Set Theory and subalgebras of the Calkin algebra

Andrea Vaccaro*

1 Place Aurélie Nemours, Paris, 75013, France vaccaro@imj-prg.fr

In this talk I will discuss the class \mathbb{E} of C^* -algebras that embed into the Calkin algebra $\mathcal{Q}(H)$, and how different set-theoretic axioms influence the nature and properties of such class. By the main result of [1], under the continuum hypothesis the class \mathbb{E} has a clear description: a C^* belongs to \mathbb{E} if and only if its density character is at most 2^{\aleph_0} , the density character of $\mathcal{Q}(H)$. During this talk I will give an overview of what is known about \mathbb{E} in models of ZFC where the continuum hypothesis fails. More specifically, I will discuss a result from [2], where we prove that the sentence 'Every C^* -algebra of density character less than 2^{\aleph_0} embeds into $\mathcal{Q}(H)$ ' is independent from ZFC + $2^{\aleph_0} \geq \aleph_{\alpha}$, for every $\alpha > 2$, and that such statement is implied by Martin's axiom. Finally, I will expose some of the contents of [3], where I prove that, consistently with ZFC, the class \mathbb{E} is not closed under various classical C^* -algebraic operations, such as countable inductive limits and tensor products.

References

- I. Farah and I. Hirshberg and A. Vignati, The Calkin algebra is ℵ₁-universal, Israel Journal of Mathematics 237 (2020), no. 1, 287–309.
- [2] I. Farah and G. Katsimpas and A. Vaccaro, *Embedding C*-algebras into the Calkin algebra*, International Mathematics Research Notices 2021 (2019), no. 11, 8188–8224.
- [3] A. Vaccaro, Trivial Endomorphisms of the Calkin algebra, Israel Journal of Mathematics 247 (2021), 873-903.

*Speaker.		