The Characterization of Convergence in Computational
A-Calculi via Intersection Types

UcOo DE’LIGUORO! AND RICCARDO TREGLIA%*

! Dipartimento di Informatica, Universita di Torino, C.so Svizzera 185, 10149 Torino, Italy
ugo.deliguoro@unito.it

2 DISI, Universita di Bologna, Mura Anteo Zamboni,7, I-40126, Bologna
riccardo.treglia@unibo.it

A-calculus and Monads. Since Strachey and Scott’s work in the 60’s, A-calculus and
denotational semantics, together with logic and type theory, have been recognized as the math-
ematical foundations of programming languages. Nonetheless, aspects of actual programming
languages have shown to be quite hard to treat, at least with the same elegance as the the-
ory of recursive functions and of algebraic data structures. In [8] Moggi proposed a unified
framework to reason about A-calculi embodying various kinds of effects, including side-effects,
that has been used by Wadler (i.e. in [11]) to cleanly implement non-functional aspects into
Haskell, a purely functional programming language. Moggi’s approach is based on the cate-
gorical notion of computational monad: instead of adding impure effects to the semantics of
a pure functional calculus, effects are subsumed by the abstract concept of “notion of compu-
tation” represented by the monad 7. The basic idea is to distinguish among wvalues of some
type D and computations over such values, the latter having type T'D. In [4] we considered
an untyped computational A-calculus, called computational core in [7], A, where T is some
generic monad and D = D — TD. Consequently, A\, is a calculus of two sorts of expres-
sions: Val: VW u= z | Ae.M and Com : M,N == [V] | M %V, where x ranges over a
denumerable set Var of variables. Differently from the equational theory in [8], we introduce
an operational semantics based on a reduction relation over computation terms and a type
assignment system of intersection types such that types are invariant under conversions and
convergent computations are characterized by having non-trivial types in the system. Monadic
operations of merging values into computations, i.e. the unit of the monad T, and of exten-
sion model how morphisms from values to computations compose, but do not tell anything
about how the computational effects are produced. In the theory of algebraic effects (i.e. in
[10]), it is shown under which conditions effect operators live in the category of algebras of
a computational monad, which is isomorphic to the category of models of certain equational
specifications. Toward studying how to extend the type-theoretic characterization of conver-
gence in A\, when computations are endowed with operators for algebraic effects, in [6, 5] we
have considered the case of the state monad, together with (denumerably many) operations get,
and sety, indexed over an infinite set of locations, to access a global store. The syntax of the
calculus, named imperative A-calculus, \iy,p, is then obtained by the extending computations
by Comg: M,N == [V]| M *V | get,(Ax.M) | set,(V,M) (¢ € L).

Intersection type theory. Among the various type systems of intersection types, we
adopt the BCD system in [2], which is equipped with a subtyping pre-order axiomatizing an
inf-semilattice of types with the type w as the top element, where w is the type of any term.
The characteristic of the BCD system is type invariance under both reduction and expansion
of terms, which is at the heart of the filter model construction, where the meaning of a term is

*Speaker.



fully characterized by the set of its types. As the subsequent developments have shown, relevant
properties of pure A-terms can be characterized via their types in BCD and related type systems,
like weak and strong normalizability, as well as reducing to head normal form. The aim of our
study is to achieve similar results in the case of computational A-calculi, which seems non-trivial
given the intrinsic complexity of calculi with effects, and the severe limitations introduced in
[3], for example, especially when using intersection types for typing references and side-effects.
However, key properties of BCD like systems can be recovered in the setting of computational A-
calculi, provided that the type system is constructed on the basis of the denotational semantics
of the calculus, exploiting Abramsky’s idea of domain logic [1]. The process of synthesizing a
type system from semantics is sketched in [5] in the case of A;y,,. Once the type system has
been properly constructed, the characterization of convergence can be obtained via the standard
technique of Tait’s computability.

Results. We see the computational A-calculi and, in particular, A\ as a generalization of
Plotkin’s call-by-value A-calculus [9]. In this perspective, a “value” is an abstraction, and
a term converges if it reduces to a value. In the case of A\,, however, reduction is among
computations only and never produces a value. Adapting the convergence predicate, we say
that a computation M converges to a value V, written M |} V if M reduces to the trivial
computation [V]. Then we show that in the type discipline obtained out the “logical” description
of D~ D — TD a computation M converges if and only if M can be typed by a type 7 which
is a proper subtype of w, hence non-trivial. In the case of the state monad such a result can be
strengthened since a single, non-trivial type is sufficient for the characterization. Such a result,
which is new for calculi with side-effects, encompasses known results about static analysis of
imperative programs, since a convergent computation in A, cannot depend on reading from
uninitialised locations.

References

[1] S. Abramsky. Domain theory in logical form. Ann. Pure Appl. Log., 51(1-2):1-77, 1991.

[2] H. P. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the com-
pleteness of type assignment. J. Symb. Log., 48(4):931-940, 1983.

[3] M. Dezani-Ciancaglini, P. Giannini, and S. Ronchi Della Rocca. Intersection, universally quan-
tified, and reference types. Computer Science Logic, 23rd international Workshop, CSL 2009.
Proceedings, volume 5771 of Lecture Notes in Computer Science, pages 209—224. Springer, 2009.

[4] U. de’Liguoro and R. Treglia. The untyped computational A-calculus and its intersection type
discipline. Theor. Comput. Sci., 846:141-159, 2020.

[6] U.de’Liguoro and R. Treglia. From semantics to types: the case of the imperative lambda-calculus.
Proceedings 37th Conference on MFPS 2021, volume 351 of Electronic Proceedings in Theoretical
Computer Science, pages 168—183. Open Publishing Association, 2021.

[6] U. de’Liguoro and R. Treglia. Intersection types for a A-calculus with global store. PPDP 2021:
23rd International Symposium on Principles and Practice of Declarative Programming 2021, pages
5:1-5:11. ACM, 2021.

[7] C. Faggian, G. Guerrieri, U. de’Liguoro, and R. Treglia. On reduction and normalization in the
computational core. CoRR, abs/2104.10267, 2021.

[8] E. Moggi. Notions of computation and monads. Inf. Comput., 93(1):55-92, 1991.

[9] G.D. Plotkin. A structural approach to operational semantics. J. Log. Algebraic Methods Program.,
60-61:17-139, 2004.

[10] J. Power. Generic models for computational effects. Theor. Comput. Sci., 364(2):254-269, 2006.

[11] P. Wadler. Monads for functional programming. In Adv. Fun. Prog., First International Spring
School on Adv. Fun. Prog. Tech., volume 925 of Lecture Notes in Computer Science, pages 24—52.
Springer, 1995.



