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Non-standard fruth values and modalities

Gonzalo E. Reyes

Introduction

In my paper Reyes [6], I developed a topos-theoretic approach to reference
and modality. This approach, based on the notion of a locally connected
topos £ over a base topos § led straightforwardly to a higher-order many-

sorted system of modal logic, HMAO, and a topos-theoretic semantics for

this formal system. If the base topos is the category of sets, Sets, the
axdom of excluded middle turns out to be valid for modal sentences and we
obtain an extension of HMAO, namely the system HIBM. Since the writing
of that paper a more general topos semantics, based on the notion of an
open topos £ over a base topos S, has been introduced in Lavendhomme,
Lucas and Reyes[4] to study several metamathematical properties of the
first-order fragment IBM of HIBM, such as soundness and completeness
with respect to that semantics.

This approach uses topos-theory rather freely and thus it is hard to
understand for people who are not yet acquainted with that theory. After
the writing of that paper, I discovered a simpler alternative approach based
on non-standard truth values. This new approach, which arose in discus-
sions with John Macnamara and Marie Reyes on the possibility of applying
HIBM to learning theory and literary theory, reduces “non-standard” pre-
requisites to the rudiments of category theory. The reader who is interested
in these applications may consult Macnamara and Reyes [5] and Reyes, M.
U

The approach developed in this paper is actually equivalent to the orig-
inal topos-theoretic one provided that one restricts attention to kinds only,
leaving variable sets out of the picture (cf. Appendix).: Although simpler
than the original, I find it less cogent.
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1 Preorders and coverage systems

From now on, let § be the category of sets. The knowledgeable reader will
observe that all that we shall do (with the exceptions that will be mention
explicitely at the relevant places) can be generalized from the category of
sets to an arbitrary topos. Let < be a pre-order on a set P, ie, a binary
relation on P satisfying the following conditions:

l.z<¢z
2.z yANyLz=>2<z

I shall make the usual abuse of language and use “P” for both the
structure {P,<) and the underlying set P. By a coverage system on P,
we understand a couple (P, Cov) , where Cov is a function thit associates
with each p € P a set Cov(p) of subsets of | (p)y={¢€ P:¢<p}
satisfying the following conditions:

1. {p} € Cov(p)
‘2. A€Cov(p)Aq<p=>TB€Cov(q)Vac AeEBbLa
3. A€ Cov(p) = U{BP €0 :Ja € A B € Cov(a)}

* We refer to (ii) as the “stability condition” and to (iii) as the “locality
condition”.

I now define (3(1) to be the set of downwards closed subsets K C P
satisfying the following “glueing” condition: :

AEICov(p)/\A‘Q K=pe kK

 The elements of D( ) will be called non-standard truth values and Q(1)
1tself the set of non- standard truth values.

Proposition 1.1 Q(l) 18 a complctc Heyting algebra
Proof. First:a deﬁnition: if K is a downwards closed subset of P, we let

d{K)={peP:34€ Cov(p)A C K}. ltisclear that 0 =@ and 1 = P.
If K is a set of downwards closes subsets of P, then so is JK. Then VK
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)

o= cl(UK) On the other hand, if Ky and K, are two elements in K, then :

Ky A K, = K, nK,. ;

Example 1. Let < be just ordmary equahty on a set I. In thls case
there is exactly one coverage on I, namely Cov(i) = {i} and Q(1 ) is just
the complete Boolean algebra of all the subsets of I.- - o S

Example 2. Let < be a pre-order on a set P and let Cov(p) = {p}. This
is again a coverage on the pre-order P and (}(1) is just the set of downwards

- ‘closed subsets of P. The Heyting operations are the set-theoretical union,

finite intersection and 1mphcat10n given by Kl = K, =U{K € Q(l)

K AKCKs)

‘Example 3. Let Pbea tree and let p be a node. A set A of nodes is
a bar for p if every path of P containing p also contains a node of A. For
each p € P we let Cov(p) be the set of downwards closed bars below p (we
represent the tree as growing downwards). It is easy to check that this is a

- coverage that we shall call the Beth coverage on P.

We shall see that the first of these examples corresponds to the wcll-

" known possible worlds semantics. On the other hand, the second and the

thlrd correspond to the Knpke and Beth semantics for mtmhomstlc loglc
respecmvely

2 Languages and thelr mterpretatmns

In this sectxon we mtroduce the language of modal type theory a.nd mterpret
itin § with respect to a coverage system (P, Cov).
~ We define sorts and terms: bv recurswn as follows:
. Sorts )
a) Basic sorts are sorts: passenger, person, readmg, nvers, (whose
intended mterpretatmn wﬂl be sets passengers, persons, readings, nvers,

b) propis a sort {whose mtended mterpretatlon is. 9(1), the set of non-
standard truth-values) .

r) If X,Y are sorts, so‘ are A xY and YX '
d) Nothing else is a sort.

Terms (of a given sort) are defined by recursion as follows (where t : X
is an abrewatxon for “t is a term of sort X”):
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a} Basic constant terms ¢ € Gony are terms of sort X: e.g., John €
Conp,,,,,(,,..pmun) (whose intended interpretation is the set of predicates
that John has); or again run,,_, of sort prop™®" (whose intended inter-
pretation is the corresponding predicate as applied to men). Other sorted
constants may be, for instance, is a son of of sort prop™enXman (whose
intended interpretation is the obvious relation between men). We also have
sorted.constants for “underlying” maps between the interpretation of the
sorts. These are needed, for instance, to account for the fact that “a man
is an animal”, In this c'a.'s'e', we postulate a constant Uman,animat Of 50Tt

propmenxenimal o ose intended interpretation is the function which asso-

ciates with a man “its underlying animal”. This is the precise expression, in
our many-sorted language, of what natural language expresses imprecisely
by the above sentence “a man is an animal”. ; o
b)If 2 € Vary, then x is a term of sort' X, where Vary is an infinite
set, for each sort X ' Co '
) t:X and 8:Y, then <t,8>: X xY
d) If z€Vary and {:Y, then Azt:YX
e)If t:Y* and 9:X then i(s):Y .
f) T and L are terms of sort prop
g)If t,5: X, then t =4 is a term of sort prop
h) If ¢,¢ are terms of sort prop, then ¢ A ¢ is a term of sort prop,
i} If ¢ is a term of sort prop and « € Vary, then Jx¢ and Vzg are
terms of sort prop = - - ‘
J) If ¢ is a term of sort prop, then so are O0¢ and Q¢
k) Nothing else is a term. o '
Formulas are defined to be terms of sort prop

If ¢ is a formula, we let ~p=¢— 1. o , »

‘We shall assume that we have defined the usual notions like “substitu-
tion of a variable by a term”, “free variable of a term or a formula”, “a
term being free for'a variable in a term or a formula”, ete.

An interpretation of L in S relative to a coverage s"ys‘tgm (P,Cov) is a
function |...| which associates with the sort prop the set of non-standard
truth values (2(1) and with each sort s a set ls| of § andkwit‘h' each constant
of sort s an element of s ’G&ivie‘l:'l such an intérpr‘éta_ti(on; 'v‘ve'véan:iinterpre,t

terms in the usual way as set-theoretical functions between the interpre-
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tations of the sorts and formulas as functions whose target is 2(1). To
interpret formulas it is convenient to introduce the forcing relation

PG (1, s 20) @1y ooy @n]

between p € P, ¢ a formula of L and (ay,...,a,) € Sy X ... X S, ,where the
S are the interpretation of the sorts of the variables . ’ _

We proceed as in the Kripke’s forcing but with the following modifica-
tions for V and 3 and new clauses for modal operators: '

L pH(¢V $)[ar,...,a,] if there is an X € Cov(p) such that for all
- geX (drdlay, ..., a.] or d-lay,...,a,))

2. pF3z¢lay,...,a,] iff there is an X € Gov(p) such thatfor all g € X
there is @ € S such that

‘I“—‘ﬁ[ah' B 38@ny a]

3. pFOPlay,. .. a,] iff Igq gtdlay,. .., a,]
4. p-0Odlay,...,a,] iff Vg gtdlay,. .., a,]

The following expresses the functoriality of the forcing relation and is
proved by induction on formulas in the usual way:

Proposition 2.1 If Ul-¢lay,...,a,] and V < U, then Virg|ay,...,a,].

We can finally define the basic notion of validity of a sentence, namely
a formula without free variables. A sentence ¢ is validin 'S relative to the
coverage system (P, Cov) if and only if for every p € P pl-o[ |, where [ ]
is the empty sequence. We shall write (S, (P, Cov)) = 0. More generally,
we say that a formula is valid if and only if its universal closure, which is a
sentence, is valid. ' '
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3 _Formal system and Soundness theorem

In this section, we shall describe a formal system HIBM (for “higher or- |

der intuitionistic with Boolean modajmes”) based on Gentzen's sequents.

These expressions, following Boileau and Joyal [2], will be of the form

I' b5 ¢, where T is a finite set of formulas of the language of modal
hxgher order theory already described, ¢ a single formula and X a finite
sequence of variables containing all the free variables of I' and ¢. We
shall assume that these expressions satisfy the following rules. This system

follows, in part; Lambek and Scott [3 page 134] which in turn is based on
Gentzen s work. :

‘1. Structural rﬁles , o L ‘
11 pl-)?p
e Trog
1.3 P'kzgq
| Tu{plkgq
- 1.4 P}—K—q
E ' l"}—~‘
1.5 ke, @

Tlefy) " )

where ¢ is free for g in ¢ and r

2. Loga'éal rules .

21 pkzT and Lllyp
22 rlgpAg iff rl—)fp and rksq
- pVgrgr iff pker and ghgr
2.3 plyqg—r iff pAgkgr '

2.4 ply Vo iff rhg. ¢
- Jxptgp iff Pz, p

provided that z is not a variable in X.
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. Identity rules

3.1 » "‘X t=1t
3.2 t=skgr(t/z]=r|s/z]
provided that ¢ and s are free for z in 7

3.3 t=skz d[t)z] = $[s/x|

provided that ¢ and s are fregrfor zin ¢

Rules on special symbols

- 4.1 (a,b>=<c,d>|"‘x'a=.c_
<ab>=<ec,d>Fgb=4d
42 T, z=<ay>rz, ¢
- Thrg, ¢

provided that # and y are not free in I or ¢

. Rules for the A -calculus

5.1 F g Azt(a) =t
provided that « is not a variable in b'e
52 kg Azg(t) = ¢[t/z]
provided that ¢ is free for x in ¢

5.3 F}_X&lzs
T kg dat = das

. Rules for moddl loperatars

6.1 O¢bgz ¢ bz O
6.2  O¢lgODp OOhbz Od
6.3 Pt 0O0¢ OO¢kg o

6.4 : z:va'D(;t:y)
6.5 oy
D‘/) F_x_ D"/J
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6.6 bFz

Oz OY
6.7 l_)f Qb o =O-¢
6.8 Fe OV -Llé

This completes our system. We have not tried to describe it in the

simplest. or most economical manmner. In fact, a more economical system
seems possible (see [3]).

In order to formulate a sonndness theorem, we need the following
definition: I' |=¢ ¢ if and only if

Vpe P¥(ay,...,a,) €Sy x ... x S, pFl{ay,. .. a,] = plFdlay,. .., a,]

where X is a finite sequence of free variables of sorts Sy,...,S, containing

the free variables of ¢ and T, and pi-T'[ay,.. dn] iff plbylay,...,a,] for
all ye€T. '

Theorem 3.1 (Soundness)
If Fl-)?cﬁ,then F’:)?qﬁ

Proof.(In sketch) Induction on proofs. For most axioms and rules of infer-
ence this is quite straightforward, the only tricky verifications being those

connected with substitutions of terms for which a substitution lemma has
to be stated and proved.

To illustrate this proof, we verify it for 6.8

We show that given p, pl-[0¢V ~[0¢. By definition of forcing, we must
“then show

p-0¢ or p—0 ¢
equivalently
Vg qli-gb‘br Vr <prf0O¢
equivalently
Vg dg orVr < P-(Vg g-g)
equivalently

VggFdorVr <p3gghé
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and finally

Vg di-¢ or 3g ¢ f-¢
which i is true, ’

Remark 3.2 This proof uses the fact that S is a Boolean topoa If S is

not Boolean, soundness theorems go through for the formal system HMAO,
which is HIBM minus axiom 6.8. .

4 Completeness theorems

In thls section, we state a completeness thcorem for thc first- order fragment
IBM of HIBM as well as another for one of its extensions, namely IBM
together with the axiom of constant domain (stated below). These theorems
are related to examples 2 and 3 of section 1 and use, in an essential way,

the Booleanness of §. Proofs may be found in Lavendhomme, Lucas and
Reyes [4].

Theorem 4.1 Let L be a denumerable first-order modal language (with
both O and O), let T be a set of seniences and let o be a sentence such
that T' I/ o in the system IBM together with the following aziom of constant
domain: Vz (o V $(2)) « o VVz ¢(z) , where x i3 not free in 0. Then
there i# a pre-order P and an interpretation of L relative to P with the

trivial coverage system such that all sentences of I' are valid, although o 13
not valid. ' :

Theorem 4.2 Let L be a denumerable first-order modal language (wsth
both 11 and &), let T be a set of sentences and let 0 be a sentence such
thatT' i/ o in the system IBM. Then there is a tree T, a Beth coverage Cov
onT and an interpretation of L relative to (T, Cov) such that all sentences
of T are valid, although o i not valid. k »

Of course, there is a completeness théorem related to example 1, but
this reduces to the well-known completeness theorem of the system 5'5 for
the possible worlds semantics.

The first theorem characterizes thus the modal logic of presheaves (or

Kripke trees), whereas the second characterizes the modal logic of Beth
trees with bars.
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. The proofs of these theorems are somewhat different. Whereas the first
is a rather straightforward application of the Henkin method, this is not so
for the second. In fact, the proof is rather roundabout and proceeds in 2
steps: we introduce a modification of Beth semantics, the graft semantics
together with a modification of IBM: the system IS4, Then we prove
completeness of this new system relative to the graft semantics, essentially
by proving a cut-elimination for this system. For. details, the reader is
referred to [4). - o '

Remark 4.8 In Reyes [6], a category of kinds with coineidence relations ss
sntroduced to account for opagueness of natural languages, ie, for the “lack

of sub_stitutivity of equals for equals”. The main idea is that members of |

a given kind may eoincide at a given situation without being equal. At
the syntactical level, this means that we have a further primitive relation
symbol = together with a series of new axioms and rules of inference. For
simplicity sake, we left coincidence relations out of the picture in this paper.
Correspondingly, we considered languages without a relation symbol for this
coincidence relation. Nevertheless, Theorem 4.3 goes through for this case
too. In fact this follows from Reyes {6, Theorem 6, 2.4]

.

' Appendix

- In this appendix, we prove the assertion of the Introduction, namely that
- 'this approach with sets and non-standard truth-values is actually equivalent

to the topos-theoretical one, provided that we restrict ourselvés to kinds,
* ie, constant sets of the topos in question. o

" Let T': £~ be a locally connected, bounded topos. This means
that £ = Sh(C) for a site C in § for some site C in S such that constant
- presheaves are sheaves. Equivalently, this means that the left adjoint A
- t0 T has itself an § — indexed left adjoint. In particular, A preserves
-exponentials (cf. Barr [1]). From the site C we construct a pre-order P
together with a coverage system Cov as follows: P is the set of objects of C
and for C,C' € P,C < C' iff 3f:C—C€C. Furthermore, a family
{Ci}icr € Cov(C) iff thereis a family {f; : C;(~——C} -which is a covering
family in the site C. It is easy to check that (P,Cov) isindeed a coverage
system. C e '
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thrthefmore, recalling (from Reyes [6], say) that I'(Q?) = set of closed
sieves, we check at once that r'@)=0Q). : - o
Let L be a higher-order many-sorted modal language as discussed in

Reyes [6] and let |...| be an interpretation (of the basic sorts and.bgsic’

constants) of L in'§ with respect to (P, Cov) . ‘ ‘
We now obtain ‘an interpretation in I' : £ —§ as follows:

LX) =ax] |
2. |lefl = Ale] for basic constants e: X
- We may now stat;e the main‘r'esﬁlt'of 'this ap_ﬁendix: _
Theorem 4.4 For mry formuld ¢ of L and every C &€ C,
| Clrdlay,..yan] iff CF'¢lary...ian]

where the first forcihg relation refers'tovthe in_terpretdtion in the topos
£—$ and the second foreang refers to the s'_nterpretat.z'vonb in S with respect
to (P,Cov) . , :

Corollary 4.5 For every sentence 0 of L,
E—Sko iff (5,00) ke
We first prove the foHowing

Lemma 4.6 If{: X is any term of L such that FV (1) C {z1,...,zn} and
= (xy,..,2,) , then o o
{122t = AlZ 2 ¢ )
| Proof. By induction on {. For instance, if ¢ is a constant ¢ of sort X , this i.s
just the definition of the interpretation: |l¢|| = Ale| . We shall do in detail |
only two cases of Reyes[6]), the others being similar or simpler. o
- Assume that t is:of the form Azs. But this follows from the following
easily proved remark: let tr(...) stand for the exponential transpose off. the
morphism (...) ‘in either of the toposes £ or §. If F : A—-»-'-%Yx_’vls a
morphism in §, then Atr(F) = tr(AF) (The proof uses of course the fact
that A preéerves exponentials). To finish the proof of this case, we assume
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(induction hypothesis) that [|lod : sf| = Ale# : 8| and argue as follows:
|Z : Axs| = tr(|2Z : 8]). Hence, A|Z: Azs| = tr(A)zZ : s]) , by the remark.
But this is equal to tr(||z¥ : ¢f]) by induction hypothesis, which in turn
equals, by definition, || : s||.

Assume now that ¢ is of the form Vy¢ . It is enough to show that

|Z: Vyg| = tr(¥r(ea o [|(z, ) : l)))

where x is the obvious projection and ¢r(...) is the transpose of (...). Indeed,
we then apply the functor A.

But O belongs to the right hand side iff (V, (eaoll(z,¥) : ¢|))c(a) = Ty,
by Reyes[6, Proposition 4, section 2.2]. By the definition of V, , this holds
precisely when VC'—C Vb (eq o |[(z, ) : é))or(a,8) = Ter . Using
loc.cit. once again, this condition may be written as YO'—C Vb ¢’ €
tr(en o (|(2,9) : ¢|))(a,8) . The induction hypothesis on ¢ and a simple
computation of transpose shows that the last condition is equivalent to
YO'—C Vb C' € (|(=,y) : ¢|))(a,b) . Using the definition of I-* ., we
may rewrite the condition as VO'—C Vb C'l-*¢(a,b) , which by the very

definition of this forcing is equivalent to ClIF-*VYyé|a] . But this is equivalent

to C € |Z:Vys|(a), by definition of |...|.

We now turn to the

Proof (of Theorem {.8). Assume that Cl-¢a] . By definition of II- , this
is equivalent to (egollz : ¢||))c(a) = Tp . By Reyes|6, Proposition 4, section
2.2], this holds precisely when C € tr(eg o ljz : ¢||))o(a) . By induction
hypothesis this, in turn, holds precisely when C € lz : ¢|(a) . This

completes the proof (recall the definition of [...] in terms of non-standard
forcing).
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