Estratto da
Atti degli incontri di logica matematica Volume 6, Siena 28-31 maggio 1989.

Disponibile in rete su http://www.ailalogica.it

Temporallogic of programs:
Temporal semantics, verification and specif ication

Extended abstract

Fred Kroger
University of Munich

1. Temporal logic

Temporal logic (TL) is a branch of modal logic extending classical (propositional) logic
according to the intuitive VKRIPKE—“ke conception that propositions are interpreled over
a "time-scalc”. TL provides logical operators for building new propositions relating the
truth of propositions at certain time poinls,

Example: "A will hold at the next time point that B holds”. This will be formalized by
AatnextB.

The language £+, of propositional temporal logic

The alphabet of ¥, consists of a denumerable set V of atomie formulas.and the sym-
bols =,-,0,0,atnext,(,). :)
Formulas are inductively defined:

- Evcry. veV is a formula.
- Il A,B are formulas, then =4, (A-B), 0A,OA, (AatnextB) are [ormulas.

We read: - "nexttime A” lor OA,
- "always A" - for DOA.

The following abbreviations can be introduced:
- a,v, e true, false as usual,
- OA for -~O-A4 ("sometime A").

In order to save parentheses when writing down formulas we fix the following ordering
of the operators w.r.t. their binding:

o < = < aA,v < atnext < -,0,0,0

This means that e binds least, ~,0,0,0 bind most. Outermost parentheses are always
omitted.

Semantics of o,

A temporal (Kripke) structure K for £.., is a denumerable sequence {770.771.772,...} of map-
pings (states) C - o
7/,-=V"’{f,t}

where f and t are truth values. For every formula F, temporal structure K and ielN,, the
truth value of F in state 1, - denoted by K, (F) - is defined inductively:

— 37 —

Rossella
vol6

K= 71‘.(*) for veV,

K, (-4)=t i K(4)=f,
K (4-B) =t it K(A)=f or K/(B)=t,
K,(04)=t iff K, ()=t

K (OAd)=t iff KJ.(A) =t for every f2i,

K AatnextB)=t iff KJ.(B) =f for every j>i or
K, (4) =t for the smallest k>i with K, (B) =t
This definition extends to the operators introduced as abbreviations, e.g.:
K(AnB) =t ilf K A)=t and K,/(B)=t,
K lcd)=t ilf Kj(A) =t lor some j2i.
Remark: K (0A) = K, (A atnextirue) holds for every K and i. So, the operator O could also
be introduced as an abbreviation. The same holds for O

OA abbreviates Aatnexttrue,
DA abbreviales A a falseatnext-A.

Definition: Let A be a formula, F a set of formulas, K a temporal struclure.

I A (A valid in K) iff Kl.(A) =t for every ielN,
A (A valid) ill I A for every K,
FIFA (A follows from F) iff I A for every K with: I B for every BeF.

A list of some valid formulas and rules

—0A e 0-A

OA- A

A-OCA

0A - AatnextB

COA - OCA

004 ¢ DA

O0A « o4

O(A-B) » 0A-0OB
O(AatnextB) ¢ OAatnextOB
{AAB) @ DAADOB
OAvDB - O(AvB)

O{A-B) » (QA-0B)

OA & AaOOA

AatnextB o 0(B~A) AO(~B~ AatnextB)
A-B |- 0OA-0B

A-B - DA-0OB

Al aB-13(AAB)

DA-B I+ 0A-0B

Some further operators

Based on the temporal operators of ¥, many other operators can be introduced, e.g.:
AunlessB for Batnext{(A-B),
AwhileB for ~Batnext(4--58),
Abefore B for -Batnext(AvB).

The informal meaning of these operators is:

— 38 —

W T T

Aunless B: "If there is a following state in which B holds then A holds up to that
point or clse A holds permanently”,

AwhileB: "A holds as long as B holds”,

Abefore B: “If B holds sometime in the fulure then B holds before that”.

The formal system Z_.

The following axiomatization of TL can be given:

Axioms: =~ all "classically valid” formulas (e.g. 0A=0A4)
- =0A e 0-A4 -
- 0(A-B) > (0A-0B)
- OA- AAONDA
- OB-B — AatnextB
- AatnextB ¢ 0(B-A4) A0O(~B- AetnextB)

Rules: (mp) A,A-BF B
(nex) AF o0A
(ind) A-B,A-CAF A-0B

The notion of derivability (w.r.t. STA) of a formula A from a set F of formulas - denoted
by F A - is defined as usual.

Soundness theorem: If FFA then FIFA.
Deduction theorem: If Fu{A}+-B then FD0A-B.

The proofs of these theorems are straightforward.

Completeness

The most general completencss assertion
If FIFA then FFA

does not hold in TL. A simple counterexample is given by the infinite set
F={A-B, A»OB, A=00B, A»00OB, ... }.

FI-A-0B holds, but A-0B cannot be derived from F. (A formal derivation can use only
finitely many premises from F.}°

However, it is possible to prove

If FI-A then FEA for finite sets F of formulas.
For proving this it is sufficient to show:
Completeness theorem: If A then A,

We give a proof outline for this theorem. The basic idea lollows the classical HENKIN-
method which, however, has now to be modified careluliy. (All sets of formulas which
are constiructed in this method have to be finite.) A finite set F= {Al,...,A'}. n20, of for-
mulas is called

- consistent if it is empty, or n>0 and —l(All\...l\An) is not derivable in £ A
- satisfiable if there is a temporal structure K such that Ko(Aj)=t for all j=1,...,n.

To show the completeness theorem it is suflicient to show the following
Satisfiability theorem: Every finite and consistent set of formulas is satisfiable.

(From this the completeness theorem is deduced as in the classical case.) We illustrale
the proof idea for this theorem by an example. Lel A be the formula (v ~v,)=Dvy, B the

— 39 —

formula v;~0(r,>v.) and F={A4,B}. (r,.....vzeV.) In order to "make A and B true” in Mo
we build a (finite, consistent) completion F* of F. F* consists of sub-formulas of F in
such a way that if these formulas become true in 7, then so wili A and B. For technical
reasons we mclude A and B themselves into F* and oblain e. g.:

F*={A,B, v 17V TV Y, V3 Ov,, Oy, ->v R

The formulas Dv3 and. O(v, Mad 5) - co:131dered in 7, - have some mfluence on the states
N4+ 7gs--.. We apply a mappmg o on F* which produces a sel.o(F) of formulas (which is
again finite and consistent) such that if these formulas are true in 7, then K, (Ov,)=t and

K0(0(1'4—>1'S))=t. We have .

* = U ¥ '
G(F‘)= {I’.‘Iva, v, orgh
Continuing in the same way we oblain the following sequence Fy,F | F,,... of formula sets:

={A.B)
lcomplellon :
Fo = F* = {4, B, v [T Py T Wy, By, Dv olr,~v}
|o
o(Fy) = {Dv:i, "4.—""5}
completion
F, = {[]1'3. Vg, Yy T, vs}
lo
{av,}
1complelion
F?: {[jva’ \;3}
land SO on

" From this (over sunphfled) construction we find K= {7/0,r]1,772, .J by

7v}=t iff veF,. for every veV, ielN,.
It is clear that with this K we get K, (A) =K0(B) =

There is, however, a problem in this construction. Suppose, some F; contains the formulas

=0y and v (veV). Conslluclmg F. epe We get ~0OveF, oy and it may also happen that we ob- .

tain again veF, e The same may hold for all the next steps which would end up in n(\r) t

for-all izj and therefore K (-=Ov)=£. This, of course, should not be the case. The solution

of this problem is found 1!‘ we observe the fact that in every step, usually more than one
complenon is possible. The actual construction is to consider all these possibilities: re-
sulting not in a sequence FO.F'I,,F2 of formula sets but in a tree of the form

Fo=F

le

o(Fg)
KV \'ull possible complellons !
F F '

e

‘and so on

l 1
NN

— 40 —

It can be shown then that there is a path through this tree (yielding {770,771,172,...} as be-
fore) which avoids the above-mentioned problem. The prool runs by contradiction: As—
sume there is a node N, in the treé such that for some formula A, both -[1A4 and A are
contained in N and in all descendent nodes denoted by NyNyoeee If N’.=(Bl....,Bk},1et Ni

“denote the formula B a...aB, . It is easy to see that there are only [initely many different

N;. say, Nl,...,Nn. Let C= [:llv...vl\]“. Tl_}cn one can show:

M FNp-C
@ FC-oC
@ FC-a

From (2) and (3), I—C'—*DA follows with rule (ind). Together with (1) we obtain I—N -»0A .
which leads to a contradiction because of —.DAEN)

Induction principles

In applications, formulas of the kind

A- 0B,
A - Batnext(,
A - BunlessC,

A- 0B
are of particular interest. We give some basic proof lules ("mduclxon principles”) for
proving them:
For A - OB, there is already a rule given by X4 ,:
(ind) A-B, A~0ALl A-0OB.
Some variants of (ind) are:

(ind) A~OAF A-DA,
(ind") A-B, B~0B + A~0QB.

For A - Batnext(C there is the rule
(indatnext) A->0(C=B)A0O(-(C-A) - A~ Batnext(C.

For unless, while, before similar rules can be given. For A=08 no such principle (in pro-
positional TL) exists.

Ftrst—order temporal logic (with cqualtty)

£, can be extended to a first-order version £ by i\ddltl()ndl ‘language Teatures:

- variables (partitioned into global and local variables),
- function and predicate symbols, the equality symbol =,
- quantilication V (and 3), allowed only over global variables.

The semantics of £ is given as in classical logic; in each state 7, a value 77,-(-‘5) is as+
signed to variables x. For.global variables x we request:

7,{x) = nj(x) for all 5. .
In the axiomatization we can add some further axioms and rules, e.g.:

- YxA-A (1) if A_(¢) has no other occurrences -of local variables in the
scope of a temporal operator than A
- YxOA - OVxA

— 41 —

- A-O0A il A does not conlain local variables

- X=X

- xXTp- (A—)A_\,(_v)) if A does not contain temporal operators
~ A-B I A-VxB il there is no free occurrence of x in 4

(4 _(1) denotes the effect of substituting ¢ Jor x in A after appropriate renaming of bound
almbles of A which occur in) Soundness is again easily proved. The formal system is,
however, not complete. In fact, the logic can not be axiomatized completely. The strong-
est incompleteness result (to our knowledge) is [3]:
= If the first-order language contains at least two binary function symbols then the
logic is-incomplete!)
The idea to prove this is to interprete Peano arithmeltic in the logic: 0 and the successor

function are definable, the two function symbols can be axiomatized to be addition and
multiplication.

The well-founded ordering principle

Let TL¥f be a first-order temporal logic containing

- variables ranging over a well-founded set Z,
- a binary predicate symbol s interpreted by the well-founded ordering on Z.

In TL¥F we can formulate a basic proof rule for deriving formulas of the form A-¢B:
(wlo) A{x)-0(BvIX(X<xaA(x))) AxA(x)»0B il B does nol contain x.

Extensions

Temporal logic is investigated (and applied) in the literature in many other forms. We
only give a few keywords:

- Dbranching time logic: The underlying Kripke structure is not totally but only par~
tially ordered;

- other modifications of the "time scale”: not discrete, finite;

- more powerful temporal operators, in particular "past” operators;

- interval logic: Inlelplelallon of formulas not over “"time points” but over "time
intervals™; ' :

- mulli-dimensionality: Further dimensions besides "time";

- probabilistic additions: Truth values varying over the real mtcrval [0,1] interpret-
ed as probabilities.

2. Programs and their temporal semantics

Temporal logic 1 applicable to many kinds of (mainly imperative) programs, in particular
parallel programs. Here we illustrate this applicability by a very sxmple class of parallel
programs conlaining, e.g., the following (skeleton of a) program II:

— 42 —

initial ex=true Abf=0 abe=n A n>0;
cobegin loop oy,: ... 3

[o' PR S

Ok
o, await be>0 then be = be-1;
a,: await ex=(rue then ex := false;

>4

30: es 3

LY
oy ex = true;
bf = bf+1

end,
~loop B: await bf>0 then bf:=bf-1;
B: ewait ex=true then ex = false;
[320: e

[321’,: e 3
By: exi=lrue;
By Of=bf+1;
Bggt - 3
.
end s
coend

The first line defines (under the keyword initial) the initial condition of Tl. The two cyclic
loops between cobegin and coend, each of them enclosed by loop and end, are thought to
be computed in parallel. The loops consist of sequences of labeled atomic statemenis
(seperated by ™;”), the o’s and §'s being unique labels of the statements. The statements
(labeled by) o, %5.84.0, are assignments like in usval imperative programming languages;
the statements o,,0,,5,.B, manage some synchronization of the two parallel components
of I1.

The general form of a program (of our sample class)

The programs we consider arc of the form

initial R;
cobegin Hl,...,Hp coend (pz1)
where
- every Il; is of the form
loop ot(()i): aé"); 0(5'.): lei); vee 3 ,(7',) 1,(,'1)‘ end
- every aj‘.") is of the form
a=|{ or
await B then a:=1¢
(a is a program variable, t is a term, and B is a formula),

~ all aj(.") in IT are pairwise dilferent.

. - }7
For further use we let D)In[={'x((,‘),...,oc,(,‘,)i} and M = Ulﬁ)i‘ni.
=

— 43 —

el

The (interleaving) model of computation of a parallel program of the described form is
informally given as follows:

Modelling the parallel computation of 1L

- The computation is a sequence of interleaved executions of the atomic statements
(beginning with some oz(()‘)):

. 0((’), gig). o((;'3).
- . The relallve ondexmg of the ot(’) for every fixed i is maintained;
- Any await Bthen.,.-may occur us the next executed statement only if B holds.
Example: A possible execution of lhe ptrogram
initial a=0 A b=0
cobegin loop 0(0- a:=a+l; o await b#0 then a:=axb; o, a:=a+3 end,
loop Py @ =2xa; [51 await.a+l then b.:=2xf; B,: b= b+l end
coend

is as follows:

action values of a,b
initially 0 0

oyt a = a+l 10
[30: a=2xa 2 0
{: await ax] then b =2xb 20
Bo: b=Db+1 21

- o : ewait b#0 then a:= axb 21

1

Another possible beginuing of an execution is:

aclion values of a,b

‘ initially 0 0
By: a=2xa .) ’ 00
Ay a=qat+l .10

- This latter situation illustrates a lypical problem of parallel programming: Aller the ex-
ecution of f§ and o, no one of the two parallel components can proceed (the program is
in a deadlock) since the "await-conditions” of both o, and P are false then. -

We now define the lormal notions covering these intuitive ideas.
Definition: A program state is a triple 7= (,R,A) with:

-t assigns a value w(a) to every program variable,
L p

- R={odP, .. &P} (‘D is the "next statement in I1,"),
J1 Jp Ji 3
- neRulNIL} (next statement to be executed).

An exccution sequence is an infinite sequence W, = {Dg7,: 790} OF program: states with:
- R Uis true in 5= (105.Ry0) "
- R ={ (l) (p)}
- lf N "(u R, 0((')) then 7, = (I,R,«) with ‘
-- R'= (R\{ j(.‘)}) u{a}&} (where @ denoles addmon modulo m;+1),
- ll' = " changed according to aj(.’)", ‘
= if g = (WR,NIL) then aj‘.‘? is await 8, then ... for i=1,...,p, B; "is false in 7,”, and
1. - N
ey ™ T

— 44 —

Example: In the above deadlock example we have e.g.:

ulay (b R x
Mgt 0 0 O‘O’EO .E)O
1 0 0 o.fy oA

7yt ! 0 ogBy NIL
73t 1 0 oB, NIL -
and so on

Temporal semantics of a program Il

The basic idea of dcscnbmg the * behavxour (the semantics) of a program II within tem-
poral logic is o specialize the general temporal structures of TL to execution sequences
of programs. This can be performed by further axioms (and one rule) which are called
program axioms.and build the temporal semantics of 11: They describe (axiomatically).all
possible execution sequences of (.
The tanguage £ for this purpose is a first-order temporal language fpp with:
- program variables of Il as local variables,
- other variables as global variables,
~ predicate and function symbols of TI
= (additional) atomic formulas: :
- for every aedly; (o true in 7=((t,R,2) Hff a=)),
-- atx for every xeM, . (atx true in y=(y,R,A) iff xeR),
== nil (il true in 7=(,R, %) iff A=NIL),
- abbreviation:
starty; for a(o:(‘) AGIO((()p)I\R

The program axioms for our Kind of programs are:

(B1}) stari;~OAL A ("starty; holds in the initial state™)
(B2) nilaA - O(nil A A) ("If nil then nothing is changed™)
qmn a-=-o - for aty ("No two aclions execute at the same time")
(T12) . o~ atx ' ("An.action may only execute if it is ready to™)
(T13) (IIO((')—’—l(IIO(([) for j#k, j.k=0,...;mP i=l,...p
("In every [I,, no-two actions are ready to
execule al the same time”)
(M) ata - =nil il o labels a statcment a =1
atd A B = —nil il « labels a stalement await B then...
("If some action is able to execute then
some action has lo execute”)
("An action ready to execute but not executed
remains ready”) . ‘
(ne) o AAa([) - 0A. if o labels a statement a:={ or await... thena =,
) A is a formula without temporal operators and without
atomic formulas as defined above
- {describes the effect on p of executing a)
(n7n (’)-*Oatu('&))] for j=0,....m;, i=l...p
(dcscnbes the elfect on R of executing a(‘))

(f1S) atx A ~a - Oalx

Additional to this rule and axioms there should also be some data axioms describing the
involved data.

— 45 —

3. Verification of programs

A program property is a property valid for every execution of the program. The temporal
semantics leads to the possibility of formal verilication of program properties A of a pro-
gram II by:
= deseribing A in Lpp,
- deriving A in the formal system of first-order temporal logic augmented by rule
(B1) and the other program axioms.

Examples of (typical) program properties

The intention of the sample program al the beginning of section 2 is that of a producer/

consumer program: The [irst parallel component (the producer) cyclically "produces” in’

its statement list Xpgiensi Ay, SOME object and stores it (in fx30;...;o<3k3) into a buffer shar-
ed with the other (consumer) component. The latter cyclically gets an object from the
buffer (in (320;...;[32,0) and “consumes” il in BSO;...;GSI . The synchronization is 1o achicve
that -
- the producer can only store an object when the buffer is not full,
- the consumer can only get an object when the buffer is not empty,
- producer and consumer must not have access to the-buffer at the same time (this
could be required by implementation details).
For formally describing some (ypical program propertics by means of this example we
introduce the following abbreviations:
mPROD - for ”10‘00"""’”’0‘0/\-Ov
inPUT for alozaov...va(o(aka,
inCONS for atﬁsov...valBSIS,
inGET for alyﬂzov...vatﬁzlo.

E.g., inPROD informally mcans that the producer is "in its produce section™.

Suppose now, producedobj and consumedobj are program variables containing as values
the objects which are handled in the cycles of the producer and the consumer, respec-
tively. Then the following program propertics could be of interest:

stari = producedobj=s before consumedobj=s (partial correctness)
producedobf=s » Gconsumedobj=s (no loss property)
starty = O=(inPUT A inGET) (mutvual exclusion of buffer access)
starty = Olato aatpy = be>0 v bf>0)
star(y = Olatx aatf = be>0 v ex=true)
starty = Olato, aaff, — ex=true v bf>0)
startyy = l:l(¢7!o(2/\(11{3l = ex=true))
alx, = Oalxy,
alBO - Oa(ﬁzo
(producedobj=s a Oproducedobj=s" ansts’) =)

- consumedobj=sbefore consumedobj=s’ (FIFO-behaviour of the buffer)

(deadlock freedom)

} (starvation freedom)

— 46 —

Verification rules

Program properlies can be divided into three classes according to their syntactical form:

A-0OB: invariance properties

A~ Batnext(: salety pro erties
A - Bbefore(C: precedence properlies ‘ prop

A - OB: liveness properties

Basic proof principles for {hese Kinds of properties can be derived from the corresponding
purely logical proof rules together with some of the program axioms. In order to give an
example, let us introduce the following abbreviations:

Binvofae for xaB - 0B ("B is an invarianl of executing o),
BinvofM for Binvofa, a... aBinvofx, where W={a,. ...).

A basic proof rule for showing invariance properties is:
(inv) A-B, BinvofW; - A-0O8
It can be derived with the logical rule (ind”) as follows (suppose D)ilf{ozl,....ak}):

(1) A-B assumption

(2) a;aB-0B for Isisk assumplion

(3) nilaB-0OB " program axiom (B2)

) xv..voagvnil from definition of nil

(5) B~o0B from (2), (3) and (4)

6) A-0B from (1) and (5) by (ind™)

The only program axiom used in this justification of (inv) is (B2). Since (ind”) is a simple
consequence of (ind), we may note this fact as:

(ind), (B2) = (inv).
In the same way we oblain rules (atnext), (before), ... for precedence properties:

(indatnext), (B2) = (atnext},
(indbeflore), (B2) = (before),

As an example, we nole the rule .
(before) xAA->0CA0O(AAB) for every ozei))ln, nilanA—- -C + A - BbeforeC.

For liveness properties the situation is similar in the result (that one obtains a verifica-
tion rule from the logical rule (wfo)) but must be handled with some more care.

An example of a verification
As an example, we indicale the formal verification of deadlock freedom of the producer/
consumer program-11.

Proposition: (1) starty; » Dlata, aatfy = be>0 v bf>0)
(2) starty = Olate aalf) = be>0 v exstrue)
(3) starty = Olatx, natf, = ex=true v bf>0)
(4) start;; > Olalx, aalB, - ex=true)

We show: (5) starly = Dexor(inPUTvatot.t. inGETvafB,, ex=true)

exor denotes the “exclusive or” of propositional logic, here applied to three formulas

— 47 —

P,G,ex=(rue where

P is mPUTva(oc
G is’ mGETvaIB

Denote exor(P,G,ex=true) by B. (So (5) reads start; > 0B.) We- have:

(a) slartﬁ - atxy AalBgaex=true
- B,
(b) YAB - OB for every YeW .

(a) is trivial; (b) has to be checLed for all YEM . Fm example, let Ye{aoo, RC RN |3

Then YAB nnphes -P and dlso O=P. The validity of G and ex=true remains unchdnged
under execution of v, so we obtain yaAB - OB The other cases tun sumhrly

From (a) and (b) we getl (5) by (inv), and from (5) we also can derive very easily the pro-
positions (2}, (3), (4): In order to prove (1} it can be shown in just the same way:

(6) start; = O(bf20 A be20)
and furthermote (using (6)):
n starty = O((inPROD vata,) a(inCONS vatf,) - be>0 v bf>0).

(1) is then very easily derived from (7) by temporal logic means.

4. Axiomatic specification of programs

Program verification (with TL) means:

- Some program Il is given; the execulion behaviour of I is described in TL;

- program properties of [1 are described in TL;

- the program properties are derived [rom tlie execution behaviour by the logical
means of TL.

Another aspect is given by the keyword of (formal) program specification: This means
(formally) describing the desired properties of a program which is to'be constructed. We
give a shiort introduction into a particular approach [2] to this field.

Abstract mod_ules

Properties of parallel programs which are to be specified can be divided into two }class‘es:

- Fuﬁctionalit)' properties (what is the program to do ?),
= synchronization properties (what must be observed w.r.1. parallel execution ?).

For illustration we consider the producer/consumer system of section 2. Before il was
solved in the way given (here the problem could have been given. e.g., as follows

- A parallel program is to be constructed containing two components. P (ploducer)
and € (consumer) using a shared bulfer B:

P I—l B 11— ¢

- Funectionality:
P consists of cyclic loops producing objects dnd storing: them into B;
. C consists of cyclic loops of getling objects from B and consuming them;
B is a complex object 6Ffering {wo operalions:

— 48 —

~=. put an object into B,
—-- et an object from B; :
The internal structure of B guaranlees a ("queue”-like) first-in-first-out
(FIFO) behaviour of putting and getting objects.
- Synchronization:
The access to B is mutually exclusive;
“put” is only possible il B is not fulli
get” is only possible if B is not empty.

"

This also shows that the synchronization given in the final ploglam is actually forced by
synchronization properties of the buffer operations “put” and "get”. A formal framework
for specifying the bulfer B and its desired functionality and synchronization . properties
could be as follows:

module BUFFER(element): put, get
variable b:queue
procedures put(in:element),
getlout:element)
functions empty: ~queue,
top: queue - element,
. auxiliary functions

isempty: queue - boolean, (see below)

isfull: quéue - boolean]
laws
axioms in a formal language .‘i‘(BUFFER))
describing functionality and synchroni-~ } (see below)
. zalion properties of put and get
: -]
endofmodule

We call such a notation an abstract module. This module has the name BUFFER and de~
pends on a "sort” element denoting the range of produced objects. For putting and getting
obJects two procedures put (with an "input”~parameter of sort elerneént) and get (with an
"output”-parameter of this sort).are provided which are to work_on the buffer realized by
the variable b. The sort of b is denoted by queue. For specifying put and get, some auxil-
iary functions will be uselull.

The computation model of such a module M is generally defined in the following way:

- At any time, procedures of M may be called from (paralicl) program parts;
- a call of procedurs f'is "accepled” by M by creating a ncw instantiation of f;

- before executing its "body”, f may be forced to wait (for synchromzatlon)

- there is a particular last action of f called termination; :

- frony instantiation to termination, the effect of f is given by a sequence of atomic

actions which may be interleaved with other procedure calls.

An outline of the language $(M) for an abstract module M

#(M) is the language in which the specification of M (under the keyword laws) is to be
carried out. We deline £{M) to be a firsl-order temporal language with

- the functions of M which are not boolean-valued as function symbols,
- the boolean-valued functions of M as predicate symbols.

— 49 —

Futlhcnmoxc $(M) contains specml atomic formulas (bcsldes those: of the form p(tl, £,)

with pledncatc, symbol p and térms {,....0). Let f be a module procedure of the geneml
form : :

flin:sort,,...,sort,, out‘sor't pipresSOrt,)'

Lel INS(f) = {0, ...} be a dunumerable set of f-instantiation~ svmbols and (tx’ lm) be
the actual par nmetc: list o f,, i.e. the "argument list” of the call of f denoted by f,. For

fl.ef%lNS(f), the féllowing fmmulas (given with their informal meaning) ale_atomlc for-
€ : . . .
mulas of £(M):

©init: “. "Mis in its initial state” : :
-illSlfi(l‘,.._.,f,‘”,): "The i~th call of the procedure f {i.c. f) wnh parameters’
’ feenst) 15 instantiated”
Cwaltf {1 ,.00): "f; has been instantiated and waits. for e\eculmg (its body)”
startf (o, Ve “f starts to execute its body”
e\ecf (t1. ¢, J: f executes some actlon of its body
f is in its bod) :

inflt ...t)
t) f lerminates its execu(lon

»

[Ans Rl
terinf; (Il, wly

Examplc. In the lanbuage f(BUFFER) we could write the folmula
startput,(e) before staflput,)

with the |nf01ma| meaning: "The execution of the body of the instantiation put; (e) starts
before the execution of the body of the instantiation put (e). :

We still introduce an abbreviation:

slartf {t,,....1,) = new p=h(y)

for starlfl.(li,...,lm)‘/\y=v - Oltermf, (l)-’O(y—h(yo)))

describing the effect of the call P): "If f,.(tl ol) starts execuling (xls body) \v1lh

ni
» having the value y, then immediately after 1ermmulnon of this. call, ¥ will have the

value h(v)

ook n

Spectﬁcatwn of a buffer

Finally we are able now 1o give the full specification of a buffer b as mveqllgated above.-

The -informal description is:
(a) putle) stores e in b; . . -
(b) . get(r) fetches an element from b on ils oul-parameter r;
(c) put and get '\lc to terminate in finite time; : :
{d) “order preserving: Objects are fetched from b in (he same order as they are stored;
(e) priorities: Different mqtanlml:ons of put.are to be executed in a FIFO- manner -
. {and the same for get); .
() put has the waiting condition that b is-not full; get lms the Wwailing condltlon that b is
not_empty; .
{g) the bodies of different calls of put and/ol get are to be mulually e\cluded
(h). initially Lhe bulfer is emply.. : .

‘The formal specmcahon 1s gwen by the following dbstracl module

— 50 —

module BUFFER(element): put, get
variable b:queue
‘procedures putlin:element),
getlout:element)
functions empty: —»queue,
top: queue-element, (top etement of the buffer)
rest: queue-—queue, (buffer without top element)
append: queuexelement->queue, (sloring an element into the buffer)
length: queue-nat, (number of elements in the buffer)
cap: ~nat, (capacity of the bufler)
isempty: queue~boolean, (test of being empty)
isfull: queue—~boolean, (test of being full)
laws top(append(empty ell=e
top(append(q,e)) —top(q) il g¥empty, for realizing
rest{append(empty,e)) = empty, (@)
rest(append(g,e)) = append(rest(g),e} il g¥empty,
length(empty) =0 ‘
length(append(q,e)) = length{q) +1,
cap $0,
isempty(q) © length(g) =0
isfull(q) « length(q) = cap,
startput le) > new b = append(b,e),
startget (r) - new r = top(r),
startget (r) - new b= rest(b),
startput (e) » Otermput (e),
startget(r) » Olermget (r),

slartputi(e) - =isfull(b), : ’ }

(empty buffer)

(a),(b),(d)
(c)

startget(r) = -isempty(b),

—-(inputi(e)Ainputj(e’]) for i%j

—r(ingeti_(r)Aingetj(r')) for i#j

alinput{e)ainget (r))

instput (e) beforeinstput (') -
startput (e) beforestar!put (e} for.itj

instget, (l)befor‘ems{get) = (e)
startget (r)beforestartget (r) for i%j.
init -» b=empty))

endofmodule

References

The material of sections 1-3 is taken from [1]. In that textbook there is also contained a

‘detailed list ol relevant literature.

-[11 F. Krger: Temporal logic of programs. EATCS Monographs on Theoretical Compu-

ter Science. Springer-Verlag, Berlin, 1987

[2] F. Krdger: Abstract modules: Combining algebraic und temporal logic specification
. mears. Techn. Sci. Inform. 6.. 559-572 (1987)

31 F.KrBger: On the interpretation of arithmetic in temporal logic. To appear in: Theor.

Comp. Sci. . i
— 51 —

