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There are arguments, like the so-called Church’s and Türing’s theorems, which limit the
expressive power of the first order calculus by asserting its undecidability. Taking any first
order formula we cannot always decide whether it is true or false. An upstream idea underlies
these arguments seeing like an impasse in the existence of formulas that are neither true nor
false. See for example the well-known words “ ... there are propositions which are neither true
nor false but indeterminate ” [4, 126]. As well-known indeterminacy led Lukasiewicz not only to
reject the principle of bivalence and to introduce a third truth value, but also to the necessity of
formalizing rejection. Gödel numbering is an arithmetization of syntax which codes provability
as a primitive recursive predicate, Pf(x, v) [5, 190-198]. All around this well-known recursive
predicate are today widespread a multiplicity of researches and results in many areas of logic
and AI. Not equally investigated is the refutability predicate defined by Gödel numbering within
the same primitive recursive status. Rf(x, v) can be defined as a recursive predicate meaning
that x is the Gödel number of a refutation in PA of the formula with Gödel number v [1, 2]. The
logical investigation of the links between provability and refutability predicates when defined
within the same recursive status seems to display another way out from the indeterminacy.

Lemma 1. For any natural number n and for any formula α not both Rf(n, pαq) and
Pf(n, pαq).

As Pf(x, v) and Rf(x, v) are primitive recursive then also their characteristic functions CPf

and CRf are primitive recursive. Therefore from Lemma 1 we have the following.

Lemma 2. For any formula α, and n as the Gödel number of a proof in PA of α

`PA CPf (n, pαq) = 0 ∧ CRf (n, pαq) = 1

Lemma 3. For any formula α, and n as the Gödel number of a refutation in PA of α

`PA CRf (n, pαq) = 0 ∧ CPf (n, pαq) = 1

Lemma 4. For any formula α

(I) not both `PA Pf(n, pαq) `PA Rf(n, pαq),

(II) for n as the Gödel number of a refutation in PA of α

`PA Rf(n, pαq) ⇐⇒ ¬Pf(n, pαq),

(III) for n as the Gödel number of a proof in PA of α

`PA Pf(n, pαq) ⇐⇒ ¬Rf(n, pαq).

These Lemmas are clarifying and open new perspectives to the incompleteness argument in
PA [5, 203-204; 206][1, 2]. Applying an unlimited existential quantifier to a predicate whose
kernel is recursive yields a recursively enumerable predicate, r.e. predicate, and on the other side
every r.e. predicate can be represented in this way. Pf is a primitive recursive predicate then



by its characteristic function CPf , <n, pαq> ∈ Pf ↔ CPf (n, pαq) = 0. Being Pf decidable
we can decide whether n is the Gödel number of a proof in PA of α or not, namely whether
`PA α or 0PA α. Respectively, Rf is a primitive recursive predicate then by its characteristic
function CRf <n, pαq> ∈ Rf ↔ CRf (n, pαq) = 0, and since Rf is decidable we can decide
whether n is the is the Gödel number of a refutation in PA of α or not, i.e. whether `PA ¬α
or 0PA ¬α . But when we state ∃xPf(x, pαq) we make an assumption of existence, namely of
a r. e. predicate, that can be represented as [3, xxiv]

i) Pf(0, pαq) ∨ Pf(1, pαq) ∨ Pf(2, pαq) ∨ . . . .

In other terms, we have a computable function f which lists all the Gödel numbers of proofs
in PA yielding the set of all the ordered couples <f(o), pαq>,<f(1), pαq>,<f(2), pαq> . . . till
to reach that n such that effectively <n, pαq> ∈ Pf . Being ∃xPf(x, pαq) only r.e. we can
generate the Gödel number of a proof in PA of α, i.e. `PA α, but we could not be able to
equally obtain 0PA α. Similarly for Rf , with ∃zRf(z, pαq) we have a r.e. predicate, such that

ii) Rf(0, pαq) ∨Rf(1, pαq) ∨Rf(2, pαq) ∨ . . . ,

and we can reach `PA ¬α, but we could not be able to generate a derivation such that 0PA ¬α.
Let us consider the well-known “Bew(x)” of Gödel’s 1931, ∃yPf(y, x) in our notation, which
assumes the existence of a proof y of x, in the light of our lemmas. There is no doubt that “n is
the Gödel number of a proof in PA of α” can be considered an example of ∃yPf(y, x), so that
we obtain Pf(n, pαq). Accordingly by Lemma (4)(III) `PA Pf(n, pαq) ⇐⇒ ¬Rf(n, pαq), and
from the viewpoint of the effective computability this is equivalent to generating from i)

iii) ¬Rf(0, pαq) ∨ ¬Rf(1, pαq) ∨ ¬Rf(2, pαq) ∨ . . . .

Hence we can attain both `PA α and 0PA ¬α. On the other side, for “n is the Gödel number
of a refutation in PA of α” we can obtain Rf(n, pαq). Accordingly by Lemma (4)(II) we have
`PA Rf(n, pαq) ⇐⇒ ¬Pf(n, pαq), from ii)

iv) ¬Pf(0, pαq) ∨ ¬Pf(1, pαq) ∨ ¬Pf(2, pαq) ∨ . . . ,
and we can obtain both 0PA α and `PA ¬α. We observe that, being the predicateRf recursively
defined, as much as Pf is, it comes to our aid with respect to Bew(x) and the incompleteness
of PA. This is something at all in twilights within Gödel’s incompleteness argument. Moreover,
the recursive definition of refutability highlights how, the assumption of the existence of a proof
y when stating ∃yPf(y, x), i.e. “Bew(x)”, is precisely a codification or formal expression of the
indeterminacy. Indeterminacy, that in the light of the Lemma (4) has no real reason to exist.
As we showed, all the four possible cases ` α, 0 α and ` ¬α , 0 ¬α are now ruled in PA. Thus
even after an assertion of existence of a proof or a refutation, like ∃yPf(y, x) or ∃zRf(z, v),
indeterminacy has no reason to be.
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