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Partial applicative structures (PAS) are very elementary mathematical entities. They just
consist of a non-empty set R on which a partial binary operation · : R×R ⇀ R is defined. Such
a structure R = (R, ·) can be seen at least from three different points of view. First, it can be
seen simply as an algebraic structure which is a generalization of the algebraic structure called
magma (in fact it is its “partial” version). We will call this point of view algebraic. Second, such
a structure can also be thought of as carrying an abstract notion of computability; indeed, every
element r of R represents (by currying) a partial unary function {r} : R ⇀ R which can be
thought asR-computable. We will call this point of view computational. Third, one can consider
the elements of R as “realizers” and the subsets of R can be seen as “propositions” which are
“realized” by their elements. This point of view gets richer when one allows propositions to
depend on arbitrary elements of a set, that is if one considers the sets P(R)I where I is a set,
and when an adequate notion of “entailment” between “dependent propositions” is introduced,
that is φ ⊢I ψ if and only if⋂

i∈I

{r ∈ R| ∀a ∈ φ(i) (r · a ↓ ∧ r · a ∈ ψ(i))} ≠ ∅

The idea behind this definition is that φ entails ψ if there is a uniform effective way to transform
realizers of φ into realizers of ψ. We could call this point of view logical. From this logical
perspective, every partial applicative structure gives rise to an indexed binary relation πR, that
is a contravariant functor from the category of sets to the category of sets endowed with binary
relations and maps preserving them.

Among the examples of partial applicative structures one subfamily is very well studied,
namely the family of partial combinatory algebras (PCA), see e.g. [3]. They are partial applica-
tive structures R for which there exist k, s ∈ R such that

1. k · a · b = a for every a, b ∈ R;

2. s · a · b ↓ for every a, b ∈ R;

3. s · a · b · c ≃ a · c · (b · c) for every a, b, c ∈ R.

In such a case, πR is a very nice functor, since it is in fact a tripos, that is it is a con-
travariant functor from the category of sets to the category of Heyting prealgebras such that
each reindexing map has left and right adjoints satisfying the so-called Beck-Chevalley con-
dition and, moreover, it has a so-called generic element. These properties allow interpreting
first-order typed logic in πR and to construct a topos, called realizability topos, by applying
the so-called tripos-to-topos construction ([1]) to πR.

In the general case of a PAS obviously one does not have all these good properties. This is
why it is interesting to look for conditions on R making πR satisfy specific parts of these good
properties, or to investigate properties which do not hold, if not in the trivial case, in the PCA
case, but which could still be obtained when the much more general case of a PAS is considered.



In this talk we consider one of these properties, namely we study those PASs giving rise
to indexed posets. We will call this PASs posetal. Reflexivity and transitivity in each fiber
of πR can be easily characterized in terms of the operation ·, or better from a computational
point of view. Reflexivity just amounts to the identity function idR to be R-computable, while
transitivity amounts to ask that if f and g are R-computable partial functions, then there
exists an R-computable function h such that g ◦ f ⊆ h. The antisymmetry of fibers cannot
be as simply characterized in terms of R-computable functions. One can easily notice that
it is equivalent to ask the fiber over a singleton to be antisymmetric. However, to provide a
meaningful characterization in terms of the operation ·, one needs to introduce two properties:

(1W) for every r, s, a, b ∈ R, if r · a = b and s · b = a, then a = b;

(TL) for every r, x ∈ R, {r}(x) = x or there exists n ∈ N+ such that {r}n(x) ̸↓.
We will show that R is posetal if and only if each fiber of πR is reflexive and transitive and
1W and TL hold.

Although 1W∧TL is equivalent to the antisymmetry of fibers (Ant), in presence of reflex-
ivity and transitivity, if we discard these assumptions the equivalence is no longer valid; indeed
in the general case no direction of the implication holds. However one can show that in the
general case Ant implies 1W and a weaker for of TL.

Once one has characterized posetal PASs, it is natural to ask what is the status of stan-
dard computational and algebraic properties in the posetal case. Some of them, like the R-
computability of constant functions, are simply incompatible with the posetal case, or better
they hold only in the trivial case. Some hold in any posetal PAS. Other standard properties
are related as represented in the following diagram in the posetal case
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where Ab and Assoc are abelianity and associativity of ·, IDR is the existence of a right iden-
tity, Ext is extensionality ({r} = {s} implies r = s), Comp is the closure under composition
of the set of partial functions represented in R, while Total and Finite are simply the requests
that · is total and R is finite, respectively. Adequate examples show that all these implications
are strict.

We will also consider a particular class of posetal PASs which are generated by a partial
function satisfying the property of {r} in TL and present the relation between the properties
above by restricting to this case.

This presentation is based mainly on [2].
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