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Dynamic logic and the logic of abilify.

by S. K. Thomason

A propositional "logic of ability" was proposed by Mark A.
Brown [B]. In addition to the boolean connectives, it has unary
connectives @ and o whose intended interpretations are:

mA: a (fixed) agent can reliably effect A,

oA: the agent can bring it about that A  might obtain.

More épecifically, the agent, in the currently actual world, has
available a set of actions, each of which leads to an undetermined
one of a set of possible worlds; nA [respectively, o¢A] is true
in the actual world if A is true in all [respectively, some] of
the worlds to which some action leads. {Brown used £P and 4?

instead of the present B and  ¢.)

‘The semantics is one of neighborhoods: a model is a triple
A = <W,N,V>, where W is a non—empfy set, N is a function from
W to PP(W)), and V is a function from the set of
propositional variables to P(W). The truth-definition has

Ak BA o6 (IK ¢ N(s))(Vt ¢ K) (M k- A),

t

y.A FS oA 8 (IK € N(s)) (It « K}(H4 ¥k, A).

t
Notice that the "actions" available to the agent are not
represented either in the syntax or in the formal semantics. It

is natural to inquire into the relationship between this logic of
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abstracted abilities and logics which take the "actions"” more
seriously, namely variants of propositional dynamic logic (PDL) .,
(A good reference for PDL is [G].) In this context, it is in
order to extend Brown's logic slightly: since: the agent will
generally have available actions which lead to the empty set of
outcomes (this as a matter of logic, if “"tests" are permitted) we
exclude these as ways of effecting things, by changing the
a—-clause of the truth-definition to

A, kg, @A @ (3K € N(s))[K # ¥ & _(Vt € K) (M by A)]

(hence ®A » oA is valid).

In particular, Krister Segerbery [$1] proposed adding to PDI,
(without program variables or the "test" operatbr) a ~,
program-forming operator &; if A is a formula then 6A is
supposed to be the action of "bringing about A" in the most
general possible way. A model for the resulting logic is a triple

M = <W,D,V>, where D is a function from P(W) to  P(WxW)

whose role is to intevpret &. It is required that
(D1) <g,t> € D(S) 3 t e 3,
(D2) (Vt)(<s,t> ¢ D(T) = t € )

4 (VL) (<s,t>.€ D(T) = <s,t> € D(S)).
By (D1) and (N2) respectively, the formulas
(51) [6A]A, ‘
(82) [SBIA » (<6B>C. 9 <SA>C)

are valid in every mwodel.  Thus by (&81), if <8A>T (that is,

some execution of &A terminates) then &6A is a way of reliably
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effecting A, and by (62), SA is the most generél such (at

least, most general among actions of the form &B).

In [s2} Segerberyg proposed adding another program-forming

operator ¢, with the intended interpretation that eA is  8A

if, <8A>1, otherwise €A is some action which has some outcome

in which A  obtains if’there is any such action, otherwise €A
is "abort™. 'The models are expanded to gquadruples <W,D,E,V>,

satisfying (D1), (D2}, and

(E1) (dt)(<s,t> € E(S)) = (3It)(<s,t> € E(S) & t € S},
(E2) (It) (<s,t> € E(T) & t € S) = (It)(<s,t> € E(S)),
{DE) (At) (<s,t> ¢ D(S))

3 . (Vt){<s,t> € D(S) & <s,t> € E(S))-
(Observe that if R & WxW and D(S) = E(S) = R n {WxS) for all

S ¢« W, then (D1)-(DE) are satisfied.)

There i$ a natural interpretation of Brown's logic in
Segerberyg's J-& logic: @A is interpreted as j<§A>T,_ and ¢A
as <eA>T. It can be shown that if B is any thesis of Brown's "
logic of ability then the interpretation of B is a thesis of
Segerberg's 6-¢ logic. It is‘not, however, the case that the
interpretation of B "says the same thing" about a model as B

.

itself does.

To make this claim precise, define: if M = <W,D,E,V> is a

Segerberyg model then the. derived Brown model is fﬂB = <W,N,V>,.

where N(s) comprises all sets of the form K“ s =
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{t : <s,t> ¢ llall}, where « is a program. [Given M, the
intensions HAHA = [lAl € W  of formulas A and Hu"n = llall & WxW
of programs o are how M interprets formulas as subsgts of W
and programs as binary relations on W. See the definition of
S-model below foxr more detail.] Thus' MB represents the
assumption that the "actions” available to the agent at each world
are exactly’ the programs of Segerberg's variant of PDL, and the

worlds to which they lead are as specified by: #: we have

MB E. oA 1if and only if, for some program « and some t € K“ s’
> r
B
o Fe A.
Now programs are composable in Segerberg's ‘logic, and in 4
fee; Bl = (<s,t> : (Ju)(<s,u> € lall & <u,t> ¢ Iply. Hence if
u ¢ K and t ¢ K then t € K and thus ¢op » ¢op 'is

a,s B.u o;fi, s’

valid in MB. But the interpretation <c(<ep>T1)>T + <epd>T  of
o¢p » ¢op need not be valid in M: if W = {(s,t,u),

RV=(<s,t>,<t;u>), D(S) = E(S) = R n (WxS), and V(p) = {(u},
then llepll = (<t,u>), li<ep>¥lt = {t}, le(<ep>t)ll = <s,t>, and

lI<e(<ep>7)>7ll = {s}.

[The bhasic problem seems to be that just as 6A is not
really the most general way of bringing about A, only most
general among actions of the form 6B, so ¢A is only required
to have an outcome.in which A holds when some action of the form
tB has such an outcome. Neéither {u]A 4 (<a>C + <8A>C) nor
<a>A + <eA>7T is~valid, as the example above shows (take

o = O1;6r and A = (¢ =7p).].
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The main purpose of the present paper is to iﬁvestigate
another way (also suggested by Segerberg [S$S2]) of interpréting
Brown's logic of ability in a logic of actions: add the operators
o and & to som%'variant of PDL, with a semantics whose
motivation is that the agent's "actions" are determined by the

programs,

We begin with a very minimal variant of PDL--the only
prograﬁs are the program variables. (This minimal PDL may be
regarded as thellogic of independent, unstructured actiong.) The
system S has countably infinite sets PropVar of proposition

variables and ProgVar of program variables.. The sets Fla and

-Prog of formulas and programs are defined by:

PropVar < Fla,
+ € Fla,
A, B € Fla 3% A»B, ¢A, BA € Fla,
ProgVar < Prog,
« € Prog, A € Fla =  [«a]JA ¢ Fla.
Usual abbreviations are used; in particular, DA, ¢A, -and. <o>A

abbreviate -w-A, -@A, and ~[al-A respectively.

An  S-model is a triple M = <W,P,V>, where W is a
non-emplty selt, P maps ProgVar into F(WxW), and V maps
PropVar into ®(W). Intensions HA"M = flall and Ha"“‘= lall are

defined by
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Ipl = v(p), if p € PropVar,

i = ¢,

la » BIF = (W - Hall) v IBl,

loAll = {8 : (Jx € }"ng)(KO('S n sl # @)},
Hwall = {s : (Jx € Prog)(f # K, < Ialtyy,

’

lwl = P(n), if = ¢ ProgVar,
talall = (s : l\“ls ¢ laly,

where K = {t
«,S

<s,t> ¢ fall}. We sonetimes write M Fg A for
s € all; ‘A is valid in # if Al = W. Similarly, if M is a
nejghbogpood model we sometimes write Hall for (s A Es A}.

A pseudo-model is a qguadruple N = <W,P,N,V>, where <W[P,V>

is an S-model and N is a function from W ‘to P(#(W)). Define

intensions in a pseudo-model as above, except that

i

oAl {s : (IK ¢ N{s)(K n Al # @)),.

leal

{s : (IK ¢ N(s))(# # K <« -lal)y}.
If M = <W,P,V> is a model then the derived pseudo-model Mps =
<W,P,N,V> 1is defined by selting N(s) = (Ql

ps ps
= ar® ana ™ = .

o € Prog};

-

clearly IIAIIJ?L

The axioms and rules of S are those of the classical

propositional -calculus, together with:

(Go) o (AVB) » (Q0A v:¢B),
(v) B(AVB) » (@A v oB),
(W) oT » (DA » @A),
(Do) BA - OA,

(Inst§) <a>A » oA,
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{Insto) {(<ax>7T A [a]A) - @A,

(K)  [a)(BAB) = ([«lA A [a«]B), ,
{Nec) from A,  infer [«],

{RN@) from A, infer oA,

{RMn) from A -+ B, infer oA - oB.

0f these axiom schemes and rules, those which do not refer to
programs constitute an axiomatization of Brown's system ¥Ds. By
[Bl, a formula is provable in that system if and only if it is
valid, in the sense of Brown's original truth-definition, in all
neighborhood models <W,N,V> satisfying ¢ ¢ N(s). If M =
<W,N,V> is any neighborhood model, let Ml = <W,N1,V> be like A
except that Nl(s) = N(s) - {#). Then ML FS‘A‘ in the sense of
our modified truth-definition if and only if Ml ks A in the
sense of Brown's original truth-definition. Hence %Dm + A if

and only if A is valid in every neighborhood model--here and

hereafter, we have in mind the wodified truth-definition.

The axiom scheme (K) and rule (Nec) suffice for the
fragment of I'DL whose programs are just the program variables;
indeed, this is merely the logic of a countable infinity of
independent normal modalities. The axioms . (Inst¢) and (Insta)
express existential generalization principles for the respective

connectives.

Lemma 1. (Soundness) It S kA then A is valid in every

S--model .
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Proof. It is straightforward to check that the axioms are

valid and that the rules preserve validity.

Lemma 2. Given any neighborhood model M = <W,N,V>, there

is a neighhorhood model ﬁ] = <W,N1,V> such that each Nl(s) is
1
non-emply and countable, and for every formula A, HA"M = HAHA.
. 1
Proof. "Define" N (s) as follows. For each formula A

such that M.FS oA choose K ¢ N(s) such that K n Al # ¢ and
put K € Nl(s), and for each A ‘' such that # Eg BA choose
K € N(s) such that # # K ¢ lall and put K € Nl(s), and also
put ¢ ¢ Nl(s). Then each Nl(s) is non—empty and countable.
One may prove by induction on A that (Vs € W)(lt1 B, A 8
A Fs A). Consider ‘the .case: A.= ©B:

oa F, BB

# (JK € N(s))(K# @ & (Yt e K)(H# By B))

o (K eN(s))(K#¥ & (VteK)MA k, B))

@ (IKe N (s))(K#®¥ & (Vte K)(n ke B)) [I. H.]

By Lemma’'2, and: Brown's completeness theorem, 7¥Dm is the
logic of ability associated with the assumption that at each
possible world the agent has available a non—empty countable- set
6f actions. In other words, this assﬁmption about the
cardinalities of the sets of actions available to the agent has no

effect on the logic of ability,

— 22 —

Theorem 3. S is a conservative extension of "¥Dm, that is,

if A is a formula of ¥%bm then S + A if and only if ¥Dam I A.

Proof. Singe the axioms and rules of S includé those of
YDm, the implication from right to left is trivial, For the
other direction, it suffices to show.that if M = <W,N,V> . is any

neighborhood model then there is an S-model Ml = <W,P,V> such

that for every formula A of 7VDs,. IIAIIM'.1 = HAHM. Without loss
of genérality {by Lemma 2) we may assume'that each N(s)  is
non-empty and countable. For each s, Ilet ¢s be a function
mapping ProgVar onto N(s), and let P(n) =

{<s,t> : t € ws(n)): let N ﬁe the pseudo~mode1 <W,P,N,V>.
Then by construction KN is the derived pseudo-model of  the
S-model #! = <W,P,V>, so HAHM = IIAHM1 for all formulas A.
And VHAHN = HAHM for all formulas A of ¥Dm, independently of

the definition of P.

By Theorem 3, ¥Dm is the logic of ability determined by a
fixed non-emply countable set of .independent actions: if there is
a non-empty countable set of aqtions_that are available to the
agent at each possible world, and no assumptions are made
concerning relations among the actions, then the principles
geverning m and ¢ are e#actly those given by 7De. This
result differs from that implied by Lemma 2 by transposition of
the quantifiers "1. set of actions" and "V possible world".

Trans-world identification of actions has no effect.
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If A

is a formula and ' is a set of formulas, then I F A
if s (B1 AL oA Bn) -+ A for some Bl""'Bn cl: I' is
consistent if I'¥ 1; o[I'l = (6A : A e T}, o 3[r] =

(A : oA eI}, ang similarly for other modal operators.

The canonical pseudo-model ¥ = <W,P,N,V> for S is defined

by:
W is the set of maximal consistent sets of formulas,

<s,t> € P(n) @ [n]—l{s] < t,

‘K ¢ N(s) & o[uK] ¢ s & w[nk] ¢ s,

s € V(p) & pe€ s,

Lemma 4. In the canonical pseudo-model, s € Al @ A€ s.

Proof. By induction on A. The cases A = 1 and A = BsC

are trivial. The case A = [a]B is qguite standard. Since

« = % ¢ ProgVar, if A = [n]B € s then

(Vt)(<s,t> € P(n) = llnll % B ¢ t) By definition of P, so that

s ¢ I{wIBl = JAlF; we mast provée the converse. Suppose A ¢ s;

let x = [u]*l[s] v {-B). Then X is consistent: otherwise

S F.CoB (fal Ys]

so S F [alC »

for some " C € [a]~][s] 'i$ closed under

conjunction by - (K)), [x]B and A = [a]B € s, a

contradiction. Since x t €W

is consistent, there is a such

that t 2 x. Then <s,t> ¢ o’ and B ¢ t, so by the induction

hypothesis t ¢ IBl, and by the definition of HI[«]IBl, s ¢ fAl.
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The cases A = ¢B and A = @B

Note first a few facts about the canonical pseudo-model.

Note 1. If s € W- then
D_l[s]jk A =3 DA C s,

D—l[s] - C»A =3 oC » oA C s.

For the first, suppose S | BsA where oOB ¢ s (u_l[s] is closed
under conjunction by (C¢) and (RNo)); then by (RND)
S + DB“»UA. By maximality, u©A ¢ s. For the second, suppose
S + BAC.» A where bpB ¢ s. Then S + -A » (2Bv-aC) so by (RMa)
S F onA » B(0BvaC); by (VY), ’S}F oA » (¢nB v nC), that is,
S + oB » (¢C » 6A).
Note 2. If s ¢ W and K ¢ W then
o[UK] £ 5 @ m—l[s] ¢ 0K,
Blnk] € s @ ¢ '[s] € UK.
To verify the second:
B{nkK] ¢ s
8 (VAY[(VteK)(A ¢ t) = BA ¢ s]
# (VA)[onA € s = (JtcK)(-A ¢ t)]
8 (VA)[eA ¢ s @ (AteK)(A ¢ t})]
“ @al[s] < UK. )
The first is proved similarly.
Note 3. If s ¢ W and K € N(s) then K # #. For S F Or
by (RN), @and S+ or » ¢r by (Dm), so 71 € e_l[s] & UK.
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are handled much as in {B].



Note 4. If s,t ¢W and o '[s].€ t then t ¢ K for some,
K € N(s). For let K, = (ueW : 0 '[s] Su & Ceu) for each
¢ceo l[s], and let K = {t} v Uik, : ¢ € o l[s]). Clearly
t € K; I claim X € N(s). By construction n_l[s] € nkK, so it
suffices to show that e*l[s] ¢ UK. - Suppose the contrary, say
¢C € s but C ¢ UK.. Then C ¢ D_][S] (K- # 8, so D—l[s] [=

NK € UK)  so0 0C € é and ot €s; by (W), DC - BC € s, But

KC # (otherwise ¢ ¢ UKC £ UK} s0 D_l[s] F-C and oO-C € s.

Hence B+C € s, so oC ¢ s, a contradiction.

Note:5. If. s €W then DA€ s @ (VK € N(s))(A € nK).
The "¢ part follows from Note 2 above-—-if K € N(s)  then
nﬁl[s] € NK. Suppose A € nK for every K ¢ ﬁ(s). Then
n—l[s] - A (for suppose u € W. and u 2 m_l[s]; by Note 4 there
is a K € N(s) such that u ¢ K, so by hypothesis A € nK, so

A ¢ u) and by Note 1, DA € s.

Note 6. If s €W then ¢A € s & (VK ¢ N{(s))(A € uK).
Again the "3" part follows from Note 2. Suppose  ¢A ¢ s, sO

@A € s. We construct K € N(s) such that (Vt € K)(-A € t).

Namely, for each C € 0—1[3] let K, =

{ue€s : D—][s] Cu & "Ac¢u & Ceu), and let K =

U(KC 1 C € e_l[s]). Then n_l[s] € nK - by construction, and it
suffices to show that e—l[s] ¢ ukK. If not,.let C Dbe such that
¢C € s but C© ¢ UK. Them C ¢ UKC, so Kg = #, so

o s u {C} F.A, so ¢C » oA € s by Note 1. Since oC €.s, we

have ¢A ¢ s contrary to hypothesis.
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We can now complete the proof of Lemma 4:

¥ oA
8 (3K € N(s))[K # # & (V& € K) (N k_ A)] [Def k)
@ (3K € N(s))(VE € K)(N & A) [Note 3]
& (3K € N(s)) (Yt € K) (A ¢ t) [I. H.]

# not (VK € N{s))(dt ¢ K)(-A € t)

# not (vﬁ € N(s))(~A € UK)

@ oA ¢ s {Note 6]

o BB Cs; '
Nk 0B

# (3K € N(s)) (It & K) (¥ k_ A)

# (JK € N(s)) (3t € K)(A € )

& not (VK € N{s))(Vt € K)}(-A € t)

® not (VK € N(s))(~A € nK)

# A ¢ s [Note 5]

4 QA € s,

Theorem 5. (Comp]eteness; Finite Model Property). If A is

valid in all finite S-models, then S F A.

Proof. Suppose S ¥ A. Let ¥ = <W,P,N,V> be the canonical
bseudo—model, and let I consist of all the subformulas of A.
Define ~ on W by

s~ t & (VB e ') (N s B & X Be B).

Let {s] = {(t : s~ 1), and if K« W let K = {[s] : s € K}.
et & = <ul,pl, N

, N ,Vl>, where
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Wr = ([sa s ¢ W),

pl(n) = (<[s].It]>

Nis) = (¥ : (3s' ~ s)(K ¢ N(s'))}).

<s,1> ¢ P(n)} if =w occurs in A,

(The definition of P (%), “where = does not occur in A, is

postponed.’)

Then we have: for all B €' and s € W, Nl E B if and

[sl]

only if ¥ Fq B. For example,

The proof is by induction on B.

if Nl #[5] BC then for some s' s~ s and K € N(s') we have
KI # ¢ and Nl F[T] c for all [t] ¢ K]. Hence X # § and by

the induction hypothesis ¥ FT ¢ for all t € K, so that
N Egr FC. Since s'wms and ecel, W Fg BC. - Conversely, if

¥ B ®C then ¥ k€ for all t ¢ X, where @ # K € N(s). Then
Nl F[t] ¢ for all [t] ¢ K], and ¢ # KI

Nl F[S] ac.

€ Nr([s]); s0

Now for each palir <x,L> such that x € W] and L € N[(x),

choose a distinct "« ¢ ProgVar not occurring in A, - and define
Pl(n) = {<x,y> : y < L}. Since 'Wl ‘is finite, only finitely many

N's are required; set Pl(n) = ¢§ for the others. Let

o= el vl

Then for every B € I' and x ¢ Wl, M.FX B "if and only if

# k. B.

- Again the proof is by indaction on -B; the only

non-trivial cases are <¢C and 8C. If M Fx ¢C then M Fx <R>C
for some =n € ProgVar, so M hy ¢  for some vy such that

<x,y> € P[(n), and by the induction hypothesis JVJ kY c. If =
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occurs in A then (by'definjtioﬁ of Pr(n)) <s,t>-€ P(x) - for
some s € x and. t ¢ vy, and ¥ Ft C so N Ps <>C. By (Inste),
N Fs ¢C, . so Nr hx ¢C. If mn does not occur in A then {again
by definition of Pr(n)) vy € I, for some L € Nr(x), so

I’ I

N Fx ¢C. Convergely, i1f N Fx ¢C then for some y € L € NF(X)

we have N] FY C. By .the induction hypothesis, A4 ky C. Since
P](x) = (<X,y> : vy e L} for some n ¢ ProgVar, we have M.FX oC.

The proof for - mC 1is similar.

Corollary. ¥%Dm has the finite model property. S and %Do

are decidable.
Proof. By Theorems 3 and 5.

Thus the only additional logical principles required for
adjoining Brown's logic of ability to the logic of independent,
unstructured actions are the axioms (Inste¢) and (Instsm). The
same remains true when disjunction of actions is permitted.

+

Let the language and semantics of S be defined like those

of 8, but with the additional clauses

-, ¢ Prog = «otfl ¢ Prog,
Bl =l w Ipl.

Thus an S+—mode1 is just an S-model M .= <W;P,V>, - but with the

+

’

. . . . . . +

intensions defined differently. We often write Prog , A&
+ . : < . + . < as

I t, etc., to emphasize the association with § ‘The intuitive

meaning of o+fl 1is ‘Yeither do o« or do f".
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Lemma 6. Let # be an S-model. Then for every program « equivalent to an S-formula, so we obtain 'a completeness and
- + + .
and formula A of S, H«M+ = flall and ||A||F = lall. - : finite model property theorem for' S : an S ~formula is provable
: o +
in S+ if and only if it is valid in every finite S -model.

Proof. The only programs in question are n ProgVar, and

bt = P(x) = Inl. For formulas, proceed by induction. Note that’ Thus ¥Dm is also the logic of ability associated with the

if o c Prog+ theq o= u1+...+nn (with parentheses inserted in logic of disjoinable actions, and the only new principles required

some manner) . for some nl,...,nn ¢ ProgVar, so Ha"+ = : for the amalgamation of the two logics are (Inste) and (Instm).

Hn]"+ U ... u Ilnnll+ = Hnlu U ... u unnu, Theri . But ¥De is not the logic Qf ability associated with the logic of
s € lloch™ . composable actions.

4 (Ju ¢ Prog)(3at) (<s,t> € lah™ & t ¢ nonty.

&  (In ¢ ProgVar)(3t){<s,t> ¢ Il & t ¢ lcl) : Let the language and semantics of S’ be defined like those

& s ¢ llocCl; : of 8, but with the additional clauses
similarly, Il = llmcl . . : «,ff ¢ Prog % o;ff ¢ Prog,

Ho; ol = Ml o UpAH

The axioms and rules of & are described by the same : = {<s,t> : (Ju)(<s,u> ¢ llall & <u,t> ¢ Iphy.
schemes as.those of S (of course, the schemes now have more Again, an $'-model is just an S-model M = <W,P,V>, but we
instances), togethér with Co often write M, I 17, Prog’, etc. The intuitive meaning of o;f8
{ 1) [oatfBIn = [«]A A [f11A, : . is."do «, then do fi".

a standard axiom of PDIL.

The analog of Lemma 6 is false: let W = {s,t.,u),

It is easily seen that every thesis of st is valid in every V(p) = {u}, and P(n) = {(<s,t>,<t,uw>) for all n € ProgVar;
+ ; - i : i
S -model. It follows that st is a conservative extension of S: then s € l<n;opl so s ¢ llopll”, but s ¢ lopl.

. R . . . + : s
if A dis an  S-formula provable in & then - A is valid in

every .S+~model, hence by Lemma 6 in every S-model, and so is ' Let the axioms aund rules of the system &’ be those of S,
provable in S.  Hence S  is a conservative extension of 7Dm. together with
Mofeover, using (Un), . every.34~f0rmula is provably (in S+) {Comp) [a;B1A = [«]{B]A

(40) #QoA - OA.
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It is easy to prove soundness (if S’ I A

then A is valid in

every S;—model) and to define the canonical pseudo-model ¥* and

prove the fundamental lemma (lal’ = {<s,t>
A€ t)) and Ial’ = (s

convert this intg a completeness theorem.

the proof of Theorem 5, one cannot prove that if ¢C €T, x e W,

- P e e, g .
and M.px oC then ¥ B, ©C: if M.FX °C

(VA)([a]Q € s 3

A ¢ s})), but I have not been able to

(If one tries to adapt
r

then M Fx <a>C for

some .« € Prog’, but « may be an: arbitrary composition of

program variables.) I am inclined to believe that S°' is not

complete.

In any case, the logic of ability associated with the logic

of composable actions contains al least the principaI' (40),

which is not provable in ¥Do (by the counter-example to the

analog of Lemma 6). . I am inclined to believe that it contains

more. It does not contain

(4m) BbEA - EmA,

For let
W= (s, tl' t2, n, v},
Vip) = {u},
P(no) = (<s,t]>, <L,t2>),
P(n]) = (<t1,n>, <+2,v>)L

P(n2) = {<tl,v>, <T2,u>),
P(n) =¢ for u¢ ("o'"l'“z)’
then M FS <7lO>T A [’_IT.O ] (6} ) SO A Fs HERp,

example is essentially due to Brown [D]; T
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but M’ Fs -Op.  (This

cannot explain his

- concurrent assertion that (4m)" "amounts to an acceptance of -

composition of actions®.)

a

One problem in characterizing the logic of abilify assodiated
with composable actions is to characterize (up to isomorphism)'the
depived neighborhood models MB = <W,N,V> of mddels‘ 1= <W,P,V>
(whéré the N is that of the derived ﬁseudo—@odel

#P° = q,p,N,v>, that is, N(s).= (K

o, s o € Prog )). Define: a

cover Of‘HK'.is a family <Ku u € K>  such that each Ku € N{u).

We have’ Ku~ﬁ\s {t . : (Ju)(<s,u> ¢ floclt & <u,t> e Ipniyy =

U{Kﬂ w P wEK ). Hence if K € N(s) then there is at least
one cover of K whose union is in N(s). If K =@ then the

empty cover will do, and otherwise every neighborhood of every

point in K is a component.of a cover of K  whose union is in

N(s): if KV:'h«,é' uo ¢ K, and Ku = Kﬂ,u € N(uo)' then we
. o] 0
may take Ku = Kﬂ a for all w € K. I do not know whether this
- condition is sufficient. Certainly, not every cover of every

K € N(s) need have union in N(s)--in the example showing the

invalidity of (4m), let X = K = {(t,,t

. X and let the cover

o)

t

consist of K . and - K
na by 3

o
2' "2

Finally, I offer a couple of comments on the. general issue of
combjning‘Brown'stogjn‘of ability with logics of action. It is
hot at all clear that the program-forming operators of PDI. are

the right ones. Certainly we want to include composition of

‘actions (s0 we can tie our shoes). Given this, if the test A7

— 33 —



is permitted, for any formula A, then ®A and ¢A are.

equivalent: ®A » ¢A is valid in any case, and if M,FS <a>A

then M FS <a;A?>A & [a;A?]A so M Fs mA. The canonical example
of ¢ without' @ is hitting the bull's-eye at darts; the
"o; A?" - action corresponds to "taking back" each throw until one

succeeds. Tests should probably be eliminated. 1In a system using
propositional constants or specific atomic formulas, rather than
propositional variables, tests might reasonably be restricted to
the atomic formulas (or equivalently, to boolean formulas). This

course is not suitable for propositional variables since

substitutivity is lost: op =@p is valid, but not oA = @A in
general.
We do need constructs like "if A then o else g"  (in

order reliably to effect the state in which a pull-chain lamp is

on) and ‘“repeat « until A" (for sawing a board), which in

PDL are defined using tests and non-deterministic disjunction and

*
iteration (as (A?;a)+((-A)72;#) and o; (HA? ;o) ;AR

respectively). I would propose adopting these as primitive

program-forming operators, and dispensing with iteration as well

-
as testls. It seems to me that human actions are never of the form

"repeat o some random number of times”; the closest we come is

¥

"repeat o until you feel like stopping”. Though disjunction of

actions seems technically innocuous, I would propose deleting it
on- the grounds that it introduces non-determinism. It is
reasonable that a given action may have many different outcomes,

but this is because of factors in the world beyond our control,
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not hecause the action iitself non-deterministically selects one of

two altefnatives. Note that actions like "(flip a coin) ; (if

it's heads then « else f)" would still be available.
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