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LOGIC PAZZLES

RAYMOND M. SMULLYAN
New York USA

Logic puziles constitute one introduction to mathematical
logic that has proved attractive to many a student. We will
consider several such puzzles here (and the relation of some of
them to the teaching of logic) and we shall conclude with a new
paradox.

Let us start with a logic puzzle that has.a startling
conclusion: Suppose two people, A and B each made you gn~offer;
the problem is which of the two of fers you would prefer to
accept. A says: "You are éo make a statement. If the statement
is true, I will give you exactly ten dollars. If the . statement
js false, then I will give you either more or less than ten, but
not exactly ten." Now comes B’s offer: “You are to make a
statement. Regardless of whether the statement is true or false,
I will give you more than ten dollars." Which of the two offers
would you prefer to accept?

Most people prefer B’s offer on the grounds that with this
offer you are guaranteed more than ten dollars, whereas with A’s
offer, the most you could be sure of is ten. I, however, prefer
A’s offer, for if A makes me his offer, I would say: "You will
give me neither egactly ten dollars, nor exactly a million

dollars.” Now, my statement is either true or false.
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If it is true, then A must give me exactly ten dollars as
agreed, but his doing so would make the statement false!
And‘so it is contradictory to assume the statement true.

Therefore the statement must be false. Since it is false that A

will give me neither ten nor a million, then A must give me
either ten or a million. But it is against the rules that he
gives me (exactly) ten dollars for a false statement, and so he
owes me a million dollars! ([This puzzle is taken from ({5]]

The above puzzle is related to the following one (which in
turn is related to G8del’s incompleteness the§rem).' On the first
day of my introductory logic class I place a penny and a quarter
on the table and say to the student: “"You are to make a
statement. If the statement is true, then I will give you either
the penny or the quarter (but not bqth). If your statement is
false, then I won’'t give you either coin."” The problem is: What
statement can the student make that will force me to give him the
quarter?

One solution is that the student says: "You will not give
me the penny." If I shoula give him the penny, then I would
falsify his statement, hence I would be giving him a coin for a
false statement, which is against the rules. Therefore I cannot
give him the penny, hence his statement is true. But then I must
give him one of the two coins for having made a true statement,
and since I cannot give him the penny, I must give him the
quarter.

If we think of the penny as corresponding to a sentence that
is provable in a given mathematical system and the quarter as
corresponding to a sentence that is true but not provable in the
system, then the sentence "You will not give me the penny” is

the analogue of G8del’s famous sentence that asserts its own non-
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provability in the system. Another puzzle that illustrates
G8del’s principle even better is the following.

We visit the Island of Knights and Knaves (of the type
considered in [1] - [51) in which each inhabitant is either a
knight or a knave, but not both. Knights make only true
statements and knaves make only false ones. On this island, no
jnhabitant can claim that he is not a knight (for a knight would

never falsely deny that he is a knight, and a knave would never

make the true statement that he is not a knight). Now suppose a
logician visits the island and is told by a native: "You can
never prove that 1 am a knight." Let us assume that the logician

is completely accurate in his beliefs; everything he can prove is
really true. Is the inhabitant a knight or a knave? -

Well, if the logician could prove that the native is a
knight, then the native’s statement would be false, hence the
native would really be a knave, hence the logician would have
£§l§g;x proved that the native is a knight, which is contrary to
the given condition that the logician is accurate and proves only
true statements. Therefore the logician can never prove that the
native is a knight. Well, the native said just that, hence he
must be a knight. And so the conclusion is that the native is a
knight, but the logician can never prove that he is!

Suppose now ﬁhat I give you the additional information that
the logician knows logic as well as you and I. Now, you and I
have just proved that the native is a knight; what is to prevent
the logician from going through the same argumént and proving
that the native is a knight? But if he could prove that the
native is a knight, this would automatically falsify the natives

claim, thus making the native in reality a knave! So don't we
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get a paradox?

No, we do not! There is something we know that the logician
doesn’t know. Can you see what that is?

The answer is that I told you that the logician is always
accurate, but I never told you that the logician knew (or could

prove) that he is! Indeed, if he could prove that he is always

accurate, then he could prove that the native is a knight (by the
same argument we have used), and in so doing would lose its
accuracy (since the native would then be a knave). And so the
upshot is that under the given conditions,‘if the logicign is
wholly accurate, then he can never know (or prove) that he is.
This bears a -resemblance to G8del’s second theorem —-- that a
mathematical system of sufficient strength can never prove its
own consistency, unless the system is inconsistent. [Cf. [5] for
a more in-depth treatment of this pointd

We next turn to a puzzle of a different nature: Suppose a
native of the island says: "This is not the first time I have
said what I am now saying." Is the native a knight or a knave?"

A moment’s thought will reveal that if the native is a '
knight, then he really has made the statement before (as he
claimed), and when he made it before, he was a knight then, hence
he must have made.it a time before that, hence a time before that
-~ and so on, ad infinitum. So unless he has lived infinitely
far back in the past, he must be a knave. {Alternatively, and
perhaps this is simpler, since he made the statement once,; there
must have been a first time that he made it. But the first time
he made it, it was clearly false.]

There is also a "forward"” version of this problem -- a

recipe for immortality. Do you wish to know how you can live
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forever? It’s really very simp;e: all you need to do are two

>things: First, you must make only truthful statements from now

on; never say anything false. {That’s a small price to pay for
immortality, isn’t it?] The second thing is that you say: "1'11
repeat this statement tomorrow.” 1f you do these two things,
then 1’11 guarantee that you will ‘live forever.

I use the above two puzzles to introduce the subject of
mathematical induction. Another device 1 have found useful is
the following: Let us imagine that we are all immortal and that
we live in the good old days when the milkman would deliver milk
to our door and the housewife would leave a note in an empty
bottle telling the milkman what to do. Suppose the housewife
leaves the following note: "If ever you leave milk on one day,
be sure to leave it the next day as well."” [Or alternatively:
"“"Never leave milk one day and fail to leave it the next day."l]
Well, the milkman could go for a thousand years without leaving
milk and he would not have violated the housewife’s order. But

if one day on a whim he should decide to leave milk, then he is

clearly committed evermore. And so the housewife’s order was not

good enough; what she should have written was two things:
(1) If ever you leave milk one day, leave it the next day as well;
(2) leave milk today. These two things would guarantee permanent
delivery.

A friend of mine (Alan Tritter, a computer scientist)
thought of the following cute variant of this (which illustrates
what might be called the Turing Machine, or the Recursive
approach). His note reads: "Leave milk today and read this note
again tomorrow.”

This brings us to the subject of infinity. This subject
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could (and should) be taught in secondary schools (if not
earlier!). Beginners -- even those who claim to be "poor in
math"” -~ are usually‘completely fascinated by this topic. After
going through the usual introductory bit about Hilbert’s Hotel,
the students usually ask me to explain more clearly what is meant
by a set being infinite. Well, I first explain whgt is meant by
a 1-1 correspondence. [As an example, I point out that if one
sees that every seat of a theatre is taken, and that no one is
standing, then without having to count either the number of
seats, or the number of people, one knows that the two numbers
are the same.] 1 of course presuppose that the studen;s are
familiar with the natural numbers 0, 1, 2,..., n,... . I then
explain that for any positive natural number n, a set of
objects is said to have n elements if it can be put into a 1-1
correspondénce with the set of natural numbers from 1 to n (and
that establishing the correspondence is what is commonly called
counting), and a set is.said to have zero elements if it has no
elements at all. I then define a set to be finite if there is a
natural nuhber n. such thét the set has n elements; otherwise
the set is called infinite. [Thus definition seems more
intuitive to beginners than the definition of a set being
infinite if it can be put into a 1-1 correspondence with a proper
" subset of itself.] I then ask the students to make an intuitive

guess as to the answer to- the following question: Can any two

infinite sets be put into a 1-1 correspondence with each other,
or do infinite sets come in different sizes? [Most students, so
far, have guessed that any two infinite sets are of the same
size!] I then explain that Georg Cantor {the true father of the

theory of infinite sets) addressed himself to this problem and at
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first believed that any two infinite sets wefe of the 'same size,
but later realized (and proved) that infinite sets do come in
different sizes. What Cantor first did was to consider sets that
on -the surface appeared to be uncountable (larger than the set of
positive integers) but which turned out to be countable after
all. I illustrate this in the following manner (which has a nice
constructive flavor).

I ask the students to imagine that they are in the

underworld and that I am the devil. I write down a positive
integer on a piece of paper and say: "Each day you have one and
only one guess as to what number I have written. If and when you

guess it correctly, you go free." What strategy will guarantee
eventual freedom? Of course all the students solve that: On
the first day you ask if the number is 1; on the second day, if
the number is 2, and so forth. Eventually you must come to my
number.. The second test is but a shade more difficult: This
time the devil writes down either a positive integer or a
negative integer and the victim must guess what is written (one
guess per day). Must of the students solve that easily enough
(they count the integers in the order 1, -1, 2, -1,.., 3, -3,...)
The next test is more interesting. The devil now says:

"This time I have written down twopositive integers (maybe the

same one repeated). Each day you have one and only one guess as
to what they both are. 1It’s no good if you guess one of them one
day and another on another day; you must guess both of them on
the same day."” Now is there a strategy which will surely set you
free eventually? At this point many of the students are
doubtful. They reason that there are infinitely many

possibilities for one of the numbers and with each such
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possibility, there are infinitely many possibilities for the
other, and so the case seems hopeless. I then tell them that
there is such a strategy and I leave it as a homework problem to
try and figure one out. The next session, the brighter students
}tave solved it: They realize that there is only one pair in
which the highest number is 1 (namely (1, 1)); two pairs in which
uthe highest is 2 (namely (1, 2) and 2, 2)), and so forth. I then
point out that if the victim had to guess the order in which the
numbers were written, as well as the numbers themselves, it might
take about twice as long to get out, but still he could be sure
of getting out. And that is how Cantor enumerated the rationals
(the integral numerator and the integral denominator).

For the next test, the devil writes down a finite set of
positive integers. He doesn’t tell you how many numbers are in
the set, nor what the highest number of the set is. Now is there
a sfrategy for ge?ting out? Only the very brightest students get
this one. [For every positive n, there are only finitely many
sets whose highest,gumber is n -- namely, Zn-l.]

And so we see how one‘can enumerate the set 6f all finite
sets of positive integers. Then I explain that if one wishes to
enumerate the set of all sets of positive integers, it is simply
impossible to do so. And I illustréte Cantor’s proof of this as
follows: Imagine that one has a book with infinitely many pages
-- page 1, page 2, .., page n, .. . On each page is described
a set (finite or infinite) of positive integers. If every set of
positive integers is listed somewhere in the book, then ﬁhe owner

gets a grand prize. But if the owner brings me the book(l), then

¢1) Actually, the book might be a bit heavy (unless the pages
get progressively thinner and thinner)!
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without even opening it, I can name a set that is not listed
anywhere in the book ~-- namely, the set of all n such that n
does not belong to the set listed on page n. This, of course, is
CQntor’s proof.

Now for a little paradox: Suppose the very description:
“"The set of all n such that n ‘does not belong to the set
described on page n" -- suppose this description appears on one
of the pages -- say, page 13. Does 13 belong to this set or not?
Either way, we get a clear contradiction. How does one get out
of it?

The solution is quite simple: If that phrase should

actually appear on any page of the book, it wouldn’t describe any

set at all;it would be what is called a pseudo-description (for
if it were a genuine description, then we would have a
contradiction!)

Now, let me conclude with a more baffling paradox: Suppose
we have another book, and on each page we are allowed to have
either a genuine description or a pseudo-description of a set.
[Some of the descriptions may be éenuine and others not.] Now
consider the following description: "The set. of all. n such
that the description on page ‘n is genuine and n. does not
belong to the set described on page n."

Is the above description genuine or not? Let me prove to
you that it is. To prove this, it suffices to show that for
every n, we have a definite rule for determining whether n
belongs to our set or not. Well, take any n. Either the
description on page n 1is genuine or it isn’t. If it isn’'t,
then n automatically does not belong .to our set. Now suppose the

description on page n is genuine. Then it names some definite
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set, and n then belongs to our set if and only if it doesn’t
belong to that definite set. And so the description is genuine.
Now, suppose that that genuine description occurs somewhere in
the book -- say on page 13. I’ve already proved that the
description is genuine, and so 13 belongs to the set described on
page 13 if and only if it doesn’t belong to the set described on

page 13. How does one get out of this one?
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Solution To The Second Paradox

The solution is that the very notion of a genuine
description is not well defined! One can define the notion of a
genuine description only relative to a given language.

The situation is analogous to the fact that truth is
definable only relative to a given language (and in many cases,
not definable in the same language, as was demonstrated by Alfred

Tarslei).



