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Modal logic and interpretability
(extended abstract)

Alessandro Berarducci!

1. Introduction. We gi\/e a'nv exposition of some results
obtained while the author Was a Ph.D. student at the Uni\)ersity of
California at Berkeley writing a dissertation under the direction
of Prof. R. Solovay. Complete proofs can be found in the
forthcoming paper [Berarducci]. Our results conéern the notion of
"intepretability” of a first order theory into another fifst order
theory (in the sense of [Tarski] and [Feferman]). We consider in
particular finite extensions of Peano Arithmetic (PA), namely
those first order theories which have ihe form PA + ¢, where PA
is Peano Arithmetic and ¢ is a sentence in the language of PA. The

main result gives an ‘extension of Solovay's modal ‘analysis of the

notion of "provability" [Solovay] to the case of "interpretability”.

2. Interpretability.

2;1. Definition. Let L and L' be first order languages. Assume

for simplicity that L and L' are relational languages without

equality. A "translation” of L into L' consists of a formula U{x) of
L', called the universe of the translation, together with a map f
which associates to each n-ary relation symbol R of L a formula

f(R) of L' having exactly n free variables (say the first n variables

of LY).
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2.2. Definition. Let F = (f, U) be a translation of L into L'

For each formula C of L we define inductively a formula CF of L'
by replacing each occurrence of an atomic formula R(x1,....xp)

in C with its translation f(R)(x1, ... .xp), and each occurrence of a
quantifier Vx - with its relativized version Vx(U(x) — ...). That
is: |

1) R(xq, ... ,xn)F = f(R)(x4, ... xy) if R is‘ a relation symbo! of
L;

2) (AAB)F = AF 4 BF;

3) (A)F = 1 (AF);

4) (vx AF = vx (Ux = AF).
To avoid unwanted conflicts of bounded variables we assume that
before defining CF all the bounded variables occurring in the
formulas f(R) and in the formula U(x) have been renamed so that

none of them occurs (free or bound) in the formula C.

2.3. Definition_. Given two first order theories T and S, in the
languages L[T] and L[S] respectively, we say that T interprets S
iff:

3 (f,U) such that F = (f,U) is a translation of LIS] into L[T] and:
V Ae Axioms of S

3 p:pisa proof of AF from the axioms of T.

An interpretation of S in T gives us a canonical way of
constructing a model MF of g, starting from a model M of T: the
underlying set of MF is the subset of M consisting of all~the

elements satisfying U(x), and the relations on MF are so defined
that MF=C(ay, ..., ay) iff MGF(ay, ..., ay). It is clear from

the definition of interpretability that for recursively axiomatized
theories (in a finite language) the notion "T interprets S" can be

formalized as a Eg -formula in the language of arithmetic

(uniformly in T and S).

2.4. Definitions.

1) Interppa(x, y) is the }:g -formula formalizing the assertion "x

and y are (codes of) sentences of PA such that the theory PAU
{x} interprets the theory PAU {y}". (Since we have defined
interpretations only for relational languages we assume that
PA has been formulated in a relational language.)

2) Provpa(x) the Z?-formula expressing "x is (the code of) a

sentence which is a theorem of PA"

3) Provpa y(x) is the Z?-fcrmula (in the two variables x, y)

asserting "there is a proof of x from PA which employs only

axioms with Gédel numbers less than y".

The following theorem of Orey (cfr. [Feferman]) says that
intepretability over PA is definable in terms of restricted

provability:

2.5. Theorem. PA + ¢ interprets PA + ¥ iff for every finite
subtheroy U of PA + ¥ , PA + ¢ proves the consistency of U.

Moreover this equivalence can be proven in PA.
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An immediate consequence of Orey's theorem is that the

complexity of the formula Interpp a(x, y) can be reduced from Zg
O B .
to I, (but not further, cfr. [Solovay2] and [Lindstrém]). Note that

if instead of PA we consider a finitely axiomatized theory, like

GB, then the notion of interpretability has complexity E?. The

behavior of GB with respect to interpretability has been studied
in [Visser] and differs significantly from the one of PA (while
both PA and GB share the same modal logic of provability by
Solovay's result).

3. Modal logic. The Way modal logic has been used to study

formal provability and intepretability is through the introduction
in the language of modal logic of modal operators O, Oy, and. >

whose intended meaning are Provpa, Provpa x and Interpp o

respectively  (other operators have also been considered with

interesting‘ applications, cfr. [Visser]). So for example Orey's

theorem can be expressed by the modal formula (*): A>B & vn
LA — OyB) showing in particular that & is definable in terms of

Dand O,. Since Oreys theorem is true (as Orey proved it) we say

that the ~corresponding  modal formu!a (") is “valid". Moreover
since the proof of Orey's theorem can be formalized in PA we say
that (*) is not only valid but also "PA-valid". Another example of
a valid modal formula is DA & (1A)>L which says. that
provablllty can be deflned in terms of intepretability. Gédel's
second mcompleteness theorem provides a third example of a
valid formula: ~07A — A - =04A). ‘We can read this as an
expression of the fact that'if PA+A is consistent, then PA+A does

not prove its own consistency. The reflection principle for PA can
also be expressed by a valid modal formula: vnOA — 0,7A), ie.
the theory PA+A proves the consistency of every finite subtheory
of ‘itself. Our last example of a valid modal formula is a principle‘
discovered by F. Montagna, which is an expression of the fact that

Es-formulas are preserved under interpretations: A > B — (AADOD

> BADOD). Montagna's principle would fail to be valid if we
replaced the base theory PA with GB.

Censidered the wealth of classical examples, a natural
question iis whether there is a decision procedure to test the
validity of a modal formula. The first such decision procedure
was obtained by [Solovay] for the restricted class of modal
forrhulas containing only the provability operator [J, propositional
variables (standing for arbitrary sentences of PA), and boolean
connectives (including a propositional constant L for falsehood).
The modal formula expressing Gédel's second incompleteness
theorem is an ex'ample of such a formula, so this restricted class

is already quite expressive.

- 3.1. Open problem: does such a decision procedure exists for

the Ianguage containing all of the above mentioned operators,
namely [J, Oy, and i>(w«th the pOSSIblllty of quantlfymg over the

variable x in Elx) ?

~Our main result is that we still have a decision procedure for

valid modal. formulas in the language with both O and > (but
without [,). To state this precisely we need:
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3.2. Definition. Consider the modal language containing 0O, >,
boolean connectives, and propositional variables. Let H be a map
which assigns to each propositional variable A a sentence AH of
PA. We extend H to all the modal formulas by preserving the
boolean connectives and defining:

(WH = (0-1)

(OAYH = Provp a([AH));

(A>B)H = Interpp A (1AM, (BM))
where [o] is the numeral for the Gédel number of the PA-formula
0.

3.3. Definition. Let A be a modal formula. We say that A is
PA-valid, if for all maps H as above, PA —AH. we say that A is o-
valid if for all H, o k= AH,

Every PA-valid formula is clearly also w-valid. An example of
an o-valid formula which is w-valid but not PA-valid is the modal
formula expressing the soundness of PA: DA'—e A. Another example
is the formula expressing the consistency of PA: -[lL . Note that
this latter formula does not have any propositional variable, so it

corresponds to a single sentence of PA rather then to a scheme.
Clearly A is PA-valid iff DA is ©-valid.

3.4. Main theorem. It is decidable whether a modal formula
(in the language with both O and &) is PA-valid. '/Similarly' it. is

decidable whether any such modal formula is w-valid.

This result has been obtained independently and at about the

same by Shavrukov [Shavrukov]. Both proofs use earlier work of
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Visser, De Jongh and Veltman on this problem, who pfovided' us
with the right conjecture, namely that the PA-valid formulas are
exactly the theorems of the modal theory ILM (cfr. [Visser]),
together with the necessary Kripke models to prove the

decidability of ILM (cfr.. [De Jongh-Veitman]).

3.5. Definitioh. The axioms of the theory ILM are all the
booleah téutologies {including those containing [J and ) plus the
following axiom schemes (where ¢ stands for =[0n):

1) O(A— B) — (OA — OB);

2) DA - ODA;

3) O(OA— A) —» OA;

4) O(A- B) - A>B;

5) (A >BAB D> C) > (A >C);

'6) (A >CABD> C)— (AVB >C);
7)) AbB = 0A - 0B;

8) OAD-A;

9) ADB = A ~OD) D> (B OD). |
The rules of inferenée are modus ponéns and nec'essitation’:

A DA, | )

To prove our main result we show:

3.6. Theorem. The PA-valid formulas are exactly the

theorems of ILM.

3.7. Theorem. The w-valid formulas are exa‘ctly the theorems

of {he‘theory ILM® whiéh is defined like ILM except that we omit

the rule of inference AZJA and we add the axiom scheme OJA— A.
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Moreover ILM® can be many one reduced to the decidable theory

ILM so it is still a decidable theory.

The reduction of ILM® to ILM can be described as follows: ILM®
~C iff LM FT(C) — C where T(C) is the conjunction of: 1) all
the formulas of the.form O-A — 1A such that for some B, A>B is
a subformula of C; 2) all the formulas of the form OA— A such
that A is a subformula of C.

The proof of 3.6 and 3.7 is constructive in the sense that it can be
used to find sentences of PA with a preassigned behavior with respect
to interpretability and provability whenever sucH PA-formulas exist
(and to decide if they do exist): for example we can prove the non-
validity of the formula A > B — O(A>B) by explicitly constructing two
sentences A and B of PA which falsify it, namely such that the theory
PA+A inteprets PA+B but it does so in such a nonconstructive way that
PA is not able to formalize the proof that PA+A interprets PA+B (this
phenomenon would not be possible if we replaced PA with the finitely
axiomatized GB). 'Even for such a simple example it would not be easy to

prove that such sentences exist without resorting to the general

theorem.
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