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Background. The development of (deterministic) computational models has considerably
benefitted from the discovery of interactions between logic and theoretical computer science.
For example, quantified Boolean logic was shown to provide a characterization of the full poly-
nomial hierarchy [9, 10], while the correspondence between simply-typed λ-calculi and logical
proof systems was revealed by the so-called Curry-Howard correspondence [12]. Surprisingly,
probabilistic computation – which is nowadays pervasive in almost every area of computer
science and technology – has not been touched in the same way by such fruitful interchanges.

Recently, first achievements in this direction have been presented by some of the authors.
In particular, in [3, 2, 1], inherently quantitative logics are introduced and their relations with
specific aspects of probabilistic computation are investigated. Intuitively, the fundamental
ingredient of this approach consists in extending standard logical systems with a new class
of measure-quantified expressions in the form CqA (and DqA), basically expressing that the
argument formula A is true in a portion of its possible interpretations having at least (or at
most) measure q ∈ Q[0,1]. Specifically, in [3], it is defined a first-order language, extending
that of standard Peano Arithmetic (PA, for short) via so-called measure-quantifiers, and the
formulas of which are interpreted as measurable sets. Starting from these ideas, our goal is
to define a novel randomized bounded theory, to provide a logical characterization of some
probabilistic complexity classes.

Characterizing Probabilistic Classes. One of the original motivations for the development
of bounded arithmetics was their connection with computational complexity [4]. Informally, a
first-order theory of arithmetic T is said to define a numerical function f when there is a formula
F such that: (i) T ` (∀x)(∃y!)F (x, y), and (ii) for every x, F

(
x, f(x)

)
. In particular, condition

(ii) implies the existence of a proof in T providing an algorithm to compute f . Of course, not all
computable functions are effectively computable, and concretely it is often desirable to restrict
analysis to feasibly computable functions, that is to polynomial-time computable ones. To do so,
Buss introduced some formal theories, called bounded arithmetics, which are fragments of PA
including function symbols with specific growth-rate and new, bounded quantifiers. These allow
Buss to characterize complexity classes in terms of families of arithmetical formulas. Specifically,
he proved that the set of polynomial-time computable function is logically characterized by
formulas which are Σb

1-definable in the corresponding bounded theory S1
2 .

This fact is very insightful but, again, no similar result exists when switching to the prob-
abilistic framework. So, the following (open) question naturally arises: Is it possible to obtain
an analogous characterizations for probabilistic classes? The contribution of our work consists
precisely in giving a positive answer to this query. In particular, our core idea is that of general-
izing the standard conditions for definability of functions in a theory to the quantitative setting
using a language inspired by the one presented in [3]. Concretely, the first step in our argument



consists in relating bounded formulas with some effective model for probabilistic computation.
To this aim, we introduce three new classes of functions and prove them equivalent:
1. The class of polynomial-time oracle recursive functions, called POR, that is a class of

functions from (finite and infinite) strings to strings defined by extending Ferreira’s class
of polynomial-time functions [6] (which is basically the word version of the corresponding
class by Cobham [5]) with a query function accessing an oracle from the Cantor space [3].

2. The class of functions which are Σb
1-representable in RS1

2 , where RS1
2 is our randomized

bounded theory. This theory is expressed in a new “probabilistic word language”, i.e. a
first-order word language with equality by [7], augmented by the “probabilistic” predicate
FLIP(·), providing an i.i.d. sequence of bits [3].

3. The class of SFP-functions, that is the class of functions computable by polynomial-time
stream machines, i.e. Turing machines with k+1-tape, one of which is treated as a read-only
oracle tape. These machines differ from standard probabilistic Turing machines [11, 8], as
their access to randomness is close to that of POR’s query functions.

Our main result consists in proving that the class of functions which are Σb
1-representable

in RS1
2 is precisely the class of polynomial-time computable ones which, in turn, coincides

with the class of SFP-functions. Then, starting from this equivalence, it becomes possible to
characterize probabilistic classes by means of formulas of the bounded theory RS1

2 together
with counting quantifiers, defined as in [3]. For instance, functions corresponding to problems
in BPP, could be logically characterized by replacing usual condition (ii) with one concerning
a counting-quantified formula, e.g. C2/3F (x, f(x)).

Theory RS1
2 Class POR SFP-Functions
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