is countable; uniformly generated
ones need not be. It is also easy to see that the set of wniformly
genefated D is directed by inclusion. Furthermore, for fixed t

the set of solutions of the equation D = B#(bu L]D t) is evidently

closed under wnion, so. that there is a largest B#-'subcategOry uni-~

formly generated via t.
4. Gbdelian categories, Turing completion and the main theorem

An Iwr+dominical category @ in which CT has further the
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lwr -dominical category can be given the structure of a Godelian

category.'

lemm 4.1: (Iteration lemma) If € is a G3delian category,
f:X—> X, ¢€DonX and fe = ¢ then the supremm Unfn*e exists and
there is a unique morphism It(f,¢):X—> X such that dom It(f,e) =
U_£7 and 16¢£,0) () = ™), men .

This permits us to construct, in a Gddelian category, a kind of
analogue of a Turing machine. A Turing datum in C is a diagram

X"‘L W——V"') WY

in ©. Ifweset f=(f i)):WY—vWY then F(O4Y) =

T
O+Y€ Dom(W+Y) . The Turing development Tur(u,v) of the Turing datum

(u,v) is the composition

igu It(f, 0+Y) © v

X —> WY —> WHY - Y .

lemma 4.3: If @ is Godelian and B is a 8" -subcategory of ©p, and

if Tur B is the ciass of all Tur(u,v), where (u,v) is a Turing

datum in B, then Tur B is a +-dominical subcategory of € contain-

ing B. Furthermore ('I‘ur]ii)T =TurBn CT and Tur(TurB)T = Tur B.
We shall say that Tur B is the Turing completion of 1.

We can now state our main theorem.

Theorem 4.3: If € is a Gddelian category'and B is a wiformly
generated isotypical B#-subcategory of Cq then Tur B is a recursion
category.

The idea of the proof is simple enough, although the details
are somewhat delicate. By hypothesis B = B#(bu Lgt) for some

frame b at X and t:X*X==X in B. Using t one constructs explic-
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itly a Turing datum (u, v) such that Tur(u, v) yields a Turing morph-
ism for Tur( B).

5. Remarks, examples and open questions .

(1) The Category P of sets and partial maps is lwrZ-dominical and
thus has a Gddelian structure. If b is the standard frame at IN,
i.e. bg:IN—— N <X N is the usual pairing function, b+:]1\1——>

IN + N is the "odd-even'' map and by: N—> 1\]# is G8del's g then,

clearly, for some f, TurB#(bu{f}) is equivalent to the standard re-
cursion theory T. ' Is Tur m#b, the recursion theory on 0 generatorsg
equal to TurB#(bu{f}) ? |
(2) In P let X by any infinite set and choose any frame b at X. If
B = #(buL BEPO)' is the largest B#-subcategory wmiformly generated
by po then B contains all constants. Thus Tur B is a recursion
category of cardinality as large as that of X. Can it be larger?

(3) For any frame b at x in a G8delian category © a preordering on
€ (XX is defined by setting f<g if TurB' (bu{f}) CTurB’ (buigh).
How is this related to Turing reducibility?

(4) In P(Sets Aop), the category of simplicial sets and partial sim-
plicial maps, let X be an infinite power of a nontrivial cormected
isimplicial set and let Y = X#Xt+ - . Then Y is isotypical and if

B is any uniformly generated isotypical B#-subcategory of

Sets mop[ Y] then Tur B 1is a recursion category.

Now for any total f:Y—> Y, if ¢ DonY is a union of comnected
components then so also is f*s. If fe = ¢ then also domIt(f,e) =
Unfn*g is aiuniqn of components. It follows that ahy domain in
Tur B has again the same property. Thus Tur B is not r-dominical,
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since, for example, A:Y—>Y XY lacks a range.

'I‘his appears to be the first example of a recursion category
which fails to be r-dominical. In the classical theory it is a
matter of indifference whether r.e. sets or partial-recursion fime-
tions are taken as the fundamental notion. This example demon-
strates that the functions ought to have priority.
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