
UNIVERSITÀ DI PISA
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Abstract

Owing to the research program of Artificial Intelligence, in the last decades

a big effort has been undertaken in order to develop interesting models of hu-

man reasoning by means of logical tools, receiving contributions from various

fields, as Philosophy, Mathematics and Computer Science. One of the main

problems has been the characterization of defeasible inference, i.e. that kind

of inference, modeling common-sense reasoning, in which an agent draws ten-

tative conclusions, using as supplementary information what he maintains as

holding in most normal situations. Such conclusions are open to revision in

case more complete information about the actual situation becomes available

to the agent.

This thesis focusses on defeasible logics (or nonmonotonic logics). In partic-

ular we analyze the connection between two of the main approaches to the

formalization of defeasible reasoning: the default-assumption and the prefer-

ential formalizations. On the basis of such connection we can have a deeper

understanding of both approaches, and use the tools provided by each ap-

proach to work in the other one.

In the first two chapters the thesis presents the main problems and the main

formal approaches to the development of logical models for defeasible reason-

ing. We briefly present the main proposals in the field of nonmonotonic logics

and delineate the consequentialist view to the study of defeasible reasoning,

i.e. an approach focused on the analysis of the behaviour of the inference

relations generated by the different types of logical systems. In particular,

following the recent literature, we delineate three main views, the default-

assumption, preferential and default-rule approaches, distinguished by the

kind of formalization used to represent default information (i.e. information

about what normally holds).

In the third chapter we show that there is a correspondence between the

basic formulations of the three different approaches, in particular stressing a
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strong connection between the preferential and the default-assumption ones,

the former referring to a preference order defined over the set of the semantic

valuations of the language, the latter using a set of formulae as background

information, to be added to actual information as extra-premises. We shall

refer to such a connection all along the thesis.

The fourth chapter is dedicated to a brief presentation of the main results

in the study of defeasible reasoning from a consequentialist point of view,

presenting the main representation theorems, relating the satisfaction of de-

sirable properties of the inference relations to particular classes of preferential

models.

In the fifth chapter we isolate an interesting class of inference relations,

weakly rational inference relations, that we shall use in the following chap-

ters, and prove a representation theorem connecting such inference relations

to the class of optimal preferential models.

The content of the sixth chapter is directly connected to the correspondence

between the default-assumption and the preferential approach: we show how

it is possible to use the default-assumption approach in order to build inter-

esting preferential models, defining well-behaved inference relations.

In the seventh chapter we use the correspondence between default-assumption

and preferential approaches in order to define in a precise way the behaviour

of default formulae, by means of a normality operator. In the end of the

chapter we present a generalization of a model of stereotypical reasoning

proposed by Lehmann.

In the last chapter we move into the field of belief revision, defining a possible

approach to the revision of default information, referring as a starting point

to the main results of the AGM approach, one of the cornerstones in the field.
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Chapter 1

Introduction

Abstact. We briefly depict the theoretical framework in which the problem

of defeasible reasoning has arisen.

1.1 Logic and reasoning.

Philosophy has always dedicated many efforts in the characterization of

thought and mental activities in general. In particular, one of the main

targets of this investigation has been the individuation of the properties of

arguments, i.e. the move from initial information (premises) to a new piece

of information (conclusion). Historically, philosophers have been interested

in identifying the correct way of thinking, i.e. which constraints have to be

respected in order to be justified in moving from an assertion to another.

Aristotle, establishing logic as an autonomous discipline, depicted it as the

study of the elements and the structures of reasoning, identifying how we

can denote an argument as a correct one; his theory of syllogisms has been

configured as the study of the correct argument schemes, delineating when

we are justified in claiming the truth of the conclusion on the basis of the

truth of the premises.

The theory of syllogisms was presented as a general theory of inference, and

11



the syllogism as a valid inference scheme of the form:

If α and β, then γ

where α, β and γ are a particular kind of propositions, corresponding to a

fragment of monadic predicate logic.

So, from its beginnings, the interest of logic has been centered on the char-

acterization of the correct forms of reasoning by means of an analysis of the

‘If. . . , then. . . ’ patterns, independently of the particular dominion of the

discourse. This position toward the role of logic has continued after Aristo-

tle and all along the medieval period, and the characterization of the valid

derivations, by means of the clarification of the relation between premises

and conclusions, has always been one of the tasks qualifying the logical en-

deavour.

Between the XIX and XX centuries, logic has been re-established, both by

means of a strong formalization effort and with a rethinking of the aims

of the discipline, delineating the research interests and the formal tools we

know and use today. From this period we have received the exact defini-

tion of logic’s foundational concepts, as formal languages, axiomatization

and derivation rules, coherence, semantics, consequence relations, and so on.

However, we have to keep in mind that this re-definition of logic has been car-

ried forward within a research program that is distinct from the aristotelian

one. Frege’s main interest was to investigate the possibility of a foundation

of arithmetic by means of logic; also after the failure of such a program, the

main achievements in logic have sprung investigating the relations between

logic and mathematics. So, the interests generating modern logic have been

different from Aristotle’s ones, and the development of a theory of generic

argumentation and reasoning has not played a real role in the formulation of

classical logic (referring by “classical” to propositional and first-order logic).

Nevertheless, in the second half of the past century we have seen a recovery of

the research program pointing toward the investigation of human reasoning

and arguments by means of logical formalisms. In philosophical logic, the

development of modal logic probably represents a main turning point, since
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it unfolded the possibility to modify mathematical logic in order to formalize

and investigate extra-mathematical notions: the foundational work of Hin-

tikka [22], aimed at the formalization of the notions of knowledge and belief

by means of specific modal operators, combined with the subsequent work of

Kripke [26], that has defined a complete semantical characterization to the

main modal systems, has allowed the growth of modal formalisms apt to the

description of intensional states, formalisms which have become popular and

powerful tools.

Still, the main pressures towards a recovery of the original program, pointing

to a characterization of human reasoning by means of formal logic, came in

the fifties from the field of Artificial Intelligence (AI).

1.2 AI and logic.

The traditional picture, describing classical logic as a successful theory reg-

ulating reasoning and argument in general, has been put under pressure

especially by the problems placed by Artificial Intelligence (AI).

AI’s research program is aimed at the development of computational mod-

els of intelligent behavior, i.e. programs able to solve problems typically

deemed as faceable only by humans. In the evolution of the discipline, it

became manifest that one of the priorities was the correct formalization of

intensional notions (as beliefs, desires, etc.), that is, the correct form of rep-

resentation of knowledge and reasoning.

Classical logic was introduced as the most obvious candidate for this task,

and the use of logical formalisms allowed the development of expert systems,

one of the first successes of AI. This kind of programs is based on an explicit,

logical formalization of knowledge (see [40]), on which the agent operates by

means of logical rules.

Expert systems have probably been the major success in the first stage of

the AI endeavour, characterized by the use of formalisms directly reducible

to classical logic.
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However, by the eighties, a theoretical debate about what we have to define

as an intelligent task changed the priorities of the research agenda, stressing

the necessity of moving from problems of an “argumentative”, “theoretical”

kind, such as chess-playing and theorem proving, to more “practical” prob-

lems, centered on the interaction between agents and their environment. This

move has given priority to the investigation of notions linked directly to the

interaction with the environment, such as “action” and “deliberation”, in

spite of the study of more abstract and theoretical dominions.

This drove toward a disqualification of the standard picture, which saw math-

ematical logic as a valid theory of reasoning and arguing.

In general, we could say that logic, historically, has been interested in the

formalization of the correct kinds of argument in three main dominions:

◦ Mathematics.

◦ Philosophical/scientific argumentations.

◦ Common-sense reasoning.

AI is mainly interested in the production of models aimed at the investi-

gation of the third point, while classical logic is a tool developed in order to

investigate the first kind of argumentation.

Formalisms based on classical logic resulted in not being suitable for model-

ing everyday situations for various reasons. First of all, logical formalizations

need all relevant information to be explicitly present in the knowledge base,

while many forms of intelligent behavior often make use of common-sense

implicit knowledge. Moreover, computational costs of logical reasoning are

not usually apt to model real-time deliberation in complex environments. Fi-

nally, by means of classical logic we can model agent-environment interaction

only with respect to a strict class of situations: every minimal departure from

what the designer has contemplated can disqualify an agent’s performance.

In general, the strict idealizations made by classical logic have turned out to

be unsuitable for the development of interesting AI models.

14



To overcome such problems, AI researchers found themselves in front of a

crossroad: they could give up the symbolic approach, or they could look for

new logical formalizations of reasoning.

Many of them have preferred to recede from the use of logical formalisms,

moving towards characterizations of cognition as a sub-symbolic enterprise.

Other researchers have maintained a symbolic approach to cognition, being

conscious of the exigency to move from classical logic and to develop new

formalisms appropriate to the management of the new problems.

We don’t want to enter into such a debate: both the approaches, the sym-

bolic one and the subsymbolic one (considered in its different versions, from

Connectionism to Behaviour Based Robotics), have merits and demerits, and

neither of them has arrived at a dead-end. Probably, each of them is still

going to give great contributions to the development of naturalistic models

of cognition, and there are possibilities of fruitful interplays between them.

However, we would like to stress that a total abandonment of the symbolic

approach seems impractical. It is possible, perhaps probable, that in the

future we will conclude that a symbolic approach to cognition is unrealistic,

that deliberation, and reasoning and behaviour in general, are sublinguis-

tic tasks and can be successfully modeled only by means of nonsymbolic

tools. However, such an outcome would not mine the role of the symbolic

approach in the interpretation of such systems: in everyday life, the only way

we have to interpret the cognitive behaviour of other agents is by means of

common-sense psychological notions, articulated in symbolic argumentation

structures. Such an approach is the standard way we interpret not only other

agents, but also our own behaviour.

Hence, if one of the main aims of AI is to model the interplay between agents

and their environments, the role of a symbolic theory of reasoning seems

necessary, since both introspection and the interpretation of other agents’

behaviour by means of symbolic models seem to play a fundamental role in

our reasoning paths.
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The revision of the research priorities, focusing on the analysis of the in-

terplay between agents and complex environments, has stressed the need for

a revision of the desiderata of the logical formalisms. The new theoretical

issues have introduced a characterization of cognition and rationality dis-

missed from the strongly idealizations characterizing the first period of AI,

aimed at the identification of optimal deliberation patterns, and have taken

under consideration the uncertainty and the scarcity of resources, inevitably

associated with real situations.

The endeavour of modeling a rational agent points now to the definition of a

proficient ‘management’ of the scarcity of cognitive resources, aiming at the

delineation of rationality bounds of both logical and economical nature.

Agent’s scarcity of cognitive resources can be distinguished into three types:

◦ Information: the amount of information the agent has at its disposal

about the environment and its own status.

◦ Time: the amount of time the agent has at its disposal in order to

undertake a deliberation.

◦ Computational power: the computational bounds of agent’s reasoning

capabilities.

We can consider such resources as parameters: varying them we can define

different characterizations of rationality. On one hand, we have the strongly

ideal characterization, which refers to ‘super-natural’ agents with unbounded

resources (complete information, no time and computational limits, and con-

sequently the possibility of an optimal behavior) and which is useful in the

development of theoretical models, aimed at the explication of ideal con-

straints an agent should respect. On the other hand, we have a bounded

characterization: the agent’s behavior is fruitful (referring to its own tasks)

with respect to its knowledge (typically a partial one), its time resources

(probably the agent is obliged to undertake a decision as soon as possible)
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and its reasoning capabilities. We have to refer to this last kind of ratio-

nality in the characterization and valuation of real computational models of

cognitive functions.

Such limits are extraneous to classical logic, and imposing them influences

directly the kind of formalisms we are looking for. We need to abandon a

dogmatic clutch towards classical logic, and instead swing toward new for-

malisms apt to the characterization of bounded reasoning processes. The

new problems logicians have to face are questions of epistemic and temporal

kinds that the idealizations of classical logics are not apt to manage. Some

of the most notorious problems are:

◦ Frame problem: every external event perturbs the state of the envi-

ronment. Using classical formalisms, in order to be aware of the new

environmental state, we should declare exactly which external proper-

ties are changed by the occurred event and which are not.

◦ Temporal problems: given dynamic environments, or many agents that

are interacting, we need formalizations appropriate for modeling the

evolution in time of the states of both agents and environments.

◦ Lack of information: the agent could have only partial information

about its environment, and nonetheless it should be able to deliberate

the same.

◦ Inconsistent beliefs: acquiring information from the environment and

from other agents, an agent’s database could result in inconsistent infor-

mation. We have to implement means apt to manage such inconsistent

information.

◦ Goal-orientation, deliberation and planning: we have to define the

different epistemic attitudes an agent could have toward information

with respect to the functional role every such piece of information

17



plays in the agent’s reasoning processes (beliefs, goals, intentions, du-

ties. . . ), and how such different kinds of information interact, defining

the agent’s deliberation processes.

◦ Interaction between agents: if we want more agents to interact in the

same environment, we have to develop models apt to the formalization

of the epistemic states of multiple agents.

◦ Vagueness and ambiguity: classical logic is not appropriate for the

treatment of vague or ambiguous concepts, and typically it produces

paradoxes. Notwithstanding, such kinds of concepts are strongly present

in our everyday life, and we need appropriate formalisms to handle

them.

On the theoretical level, the above problems have been mainly fronted

referring to the philosophy of mind (e.g., [10, 7] about deliberation, or [33]

about belief revision) or to classical economic models (game theory, maxi-

mization of utility. . . ). Contrariwise, fields such as psychology or biology are

not usually taken under consideration as inspirations for the development of

logical models.

1.3 Normative vs. descriptive approach

These new problems have determined a turn in the priorities of logical re-

search, a practical turn, as Gabbay and Woods have recently designated it

([16]), which has determined a turn also in the role of logical models. First of

all, there is a visible tension between a normative and a descriptive value of

such models. However, we think we have to distinguish between two senses

of normative.

We have a very strong sense of normativity, seen as a form of idealization.

In this sense we abstract from the limits imposed by the perspective that

our agent is a real one immersed in a real environment, and consequently
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we abstract from the limitations imposed on the cognitive resources (infor-

mation, time, computational power) of a real agent. In this sense, classical

logic is a perfect model of deduction, but, as we have seen, such a level of

idealization is too strong to provide useful models of rationality. However, it

is still an efficient ideal system, to which we have to refer in the development

of less idealized models. In general, the appeals to ideal notions such as log-

ical consistency or inferential correctness (from the point of view of logic),

or maximization of utility (on the economical side) have such an intuitive

charm, that, notwithstanding their direct inapplicability in real situations, it

is not conceivable not to refer to them as ultimate points of reference.

On a lower level we could define a weaker sense of a normative model, in-

tending it as prescriptive. In such a sense, our formal systems consider the

cognitive limits of the agent, and aim at the definition of the correct be-

haviour, given agent’s resources. Here we abstract from a real agent, in the

sense of not considering the fact that real agents often behave in wrong ways.

The more our models point toward the description of the behaviour of a real,

actual agent, the more they can be considered as descriptive ones.

Of course, these three notions are vague, with no clear boundaries, and the

nature of a particular model will be a problem of degree, also with respect

to our research interests (and every model, in its being a model, will always

have a certain degree of idealization).

Both AI and epistemology, in general, have been interested both in prescrip-

tive and descriptive models, but logicians have always been more centered on

the prescriptive dimension, given the origins and the nature of the discipline.

A prescriptive model has to manage in an efficient manner the problems

listed at the end of the preceding paragraph. All such problems have been

faced by logicians. An optimal logical system for agent-modeling should be

able to manage all these dimensions of bounded rationality; obviously, we

cannot point directly to the development of such a system. The general atti-

tude has been towards a modular approach, facing each problem individually,

defining the desiderata with respect to each one and proposing formalizations
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appropriate to the satisfaction of such desiderata. The coordination of the

various problems by means of their integration into further logical systems is

a matter to be faced later. So logic is moving, step by step, from the extreme

idealizations of classical logic towards the realization of prescriptive models

for real rational agents.

The various problems seen above have been addressed by means of new log-

ical proposals as:

◦ Temporal logics and dynamic logics.

◦ Defeasible logics.

◦ Belief-revision theory and paraconsistent logics.

◦ Agent-oriented logics.

◦ Multi-agent logics.

◦ Nonomniscient epistemic logics.

Each of these kind of systems moves from classical logic, the maximally

idealized reference point, modifying it in order to obtain logical systems apt

to the formalization of the particular problems under exam.

1.4 What are we going to talk about?

We are going to concentrate on the formalisms developed for dealing with

lack of information, i.e. defeasible reasoning (or nonmonotonic reasoning).

In particular, we are going to investigate some interesting properties deriv-

able from the correspondences between the preferential approach and the

default-assumption approach. These two systems, which will be presented

in the following chapter, are two cornerstones in the study of defeasible rea-

soning. On one hand, the default-assumption approach can be considered as

a very simple but expressive and powerful tool, appropriate also for model-

ing abductive processes (see [45]) and learning behaviours (see [9]), without
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considering the strict relation with classical models of belief-revision (see

[1]). On the other hand, the preferential approach has been the most fruit-

ful formalization in order to delineate from a logical point of view the core

structural desiderata for a satisfying characterization of defeasible reasoning.

By means of a strict correspondence between the two approaches, we will

deepen the analysis of the behaviour of both of them.

In chapter 2 there is a brief presentation of the main systems proposed in the

field: default-assumption, default-rule and preferential systems. We will also

introduce the theoretical approach we will assume, centered on the notion of

logical consequence.

In chapter 3, we shall investigate the correspondences between the different

systems presented in Chapter 2, focusing in particular on the strict relations

between the default-assumption approach and the preferential one.

In chapter 4, we shall present Kraus, Lehmann and Magidor’s preferential

system, a cornerstone in the study of defeasible reasoning, and the main sys-

tems obtained on the basis of their results.

Chapter 5 will be dedicated to the analysis of the condition of weak rational-

ity for defeasible inference relations.

In chapter 6, we shall see how some systems presented in chapter 4 can be

analyzed by means of the Default-assumption approach, in particular how

the construction of their semantical models can be simplified.

In chapter 7, we shall use the correspondence between the preferential ap-

proach and the default-assumption approach, presented in chapter 3, to

deepen the behaviour of default-assumption consequence relations, in par-

ticular how such an approach characterizes normality.

Finally, in chapter 8, we shall briefly present the main points of the classical

belief-revision theory ,and we shall develop a theory of default revision in the

default-assumption approach.
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1.5 Basic notation.

We are going to work with classical propositional languages, since it suffices

for the instantiation of the main problems of the field. In particular, we are

going to use propositional languages built from a finite set of propositional

letters, i.e. logically finite languages.

Contrary to the classical approach of mathematical logics, the use of finite

languages does not need to be seen as a limit: since the final aim of the field

is to model the reasoning capabilities of real agents, which obviously have a

finite vocabulary, the results obtained with logically finite languages are fully

relevant. So, P = {p1, . . . , pn} will be a finite set of propositional letters, and

` is the propositional language generated from P in the usual, recursive way

by means of the classical truth-functional connectives (∧,∨,¬,→).

The sentences of ` will be denoted by lowercase Greek letters α, β, γ, . . ., and

subsets of ` will be denoted by capital Roman letters A,B, C, . . ..

We will denote by means of ², `, |∼ (Cl, Cn, C) different kinds of conse-

quence relations (operations). In particular, we will denote by ² the classical

consequence relation, by ` a generic monotonic consequence relation, and by

|∼ a defeasible inference relation (see the next chapters for elucidations).

An element of a consequence relation A |∼ β will be in general called a se-

quent. We assume that the set of premises A is a finite set of propositions.

On the semantical side, we shall use kripkian possible-worlds models. We are

going to deal with sets of classical propositional valuations W = {w, v, . . .},
that we will call worlds, and sets of states S = {s, r, t, . . .}.
As usual, the symbol ² will be used also as a satisfaction relation between

valuations and formulae: w ² α is to be read as ‘The valuation w satisfies

the formula α’.

Given a set of formulae A ⊆ ` and a set of valuations W , we shall write [A]W

for indicating the set of the valuations in W satisfying all sentences in A:

[A]W = {w ∈ W | w ² φ for every φ ∈ A}.
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Finally, given a set of sentences A, we will denote by Aw the subset of A

which is satisfied by the valuation w, that is to say, Aw = {φ ∈ A | w ² φ}.

1.6 Main results.

We now briefly list the main results presented here. Two results, specifically

Theorems 3.1.4 and 6.2.22, have been proven independently, finding only

later that analogous results had already been presented by Freund in [12].

In Chapter 3 we prove the correspondence between the basic formulations

of default-assumption and preferential inference relations.

Theorem 3.1.4. Let ` be a logically finite propositional lan-

guage. Given an arbitrary default-assumption consequence rela-

tion |∼∆ defined over `, we can define a preference consequence

relation |∼δ∆ s.t. A |∼∆ φ iff A |∼δ∆ φ, and, conversely, given

an arbitrary preference consequence relation |∼δ defined over `,

we can define a default-assumption consequence relation |∼∆δ s.t.

A |∼∆δ φ iff A |∼δ φ.

Such a result proves a strong connection between two of the main fami-

lies of nonmonotonic inference relations, and will be used all along the thesis.

In Chapter 5 there is a representation theorem for the class of weakly

rational inference relations.

Theorem 5.1.20. [Representation Theorem for Weakly Ra-

tional Inference Relations] A consequence relation is a weakly ra-

tional inference relation iff it is defined by some optimal model.

In Chapter 6 we define two interesting semantical constructions, W-

closure and R-closure, which are based on the default-assumption approach,

and we prove the correspondence between R-closure and Lehmann and Magi-

dor’s rational closure (see [31]).
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Theorem 6.2.22. The preferential model M = 〈UB, δ∆RB〉 is

a canonical model of the rational closure R(B) defined in [31]

In Chapter 7 we introduce an operator B which results appropriate for

describing the behaviour of default formulae. We also define a semantical

notion of distance in order to define a model of stereotypical reasoning, and

we prove that the model we propose defines cumulative inference relations.

Theorem 7.2.6. Given a set of stereotypes S and a notion

of distance satisfying (d1)-(d3’), the consequence relation |∼S is

cumulative.

Finally, in Chapter 8 we propose some functions appropriate for the re-

vision of sets of defaults.
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Chapter 2

Defeasible reasoning. Main

approaches and desiderata.

Abstract. We briefly present the main proposals in the field of nonmonotonic

logics and delineate the consequentialist approach to the study of defeasible

reasoning.

2.1 What is defeasible reasoning?

As we have seen, there are new directions in logic aiming at a formal char-

acterization of reasoning of a real agent placed in its environment. This

change in the dominion of analysis is coupled with different demands and

desiderata from the ones of classical logic. The study of defeasible reason-

ing is connected to the representation of an agent that, in the absence of

sufficient information, has of necessity to presume what’s happening in its

own environment. In particular, we can think of an agent that has to take

a decision quickly, with insufficient information at its disposal about what is

actually happening or what it is going to happen. We assume that the agent

is supplied with an amount of background knowledge, expressing facts nor-

mally holding in its environment. By means of such information, the agent

completes its knowledge base in order to derive what is presumably holding.
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For example, if our agent sees that the ground in front of him is wet, and it is

known that typically wet pavements are slippery, it will deliberate to proceed

cautiously on the basis of this background information. In such a case the

agent has to display flexible reasoning capabilities, referring by ‘flexible’ to

the ability to draw conclusions on the ground of ‘poor’ epistemic situations,

and, if necessary, to ‘re-adapt’ such conclusions when confronted with new

evidence.

Our agent must be capable of deriving plausible conclusions about the exact

situation of its own environment, and to behave properly on the grounds of

such presumptions.

Until now, this problem has been undertaken by means of a single type of

approach: the agent completes its partial information by means of an implicit

reservoir of background information. This background information, which is

formalized by various means (formulae, rules, particular semantic formaliza-

tions...), is interpreted as indicating what the agent maintains as normally

holding.

The core mechanism for the formalization of this kind of reasoning is the

same for all the main approaches to defeasible reasoning: we add to what

the agent knows the portion of background knowledge compatible with it,

and then the agent treats this completed information in a classical way.

The way we formalize background information, and how we determine the

compatibility of default information with what we know, are the main dis-

criminants used to distinguish between the various approaches to the formal-

ization of defeasible reasoning.

So, the term ‘defeasible’ in our characterization of common sense reasoning

has an obvious reason: if we utilize information holding only presumptively,

deeper investigations can later reveal that pieces of such information are false;

such epistemic change would also falsify every conclusion drawn on the basis

of such premises. In the example above, the agent could discover that the

pavement it is proceeding on is very rough, and so it is not slippery. The

negation of the agent’s presumptions defeats also the conclusions and the
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decisions based on it.

Aside from providing a logical basis appropriate to the formalization of de-

liberation, more generally we can use defeasible reasoning to deal with every

dominion characterized by rules which admit exceptions. For example, let

us take the most “popular” case of defeasible reasoning used in the liter-

ature: we know that Tweety is a bird, and that normally birds fly; so we

can presume that Tweety flies. However, later we are informed that Tweety

is a penguin; obviously, this is an exception to the rule of flying birds, and

we are forced to revise our conclusions about Tweety in the face of the new

evidence, however retaining the general rule that, typically, birds are flying

creatures.

This is not possible in a classical frame. For example, assume we have

a vocabulary P composed by three elementary propositions (P = {b, p, f}),
where b is interpreted as “Tweety is a bird”, p as “Tweety is a penguin” and

f as “Tweety flies”. We could formalize our default information by means of

a set of formulae ∆ = {b → f, p → ¬f, p → b}.
Using a classical formalization, such formulae have to be interpreted as strict

implications, and they enter in conflict with each other. In fact, we obtain

{b → f, p → ¬f, p → b} ² ¬p, negating to Tweety the possibility of being a

penguin; our knowledge tells us that birds fly, and, on the ground of such a

law, it is not conceivable to be a bird and not to fly.

In classical logic, given a set of premises, we deduce conclusions such that

they necessarily inherit truthfulness from the truth of the premises. Such a

position is reflected in the property of monotonicity (see below). This prop-

erty stipulates that every conclusion derived from a set of premises remains

valid also augmenting the initial set of premises by means of new informa-

tion, i.e. every conclusion is not defeasible in front of new information.

As we have seen, reasoning about presumptions is characterized by the flex-

ibility of our reasoning, i.e. the possibility to retract previous conclusions in

front of new information. So, the property of monotonicity is not compatible

with the behaviour we want to model. Hence, on formal grounds, defeasibil-
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ity of conclusions results in logical systems with a nonmonotonic trend.

The use of background information to complete what we really know is a

phenomenon we can observe in most of our everyday reasoning, in a more

or less conscious manner. Reasoning in the face of uncertainty is ubiquitous,

and it is manifest that, practically in every decision, we reason on the ground

of an enormous amount of background, frame information, most of which is

certainly unconscious. We treat such background information as a body of

‘hazardous’ generalizations, not behaving as a classical sequent A ² β. For

the latter to be true, exceptions are not allowed; a necessary tie between

premises and conclusions is stipulated, and the discovery of an exception

forces the negation of the validity of such a rule. On the other hand, the

aim of default information is to model what we maintain as normally hold-

ing, and to use this kind of information to augment our inferential power

in order to deal with our environment in an efficient manner. This kind of

information holds in typical situations, and we don’t want our defaults to be

falsified by the discovery of exceptions; such exceptions have generally to be

perceived as a signal that we are in an exceptional situation, not that our

default information is incorrect.

There are many domains that look at nonmonotonic logic as a powerful

tool. First of all, we have everyday reasoning, where we refer to “everyday”

as the normal interaction between an agent and its environment. If we aim

at developing a cognitive model of such an interaction, there are many func-

tions which seem to need a defeasible management of information, from the

interpretation of sensory information, to the deliberation processes.

However, in general we can refer to defeasible reasoning in every field in

which we reason on the basis of defeasible rules, i.e. rules admitting excep-

tions. Also, disciplines like physics, which refers to its rules as necessary

laws, have to deal with defeasibility, for example as in the management of

ceteris-paribus conditions, i.e. conditions stating something like “law x is

necessarily valid but only if our initial situation satisfies a series of unex-
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pressed (and probably inexpressible in practice) frame conditions, holding in

normal experimental situations”.

Many have addressed nonmonotonic logics as an useless field, referring

to the universal value of classical logic: anything that can be expressed in

any formal language can also be expressed in classical logic. This is surely

possible in principle, but it is totally unpractical in most of the situations. If

we want to translate the use of a defeasible generalization in classical logic,

we should transform it into a necessary generalization, making explicit every

condition invalidating the rule. This is an unmanageable task also for very

simple situations, both for the development of the knowledge base of the

agent, and for its computational tractability.

2.2 Skeptical vs. credulous approaches

Generally, the birth date of nonmonotonic logics is indicated as 1980 when a

special issue of Artificial Intelligence on the subject was published. In that

issue some of the main foundational works have been proposed, such as Mc-

Carthy’s Circumscription [41], Reiter’s Default Logic [50] and McDermott

and Doyle’s Modal Nonmonotonic Logic [42]. From that year on, there has

been a flourishing of publications on the subject, most of which propose new

nonmonotonic systems or modifications of existing systems, in both cases

pointing toward the characterization of logical systems appropriate to the

formalization of particular dominions.

However, it is possible to conceive of a very general and quite informal struc-

ture representing the way these systems generally work.

We assume the epistemic state S of an agent to be characterized by a couple

of elements: S = 〈A, ∆〉, where A is a set of formulae representing the agent’s

beliefs about what is actually holding, while ∆ represents default informa-

tion, i.e. what the agent holds as normally holding that can be formalized in

different possible ways (formulas, rules, semantical models. . . ).
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The agent treats A as ‘hard’ information, surely holding, while ∆ represents

‘soft’ regularities, information about normal situations, which we assume as

true until they are negated by evidence. So, the agent completes its actual

beliefs by adding background information.

The use of ∆ to complete the set of actual beliefs is regulated by a consis-

tency check, i.e. we have to check if the default information we want to use

is logically consistent with the set of premises.

If the set A is consistent with the default information, the agent uses all

its default information to derive its presumptive conclusions. Otherwise, if

the agent’s beliefs are not consistent with the entire background information,

the agent looks for the ‘biggest’ portions of the information formalized by ∆

consistent with A, and derives its conclusions. The agent assumes defaults

as much as possible, until it reaches inconsistency, i.e. the representation of

a situation that is not possible.

This allows to define an extremely general notion of extension E(A), that

is, a set of conclusions generated from A and a set of information contained

in ∆ which is maximally compatible with A, i.e. to which no more default

information can be added without obtaining a contradiction.

It is possible for an epistemic state S = 〈A, ∆〉 to have more than a single

extension.

To make a trivial example, assume that A = {α} and that we have encoded

our default information by means of a set of formulae (see the following sec-

tion); in particular we have ∆ = {α → β, α → ¬β}. We cannot complete the

information in A by adding the entire default set because we would obtain

a contradiction. So we have two possibilities, depending on which default

formula we decide to add to A. Both of these alternatives are possible ex-

tensions of A by means of ∆.

The way we decide to use extensions in deriving defeasible conclusions from

a set of premises is one of the main discriminants between the different pro-

posals. The are two possibilities, positioned at opposite extremes:
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◦ Skeptical/cautious approach: Given a family E of extensions of a set

of premises A, we consider as defeasible consequences of A only the

formulas true in every extension in E.

◦ Credulous/bold approach: Given a family E of extensions of a set of

premises A, we consider as defeasible consequences of A all the formu-

las true in at least one extension in E.

The skeptical approach moves from A to the intersection of its exten-

sions,
⋂

E, while the credulous approach takes to the union,
⋃

E. A third

in-between possibility is the choice approach, that consists in choosing only

a single extension of A.

In general, the credulous approach is not very interesting, especially for logi-

cians, since it often derives contradictory information from a consistent set of

premises. The skeptical approach is surely the most solid from a logical point

of view. Also, the choice approach is interesting, but we need an extralogical

apparatus for the choosing procedure of the extension.

Hence, the skeptical approach, on which we will focus our attention, is the

one most investigated by logicians, and generally its results represent also a

solid base if we want to move into a choice perspective.

2.3 Main proposals

Makinson’s recent work, [39], actually offers a simple but efficacious reorder-

ing of the entire field. Makinson proposes to categorize all the various ap-

proaches to defeasible reasoning under three main families, determined by

the kind of formalization we give to default information with respect to clas-

sical logic: propositions, rules or semantic restrictions.

We propose a brief survey of such approaches, both for a general characteri-
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zation of the field, and in function of the following chapters.

2.3.1 Default-assumption approach

The simplest approach to the formalization of default information is by means

of a set of background formulae. Such formulae are interpreted as informa-

tion about what normally holds, and they work as the implicit assumptions

the agent uses to complete its premises. The original idea is due to Poole

(see [45])1, but other approaches to defeasible reasoning, like the well known

closed-world assumption (see [49]), can be seen as variations of this general

approach.

The idea behind the default-assumption consequence relation is that we have

a set of propositions ∆ which indicate what normally holds (our default-

knowledge). Given another set of propositions A, interpreted as premises

and representing what we know about actual facts, we find which portion

of default-information is consistent with what we actually know and, con-

sidering both default-information and actual information, we derive what

presumably holds.

The interaction between the two kinds of initial information (actual and de-

fault) is determined by the following consistency check.

Definition 2.3.1 (maximally A-consistent sets). Given two sets of formulae,

∆ and A, we say that a set ∆′ is a maximally A-consistent subset of ∆ iff

∆′ is consistent with A and for no ∆′′ s.t. ∆′ ⊂ ∆′′ ⊆ ∆, ∆′′ is consistent

with A.

Given a premise set A and a default set ∆, the maximally A-consistent

subsets of ∆ represent all the default-information which is compatible with

our knowledge. In order to represent the set of every A-maximal consistent

1Actually, Poole’s proposal was aimed to the characterization of abductive reasoning,

but his technique has always been considered also a very interesting approach to defeasible

deduction.
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subsets of ∆, we can use the notion of remainder set, that is used in the field

of belief revision. A remainder set of ∆ modulo α is a maximal subset of ∆

that does not imply α.

Definition 2.3.2. (Remainder Sets).

Let A,B be two sets of formulae. The set A⊥B (‘A less B’) is the set such

that C ∈ A⊥B if and only if:

1. C ⊆ A

2. β /∈ Cn(C) for every β ∈ B

3. There is no set C ′ such that C ⊆ C ′ ⊆ A, and β /∈ Cn(C ′) for every

β ∈ B

Obviously, there is a perfect correspondence between maxiconsistent sets

and remainder sets: given a default assumption set ∆ and a formula α, a set

A is a α-maxiconsistent subset of ∆ iff A ∈ ∆⊥¬α.

So, every set of formulae Cl(A ∪ ∆′), with ∆′ maximally A-consistent, is a

possible extension of A with respect to ∆.

Intuitively, then, we take under consideration such sets in order to determine

what the agent might expect or presume to be true in a situation in which

A holds.

Definition 2.3.3 (Default-assumption consequence relation). β is a default-

assumption consequence of the set of premises A, given a set of default-

assumptions ∆, (written A |∼∆ β) if and only if β is a classical consequence

of the union of A and every maximally A-consistent subset of ∆.

A |∼∆ β iff A ∪∆′ ² β for every maximally A-consistent

∆′ ⊆ ∆

Theoretically, this is a very simple system for the formalization of defea-

sible reasoning, and we will see below that moreover its behaviour satisfies

interesting properties.
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2.3.2 Default-Rule Approach

The idea behind the default-rule approach is to formalize defeasible gener-

alizations (background information) by means of derivation rules. Default

rules are meta-rules whose role is to further complete an underlying incom-

plete informational state.

Definition 2.3.4 (Default Rule). A default rule is a derivation rule of the

form
α : β1, . . . , βm

γ

where:

◦ α is the precondition.

◦ γ is the consequent.

◦ {βi|1 ≤ i ≤ m} is the set of the justifications.

The informal interpretation of the default rule above is that the conse-

quent γ can be derived (the rule can be triggered) if the the precondition α is

believed and the justifications {βi|1 ≤ i ≤ m} are consistent with everything

believed, i.e. there is a successful consistency check between the belief set of

the agent and the justifications. Note that the consistency check is not with

respect to the consequent; since such a possibility would be a more intuitive

consistency requirement, we can isolate a particular class of default rules,

the class of normal rules, in which the consequent and the justification are

identical.

Definition 2.3.5 (Normality). A default rule is normal if it is of the form

α : β

β

The simplest forms of defaults are normal defaults without preconditions,

i.e. rules of the form >:β
β

. The intuitive appeal and the utility of non-normal
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defaults have often been discussed (see e.g. [29]), and we can refer just to

normal defaults in this brief presentation.

The epistemic state of an agent is defined by means of a default theory, that

is formed by a couple of sets: a set of formulae defining the belief set of the

agent, and a set of default rules describing the default information.

Definition 2.3.6 (Default Theory). A default theory is a pair S = 〈A, ∆〉
where:

A is a set of formulae, the ‘factual’ information;

∆ is a set of default rules.

Formally, the set of conclusions which can be added to our knowledge

base is defined in terms of a default extension.

Definition 2.3.7 (Default Extension). Given a default theory S = 〈∆, A〉,
E∆(A) is an extension of A under ∆ iff there is a sequence E0, E1, . . . s.t.:

• E0 = A

• E∆(A) =
⋃{Ei|i ≥ 0}

• for all i ≥ 0, Ei+1 = Cl(Ei) ∪ {β}, with β s.t.

◦ α:β
β

is an instance of a default in ∆

◦ Ei ² α

◦ β is consistent with E∆(A)

As can be seen, in this definition of the construction of an extension

E∆(A), E∆(A) itself is mentioned for the consistency check (last point). So,

the construction is considered as semi-inductive, and it is equivalent to the

following fixed-point construction.
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Theorem 2.3.1. ([50], Theorem 2.1) An extension of a set of formulae A

is the smallest set E∆(A) satisfying

1. A ⊆ E∆(A)

2. Cl(E∆(A)) = E∆(A)

3. if α:β
β

is an instance of a default in ∆, and α ∈ E∆(A), and ¬β /∈
E∆(A), then β ∈ E∆(A).

So, an extension is a set of beliefs which are in some sense ‘reasonable’ in

the light of what is known about the world.

This is the classical definition of extension, typically used in Computer

Science because it has some computational advantages, but it is also possible

to give an equivalent definition of extension in an inductive form (see [8]),

which is surely more intuitive.

First of all we can define an inductive way to construct a default extension of

S = 〈A, ∆〉; this can be done by imposing an ordering over the elements of

the set ∆, which can be interpreted as a possible priority order over the de-

fault rules: it states in which order we have to check if a rule can be triggered.

Definition 2.3.8 (Default Extension - inductive construction). .

• Define a finite or ω-ordering 〈∆〉 of the given set ∆ of rules.

We define E〈∆〉(A) = ∪{An|n < ω}, and set A0 = A.

• We break the definition of An+1 into two cases, invoking a consistency

check.

Case 1. Suppose there is a rule α:β
β
∈ ∆ such that α ∈ An but β /∈ An

and β is consistent with An. Then choose the first such rule and put

An+1 = Cn(An ∪ β).

Case 2. Suppose there is no such rule. Then put An+1 = An.
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Every ordering imposed over the set of rules generates a different exten-

sion E〈∆〉(A).

To obtain the skeptical consequences of a set A, we have to intersect all the

extension of A.

Definition 2.3.9 (Sceptical Default-Rule Consequence relation). .

We define a default-rule consequence operator C∆ by putting

C∆(A) = ∩{E〈∆〉(A)|〈∆〉 is a finite or ω-ordering of ∆}.

In relational notation:

A |∼∆ β iff β ∈ ∩{E〈∆〉(A)}.

The default-rule approach is probably the most popular in the field of

nonmonotonic logics, mainly in the field of Computer Science. However, the

analysis of its behaviour has always been problematic and, as we are going

to see below, it does not satisfy some of the main desiderata for defeasible

logics.

We have to deem as variations of this kind of approach also the classical

modal approaches to nonmonotonic reasoning, as nonmonotonic modal logic

[42] and autoepistemic logic [24], since they use fixed point constructions as

well and, in specific forms, behave exactly in the same way (see e.g. [23]).

2.3.3 Preferential Approach

The last kind of consequence relation on which we are going to focus on is

the family of preferential consequence relations. It is a strictly semantical

approach, built in a possible-worlds frame. Its first formalization was pre-

sented by Shoham in [55] as a generalization of Circumscription, one of the

most popular proposals in nonmonotonic reasoning (see [41]).

Given a set of classical propositional valuations W = {w, v, . . .}, each rep-

resenting a possible situation, we define an order ≺ over it, s.t. w ≺ v is

interpreted as meaning that the situation described by the valuation w has

to be considered preferred to (more normal than) the situation associated to

37



the valuation v.

Hence, our background information is formalized by means of such an order-

ing over the possible situations.

Given a set A of factual information, the agent assumes to find itself in one

of the most normal situations in which the facts in A hold, i.e. in one of the

≺-minimal situations in [A]W (the subset of W composed by those worlds

satisfying the formulae in A). Each of those worlds can be considered as a

semantical extension of the set of premises A.

We define a model M = 〈W, δ〉, where W is a set of classical propositional

valuations and δ is an irreflexive and transitive relation over W (δ is a strict

order over W , and we will write w ≺δ v for (w, v) ∈ δ).

Given a set of worlds V ⊆ W , we call minδ(V ) the set of the minimal worlds

in V with respect to the order δ.

minδ(V ) = {w ∈ V | there is no v ∈ V, s.t. v ≺δ w}

If a world w is s.t. w ∈ minδ([α]W ), i.e. it is between the minimal models

in 〈W, δ〉 satisfying α, we will write w ²≺ α.

A well-behaved preferential model should also satisfy the smoothness con-

dition.

Definition 2.3.10. (Smooth sets).

Let W a set of elements, ≺ a binary relation on W , and V ⊆ W . V is

smooth iff for every w ∈ V , w ∈ minδ(V ), or there is a v ∈ V s.t. v ≺ w

and v ∈ minδ(V ).

Definition 2.3.11. (Smoothness condition).

Let W be a set of worlds and ≺ an asymmetric binary relation on W . The

model 〈W,≺〉 satisfies the smoothness condition iff, for every α ∈ `, [α]W is

a smooth set.

This condition allows to assume that, given an order δ and taken a non-

empty subset of W , we always have a non-empty set of minimal worlds.
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Since δ satisfies irreflexivity and transitivity, in our model there are no cycles

(sequences of valuations of the form α ≺ β1 ≺ . . . ≺ βn ≺ α), that, by transi-

tivity, would imply α ≺ α; the absence of cycles prevents the presence of the

same valuation twice in a ≺-chain of worlds. Consequently, working with a

finite set of worlds, if we take a valuation w we will have only finite ≺-chains

of valuations starting from w (only finite sequences of worlds preferred to

w), since otherwise we would have a cycle. It is immediate to see that the

finiteness of the ≺-chains of worlds implies the satisfaction of the smoothness

condition. Hence, working with finite sets of valuations (i.e. with logically

finite propositional languages), the smoothness condition is automatically

satisfied.

To define the defeasible consequences of a set of premises A in M we simply

consider the formulas satisfied by every semantical extension of A in M, i.e.

by every minimal world in [A]W .

Definition 2.3.12 (Preferential consequence relation). Given a preferential

model M = 〈W, δ〉, β is a preferential consequence of the set of premises A

(written A |∼δ β) if and only if β is satisfied by every world that is δ-minimal

in the set [A]W .

A |∼δ β iff w ² β for every w ∈ minδ([A]W )

This is interpreted as stating that, given A, we consider as presumably

holding every formula satisfied in every most normal situation compatible

with the truth of A.

As we will see below, such a semantical approach to defeasible reasoning has

been extremely fruitful in the logical analysis of nonmonotonic reasoning.
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2.4 A consequentialist perspective.

We have presented different forms of nonmonotonic reasoning: Poole’s maxi-

consistent constructions, Reiter’s default systems, Shoham’s preferential mod-

els. Makinson treats them as the basic systems representing the three main

approaches to nonmonotonic reasoning, but there is a multitude of other sys-

tems which can be seen as their specializations.

Today, most researchers admit that there is not a single, correct nonmono-

tonic logic, and that different domains need to be treated by means of dif-

ferent kinds of defeasible reasoning. Nevertheless, human nonmonotonic rea-

soning has always appeared as a quite disciplined field, and the reference to

a core of basic structures, constraining the development of new particular

systems, seems a necessity.

Moreover, a theoretical reordering of the field has been felt as a necessity, in

order to define a set of desired properties that our systems have to satisfy.

Such a reordering has been firstly proposed by Gabbay [15], and developed

ten years later by Makinson [38]. Their approach focuses on the character-

ization of the premises-conclusions relations holding in defeasible logics, i.e.

on the properties of the consequence relation defining the behaviour of our

logical systems. So, we place ourselves into a consequentialist perspective,

assuming the identification of the reasoning capabilities of an agent with the

inference relation arising from the particular “machinery” modeling its rea-

soning processes. We could see this as a black box approach, focusing on the

conditions defining input-output dependencies of the observed systems, inde-

pendently of the inner structure of the system. The analysis of the structure

of the premises-consequences dependencies, abstracting from the way we de-

rive the conclusions, becomes the central target of this field.

From their point of view, the analysis of the relation of logical consequence

becomes the ground for the construction of logical systems for defeasible rea-

soning.

We briefly present the classical definition, due to Tarski, of such a notion.

In the following we will use ² and Cl as symbols of the classical propositional
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consequence relation and of the classical propositional consequence operator

respectively, while ` and Cn will be used to refer to a generic monotonic

consequence relation and the associated operator. To refer to nonmonotonic

consequence relations and operators, we will use |∼ and C. It is common use

to distinguish such relations from monotonic ones calling them inference rela-

tions and inference operators instead of consequence relations and operators.

2.4.1 Tarskian consequence relation

Consequence relations ` are the traditional means for the characterization of

argumentation patterns; they are relations `: ℘(`)× ` , i.e. holding between

sets of formulae and single formulae (or between sets of formulae and sets of

formulae, but we won’t use such a formalization here).

A ` α has to be interpreted as ‘α is a logical consequence of the set of formu-

lae A’, i.e. that if we reason assuming that the formulae in A are true, we can

conclude that α is also true. A consequence relation can also be described by

means of a consequence operator, a function Cn : ℘(`) 7→ ℘(`), associating a

set of premises to the set of their conclusions:

Cn(A) = {α|A ` α}

and conversely:

A ` α iff α ∈ Cn(A)

In the following, we shall switch freely between symbolisms using conse-

quence relations and the associated consequence operators.

The standard approach to consequence relations is the account given by

Tarski in his 1936 classical paper [58].

Tarski gives the conditions of acceptability of a notion of ‘following logically’.

The notion of ‘truth preservation’ works as the reference point for the ade-

quacy of the definition of logical consequence, i.e. a formula α is a logical
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consequence of a set A iff the truth of the set of premises A implies the truth

of the formula α: it can’t be that A is true without α being true.

Formally, Tarski interpreted such desiderata on the semantical side, ground-

ing his definition of following logically on the notion of semantical model:

“We say that the sentence X follows logically from the sen-

tences of the class K if and only if every model of the class K is

at the same time a model of the sentence X.”([58], p.186)

This can be characterized as an ‘inclusion’ definition: given a class of

logical models, to tell that α is a logical consequence of A we need every

model of A to be also a model of α, i.e. we need the set of models satisfying

all the formulae in A to be a subset of the set of models satisfying α. That

corresponds to saying that it is not conceivable a situation s.t. A is true and

α is not true.

Consequence relations can also be treated apart from the semantical char-

acterization by means of axioms and rules defining the behaviour of the con-

sequence relation. For example, the behaviour of a tarskian consequence

relation can be defined by means of the following three rules/conditions:

◦ Reflexivity (REFL):

K ` α for every α ∈ K

◦ Cut (CT):

K ∪ {α} ` β K ` α

K ` β

◦ Monotony (MON):

K ` β

K ∪ {α} ` β
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Briefly, their intuitive meaning is:

- Reflexivity : we can derive every formula contained in our premises. It

is really an intuitive and elementary condition, and generally is considered

as a minimal requirement for reckoning a relation as a consequence one2.

- Cut (or Cumulative Transitivity): this condition is a cautious version of

plain transitivity (if A ` β for every β ∈ B and B ` γ, then A ` γ).It states

that we can accumulate our conclusions into our premises without an am-

plification of inferential power, so it characterizes our consequence relation

as a closure one. Moreover, CT implies that the conclusions have the same

‘status’ independently of the number of steps needed to infer them from the

premises: once inferred, a proposition can be added to the original set of

premises, and every conclusion obtained will be implied also by the original

set. CT is important in the dynamics of proofs because it allows one to add

to a set of premises other information in order to reach the desired conclu-

sion, and then to justify the added premises on the ground of the original set.

- Monotony : Monotony is obviously our ‘cause of the scandal’. It tells us

that augmenting the information in the premises, whatever we had concluded

before remains true. In the dominion of mathematical logic, obviously, it is

a desirable property, since it guarantees that we are dealing with ‘sure’ in-

formation; the main problem of defeasible logic is to weaken such a property

in an ‘educated’ way.

We can state a corresponding characterization in terms of the consequence

operator Cn:

2The only case known to the author of a non-reflexive consequence relation comes from

the field of modal dynamic logics (see [3], pp.19-21), but it can be justified by the particular

interpretation of the semantical structure proposed.
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◦ Inclusion (INC):

A ⊆ Cn(A)

◦ Cut (CT):

A ⊆ B ⊆ Cn(A) ⇒ Cn(B) ⊆ Cn(A)

◦ Monotony (MON):

Cn(B) ⊆ Cn(A) whenever B ⊆ A

Given inclusion, we can derive from cut an important property, idempo-

tence, which defines our operator as a closure one.

◦ Idempotence (IDP):

Cn(A) = Cn(Cn(A))

If a set of formulae is closed under an operator Cn (i.e. Cn(A) = A), we

will call such a set A a theory of Cn.

Logical consequence is one of the foundational concepts of logic. For many

authors, a formal machinery for modeling reasoning processes can be con-

sidered a logic if it can be formalized by means of a formal language and a

consequence relation. That is, a logical system can be identified by a pair

〈`, C〉, where ` is a formal language and C a consequence operator defined

over `. From a formal point of view, such a characterization is satisfactory,

and it allows one to analyze the behaviour of a logical system from the stand-

point of its meta-properties, such as consistency, compactness, and so on.

The Tarskian characterization of the concept of logical consequence stands

as a point of reference, and it is absolutely solid from the point of view of

mathematical logic. However, as we have said in the previous chapter, the

tools of classical logic are not generally appropriate in the formalization of

common-sense reasoning.
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2.4.2 Defeasible inference relations

Tarski himself has stressed that a notion of consequence relation, to be suc-

cessful, first of all has to account for the everyday, intuitive usage of the

notion of ‘following’, i.e. our notion has to be materially adequate with re-

spect to the dominion formalized (in particular, in the case of Tarski, with

respect to the mathematical context).

The classical paper ‘On the Concept of Following Logically’ begins with the

following period:

“The concept of following logically belongs to the category

of those concepts whose introduction into the domain of exact

formal investigations was not only an act of arbitrary decision on

the side of this or that researcher: in making precise the content

of this concept, efforts were made to conform to the everyday

‘pre-existing’ way it is used. [. . . ] the way it is used is unstable,

the task of capturing and reconciling all the murky, sometimes

contradictory intuitions connected with that concept has to be

acknowledged a priori as unrealizable, and one has to reconcile

oneself in advance to the fact that every precise definition of the

concept under consideration will to a greater or lesser degree bear

the mark of arbitrariness.”([58], p.176)

Our target is the formalization of common-sense reasoning, and, as we

have said, it is characterized by the property of nonmonotony. So, tarskian

consequence relation is not adequate for our aims.

This does not absolutely put under discussion the value of tarskian conse-

quence relation for the field it was developed for, i.e. mathematical logic.

Simply, if we agree with the practical turn of logic, depicted in the previous

chapter, we have to reformulate our desiderata in order to deal with our tar-

gets.

The property of monotony, at least referring to the tarskian formulation, is

strictly tied to the notion of ‘truth-preservation’, a natural desiderata in the
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field of mathematics. ‘Truth-preservation’ is too strong a notion with re-

spect to everyday reasoning and has to be substituted with a ‘softer’ claim,

more epistemic and also more vague, such as ‘acceptability’, or ‘take-as-true

preservation’, i.e. α is a consequence of a set of premises A iff is acceptable,

reasonable, to take α as true on the basis of the knowledge of A.

We have to move from an interpretation of ‘if α, then β’ as ‘if α is true, then

β is true’ to a new interpretation as ‘if α is true, then, normally/presumably,

β is true’.

This move justifies the change in the desiderata of our consequence relation.

Our approach to the characterization of logical consequence will start from

the definition of the patterns that we maintain as characterizing logically

valid arguments with respect to the nature of the kind of argumentation we

are looking for, i.e. with respect to the target we want our consequence re-

lation to model.

So, we start from the identification of the argument schemes we want our

formal system to satisfy, tempting to define the desirable logical properties

in terms of such patterns.

Pure conditions

We consider as ‘pure’ the proprieties which refer to the inference relation

alone, without regard to its interaction with the classical consequence oper-

ation and the connectives. For example, Monotony, Cut and Reflexivity are

all pure conditions.

The inference relations |∼⊆ ℘(`) × ` or operations C : ℘(`) → ℘(`) we are

investigating may happen to fail monotony.

So, if we eliminate monotony from the tarskian properties, what remains?

As we have said, reflexivity appears as a necessary condition in the def-

inition of a consequence relation, and it is obvious that, if we know that α,

we presume that α.

Cut occupies a strategic point: formulated in terms of |∼ and C, cut is
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A ∪ {α} |∼ β A |∼ α

A |∼ β

A ⊆ B ⊆ C(A) ⇒ C(B) ⊆ C(A)

Cut is considered a desirable property, because it does not imply mono-

tonicity and it is a really powerful logical property. It can be interpreted as

saying that a plausible conclusion is as secure as the assumptions it is based

on, and, since we are not looking for logics modeling also degrees of belief

(as probabilistic logics), we find it intuitive.

Moreover, from Cut and Reflexivity we can derive idempotence, that char-

acterizes C as a closure operator.

Despite the fact that defeasible logics are firstly characterized as ‘non-

monotonic’, their main task is not to eliminate the property of monotony:

such a property remains intuitive and is often satisfied by common-sense

reasoning. What we aim to is just a weakening of such a property in order

to deal with presumptive reasoning and the use of background information.

Notwithstanding that classical logic is not appropriate in modeling defeasible

reasoning, we continue to look at it as our ideal reference point, and we aim

to preserve monotony and classical properties as much as possible.

The converse of cut is an important restricted form of monotony, Cautious

Monotony :

◦ Cautious monotony (CM):

A |∼ γ A |∼ β

A ∪ {β} |∼ γ

A ⊆ B ⊆ C(A) ⇒ C(A) ⊆ C(B)

Cautious monotony says that if β is a plausible conclusion from a set of

premises A, we can safely add it to A without invalidating the other plausible
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conclusions of A.

It is a very natural and intuitive property, and it is the minimum requirement

for a good monotonic behaviour in common-sense reasoning.

Cut and Cautious Monotony can be expressed together by the propriety of

Cumulativity :

◦ Cumulativity (CUM):

A ⊆ B ⊆ C(A) ⇒ C(A) = C(B)

These conditions correspond to natural ways of organizing our reasoning.

They tell us that we accumulate our conclusions into our premises without

loss of inferential power (cautious monotony) or amplification of it (cut),

describing the reasoning process as ‘stable’. Cumulativity can be seen as a

principle for organizing our conclusions coherently.

Cut can also be seen as expressing the claim that we do not want to allow

the length of a derivation to affect the value of the conclusion. On the other

hand, Cautious Monotony can be seen as expressing a form of ‘irreversibility’

in the drawing of conclusions: once inferred, a proposition may be retained

irrespective of what other inferred propositions are added to the stock of

usable information.

Non-pure conditions

Non-pure conditions regulate the behaviour of our inference relation with

respect to other consequence relations and truth-functional connectives.

As was said above, despite the fact that classical logic is not apt to the

characterization of common-sense reasoning, it is important to hold it the-

oretically as a point of reference of the ideal reasoning, and technically as

the most solid and well-behaved formalization of deduction we have at our

disposal.

So it is of extreme importance to relate the behaviour of our consequence
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relation to the properties of classical consequence relation.

Moreover, we are going to work with a propositional language, and so it is

important to investigate what kind of conditions a defeasible inference rela-

tion should satisfy with respect to classical truth-functional connectives.

The main property relating a defeasible operator C to the classical operator

Cl is supraclassicality, stating that C is an extension of Cl.

◦ Supraclassicality (SCL):

A ² α

A |∼ α

Cl(A) ⊆ C(A)

This property means that every classical consequence of a set of premises

has to be included between its defeasible consequences. It simply states that

‘sure’ conclusions have to be included in what is presumed, that by reasoning

in a defeasible way we extend our derivative capability beyond the ‘safeness’

of classical deduction.

Supraclassicality has a series of interesting consequences, as full absorption.

Proposition 2.4.1 (Absorption). ([38], Observation 2.2.1) Let C be a supr-

aclassical inference operation.

If C satisfies Idempotence (C(A) = C(C(A))), then C satisfies left absorp-

tion:

Cl(C(A)) = C(A) for every premise set A

If C is cumulative (A ⊆ B ⊆ C(A) ⇒ C(A) = C(B)), then it satisfies full

absorption:

Cl(C(A)) = C(A) = C(Cl(A)) for every premise set A

Full absorption states that our operator C is really well behaved with

respect to classical consequence operation, since it is an extension of Cl, but
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theories of C are also closed under classical consequence.

Makinson holds that an approach to nonmonotonic reasoning has to be con-

sidered as logical only if the inference operation C satisfies the full absorption

principle, since, given a set of premises A, the propositions we’re allowed to

infer from A form a classical theory (C(A) = Cl(C(A)), and depend only

upon the logical content of A rather than upon its manner of presentation

(C(A) = C(Cl(A))).

The absorption property implies other important non-pure conditions.

Proposition 2.4.2. ([38], Observation 2.2.2) Let C : ℘(`) → ℘(`) be any

operation.

If C satisfies left absorption, then it satisfies:

◦ Right conjunction (AND):

α |∼ β α |∼ γ

α |∼ β ∧ γ

◦ Right weakening (RW):

α |∼ β β ² γ

α |∼ γ

If C satisfies right absorption, then it satisfies:

◦ Left logical equivalence (LLE):

α |∼ γ ² α ↔ β

β |∼ γ

Cl(A) = Cl(B) ⇒ C(A) = C(B)
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◦ Subclassical cumulativity (SUB):

A ⊆ B ⊆ Cn(A) ⇒ C(A) = C(B)

These are all desirable properties.

AND states that, if I believe that, given α, presumably β holds, and presum-

ably γ holds, then I will believe that presumably β ∧ γ would hold.

RW states that if I presume β, I will suppose also all its classical conse-

quences.

The intuitiveness of such claims is manifest, and they are considered the core

conditions for the interaction of C with truth-functional connectives.

LLE and SUB define our consequence operator as a typical logical one, i.e.

sensible only to the logical structure of its premises, and independent of their

syntactical forms.

From LLE we can derive another intuitive and technically important prop-

erty, i.e. conjunction in the premises.

◦ Conjunction in the premises (L
∧

):

A |∼ α ⇔
∧

(A) |∼ α,

where
∧

is a function that takes as argument a set of formulae and gives

back a single formula composed by their conjunction.

This property, which is very intuitive, allows to treat our inference rela-

tions as single-premise relations (assumed we are working with finite sets of

premises).

Supraclassicality is immediately verified in any |∼ satisfying REF and RW:

² α → β α |∼ α

α |∼ β

Another fundamental non-pure condition for C is the condition of distri-

bution:
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◦ Distribution (DIS):

C(A) ∩ C(B) ⊆ C(Cn(A) ∩ Cn(B)) for all A,B ⊆ `

Any inference operation satisfying distribution will be distributive.

The condition of distribution does not have an intuitive appeal; its justifi-

cation lies in its logical power, because it implies other important non-pure

conditions.

Proposition 2.4.3. ([38], Observation 2.2.3) If C is an inference operation

satisfying distribution, supraclassicality, and absorption, then C satisfies the

following proprieties:

◦ Disjunction in the Premises (OR):

α |∼ γ β |∼ γ

α ∨ β |∼ γ

C(A ∪ {α}) ∩ C(A ∪ {β}) ⊆ C(A ∪ {α ∨ β})

◦ Conditionalization (S):

α |∼ β

|∼ α → β

β ∈ C(A ∪ {α}), then α → β ∈ C(A)

OR has an intuitive appeal: if a formula γ is presumable assuming α or

assuming β, it is natural to think that it is presumable also assuming α ∨ β.

Moreover, OR allows to beneficiate of the proof by cases rule:
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A,α |∼ β A,¬α |∼ β

A |∼ β

Conditionalization is also called the ‘hard half of the deduction theorem’.

It is intuitive (If I maintain that ‘given α, normally β’ holds, then I think

that normally α implies β), and is very useful.

The converse (the ‘easy half’: if A |∼ α → β, then A,α |∼ β), does not hold

for any interesting nonmonotonic relation, since generally it implies mono-

tonicity.

Since the centrality of their role in the study of defeasible inference, cumu-

lativity, supraclassicality and distribution are addressed by Makinson as the

core conditions of nonmonotonic logic.

Another important property, not derivable by those just mentioned, is

consistency preservation:

◦ Consistency Preservation (CP):

α |∼ ⊥
α ² ⊥

Cl(A) 6= ` ⇒ C(A) 6= `

Also consistency preservation relates the consistency notion in C to clas-

sical consistency in Cl. It can be seen as a condition limiting the power of

our inferences: C takes us to contradictions only if they were already clas-

sically implicit in our premises. This is again a principle imposing on our

reasoning a good logical behaviour, indicating the strong classical notion of

contradiction as a reference point.

Intuitively (and semantically), the principle could be interpreted as saying:

if a set of premises is classically consistent, then it is conceivable at least a

situation confirming it, and so (at least in a skeptical or choice approach to
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defeasibility) we are not justified in concluding a contradiction.

We can briefly indicate if the systems described above generate inference

relations satisfying the structural properties just seen.

The default-assumption approach manifest a very good behaviour, satisfying

all the desired properties: cumulativity and supraclassicality ([38], Observa-

tion 3.3.1), distribution ([38], Observation 3.3.2) and consistency preservation

([38], Observation 3.3.3).

The same can be said for the simple preferential systems defined above ([38],

Observations 3.4.2, 3.4.3, and 3.4.6).

A different situation comes out for default-rule approach: while it satisfies

cut ([38], Observation 3.2.1), full absorption ([38], Observation 3.2.2), and

consistency preservation (but just in the case of normal rules), there is the

possibility of the failure of both distribution ([38], Observation 3.2.3), and

cautious monotony ([38], Observation 3.2.4).

So, if we place ourselves from a consequentialist point of view, default-

assumption and preferential approaches manifest a very regular behaviour,

but the same cannot be said about Reiter’s systems.

One of the main open problems in nonmonotonic logics has been indicated

as the definition of the relations between the behaviours of the various ap-

proaches. In the following chapter we are going to see that there is a connec-

tion between the basic formulations of the three systems presented, that is

particularly strong between the default-assumption and the preferential ones.
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Chapter 3

Connections between the basic

approaches

Abstract. We show that there is a correspondence between the basic formula-

tions of default-assumption, default-rule and preferential inference relations.

The precise definition of how the different approaches to defeasible rea-

soning are related between them is still an open problem . However, it is

possible to show easily that, working with a finite language, the basic for-

mulations of the systems defined in the previous chapter manifest the same

behaviour. In particular the connections between default-assumption and

preferential approaches are quite strong.

In the following, we assume a propositional language ` generated from a finite

set P of elementary letters, and the finite set W of all the possible classical

valuations of `.
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3.1 Default-assumption inference relations and

preferential relations

The purpose of this section is to establish a perfect correspondence, in the

finite case, between the family of the preferential inference relations and the

family of the default-assumption inference relations. The main result in this

section, Theorem 3.1.4, has been developed independently, finding only later

that it had already been proved By Freund in [12].

Default assumption extensions are defined by means of maxiconsistent sub-

sets of defaults; this means that we consider a situation as more normal than

another if it satisfies a larger set of defaults. From this consideration it is

immediate, given a default set ∆ and a set of valuations W , to define a

preference order between them, a generated strict order, with respect to the

amount of default formulae satisfied by every valuation.

Definition 3.1.1 (Generated strict order). Given a set ∆ of formulae, a re-

lation δ is generated by ∆ (and we write δ∆) iff δ = {(w, v) ∈ W ×W | ∆w ⊃
∆v}.

Obviously, δ∆ is irreflexive (∆w 6⊃ ∆w for any w ∈ W ) and transitive

(for the transitivity property of ’⊃’).

We want to show that, if an order δ is generated from a set of formulae ∆

(δ = δ∆), then the default-assumption consequence relation defined by the

assumption set ∆ corresponds exactly to the preferential consequence rela-

tion defined by the order δ∆. That is

A |∼∆ φ iff A |∼δ∆ φ for every premise set A

Lemma 3.1.1. Let δ be a strict order generated by a set of assumptions ∆.

That is, δ = δ∆.

For every set of premises A, w ∈ minδ([A]W ) iff ∆w is a maximally A-

consistent subset of ∆.
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Proof.

(⇒): w ∈ minδ([A]W ) ⇒ ∆w is a maximally A-consistent subset of ∆.

Assume that ∆w is not a maximally A-consistent subset of ∆, that is that

there is a ∆′ ⊆ ∆ s.t. ∆′ ⊃ ∆w and ∆′ is A-consistent.

Given that W contains all the valuations of our language, there will be a

valuation v s.t. v ² ∆′ ∪ A. That means that ∆v ⊇ ∆′, and so ∆v ⊃ ∆w.

Then we have that v ≺δ w with v ∈ ([A]W ).

Therefore w /∈ minδ([A]W ).

(⇐): ∆w is a maximally A-consistent subset of ∆ ⇒ w ∈ minδ([A]W ).

Assume that w /∈ minδ([A]W ). Then there is a v ∈ [A]W s.t. v ≺δ w. So

∆v ⊃ ∆w and ∆v is A-consistent. ∆w is not a maximally A-consistent subset

of K.

¥

Proposition 3.1.2. For every set of premises A, we have that

A |∼∆ φ iff A |∼δ∆ φ

Proof.

We know that A |∼∆ φ iff A ∪ ∆′ ² φ for every ∆′ ⊆ ∆ that is maximally

A-consistent. This means that for every w ∈ W , if w ² A ∪ ∆′ for some

∆′ ⊆ ∆ that is maximally A-consistent, then w ² φ.

By lemma 3.1.1, a valuation w satisfies the set A and a set ∆′, s.t. ∆′ ⊆ ∆

is maximally A-consistent, iff w ∈ minδ∆([A]w). Therefore A |∼∆ φ iff w ² φ

for every w ∈ minδ([A]w), as required.

¥

We now show that, given any strict order δ over W , we can find a set of

default assumptions ∆δ from which it can be generated.
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We define the set of formulae {αw| w ∈ W}, which is the set of the distinc-

tive formulae of the worlds in W , called atoms, i.e. αw is the formula that

describes completely the valuation w, s.t. it is satisfied only by the world w.

αw :=
∧
{p | p ∈ P and w ² p} ∧

∧
{¬q | q ∈ P and w ² ¬q}

Proposition 3.1.3. Given a strict order δ over W , there exists a set of

formulae ∆δ from which we can generate δ.

Proof.

Assume a strict order δ over W .

For every valuation w ∈ W we define a formula βw such that:

βw := αw ∨
∨

v≺δw

{αv}

βw is the formula that characterizes the subset of W composed by w and all

the worlds below it, i.e. it is satisfied only by those worlds.

Now we define the set of default-assumptions ∆δ as the set of all the formulae

βw:

∆δ = {βw|w ∈ W}
Let δ∆δ be the order generated by ∆δ: δ∆δ = {(w, v) ∈ W ×W |∆δ

w ⊃ ∆δ
v}.

We need to show that δ = δ∆δ .

(⇒): (w, v) ∈ δ ⇒ (w, v) ∈ δ∆δ

Suppose (w, v) ∈ δ. We have to show that ∆δ
w ⊃ ∆δ

v, i.e. if φ ∈ ∆δ
v, then

φ ∈ ∆δ
w, and that there is a formula ψ s.t. ψ ∈ ∆δ

w and ψ /∈ ∆δ
v.

Suppose that βu ∈ ∆δ
v (v ² βu) for some βu ∈ ∆. Then , by the definition of

βu, v = u or v ≺δ u.

In both cases, since w ≺δ v, we have that w ≺δ u, therefore w ² βu, i.e.

βu ∈ ∆δ
w.

So for every βu ∈ ∆δ, we have that if βu ∈ ∆δ
v, then βu ∈ ∆δ

w.

Since w ² βw and w ≺δ v, we have that v 6= w and v 6≺δ w. But this means
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that v 2 βw (βw /∈ ∆δ
v).

Therefore ∆δ
w ⊃ ∆δ

v, and (w, v) ∈ δ∆δ .

(⇐): (w, v) ∈ δ∆δ ⇒ (w, v) ∈ δ

Suppose (w, v) /∈ δ. We can have either w = v or w 6= v.

In the former case ∆δ
w = ∆δ

v, and so (w, v) /∈ δ∆δ .

in the latter case, since w 6= v and w 6≺δ v, then w 2 βv, while v ² βv. Hence

∆δ
w ⊃/ ∆δ

v and (w, v) /∈ δ∆δ .

¥

We will refer to the set ∆δ defined in the proof as the characteristic set

of an ordering δ, and every formulae βw as a characteristic default of δ.

So, we have shown that for every default-assumption system we can gen-

erate a corresponding preferential model and conversely. Now, we can show

the correspondence between default-assumption and preferential inference re-

lations, for the finite case.

Theorem 3.1.4. Let ` be a logically finite propositional language. Given an

arbitrary default-assumption consequence relation |∼∆ defined over `, we can

define a preference consequence relation |∼δ∆ s.t. A |∼∆ φ iff A |∼δ∆ φ, and,

conversely, given an arbitrary preference consequence relation |∼δ defined over

`, we can define a default-assumption consequence relation |∼∆δ s.t. A |∼∆δ φ

iff A |∼δ φ.

Proof.

That’s obvious from the previous propositions. By Proposition 3.1.2, we

know that a preferential consequence relation defined by an order δ and the

default-assumption consequence relation defined by a set ∆ from which δ is

generated behaves identically.

By Definition 3.1.1, we know that, given a default-assumption set, we can

generate a strict order.
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By Proposition 3.1.3, we know that, given a strict order, we can find a default-

assumption set from which it is generated.

¥

All these results can be generalized to a preorder (i.e. reflexive, transitive

relations) ε.

As usual, we shall write w ≺ε v if w ¹ε v and v 6≺ε w.

In order to generalize previous results it will be enough to restate the defini-

tion of generated orders.

Definition 3.1.2 (Generated preorder). Given a set ∆ of formulae, we say

that a relation ε is generated by ∆ (written ε∆) iff

ε = {(w, v) ∈ W ×W | ∆w ⊇ ∆v}
or equally

ε = {(w, v) ∈ W ×W | v ² ψ ⇒ w ² ψ for every ψ ∈ ∆}.

One can immediatly see that ε∆ is an extension of δ∆:

ε∆ = δ∆ ∪ {(w, v) | ∆w = ∆v}

Keeping all the other definitions fixed, we can restate the previous results for

ε∆.

Lemma 3.1.5. Let ε be a preorder generated by a set of assumption ∆, that

is, ε = ε∆.

Then, for every set of premises A, w ∈ minε([A]W ) iff ∆w is a maximally

A-consistent subset of ∆.

Proposition 3.1.6. For every premise set A, we have that

A |∼∆ φ iff A |∼ε∆
φ
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Proposition 3.1.7. Given a preorder ε over W , there is a set of formulae

∆ε from which we can generate ε (ε = ε∆ε).

For this proposition it’s sufficient to restate βw-formulae as

βw :=
∨

v¹εw

{αv}

Theorem 3.1.8. Given an arbitrary default-assumption consequence relation

|∼∆, we can define a preferential consequence relation |∼ε∆
s.t. A |∼∆ φ iff

A |∼ε∆
φ, and, conversely, given an arbitrary preference consequence relation

|∼ε, we can define a default-assumption consequence relation |∼∆ε s.t. A |∼∆ε

φ iff A |∼ε φ

We omit the proofs of these propositions, because they are analogous to

the previous ones.

We can generalize these results, in order to comprehend also systems

equipped with a background knowledge, i.e. a set of indefeasible formulae

K, representing background ‘hard’ information of the agent, laws that it

maintains as undoubtedly true.

So, we could model a default-assumption system S = 〈K, ∆〉, s.t. K par-

ticipates both in the consistency check and in the derivation of presumptive

conclusions1. It is sufficient to restate some definitions.

Definition 3.1.3 (maximally A-consistent sets). Given a default-assumption

system S = 〈K, ∆〉 and a set of premises A, we say that a set ∆′ is a

maximally A-consistent subset of ∆ iff ∆′ ∪K is consistent with A and for

no ∆′′ s.t. ∆′ ⊂ ∆′′ ⊆ ∆, ∆′′ ∪K is consistent with A.

Definition 3.1.4 (Default-assumption inference relation). Given a default-

assumptions system S = 〈K, ∆〉, β is a default-assumption consequence of

1Such a possibility was contemplated also in [45], but in a different way: since the

interest of the author was in modeling abduction, in his model, K participates to the

consistency check, but not in the definition of the consequences.

61



the set of premises A, (written A |∼〈K,∆〉 β) if and only if β is a classical

consequence of the union of A and every maximally A-consistent subset of ∆

and the knowledge set K.

A |∼〈K,∆〉 β iff A ∪K ∪∆′ ² β for every maximally A-consistent

∆′ ⊆ ∆

Obviously, the basic formulation of default-assumption consequence rela-

tion of Definition 2.3.3 corresponds to the consequence relation defined by

the system S = 〈∅, ∆〉, i.e. the default-assumption system with no back-

ground knowledge.

It is easy to show that every inference relation |∼〈K,∆〉 corresponds exactly to

the inference relation |∼∆, putting K between the premises.

Lemma 3.1.9. Given a default-assumption system S = 〈K, ∆〉, A |∼〈K,∆〉 β

iff A ∪K |∼∆ β for every set of premises A.

Proof. It is immediate from Definition3.1.3 that ∆′ is a maximally A-

consistent subset of ∆ in S = 〈K, ∆〉 iff it is a maximally A ∪K-consistent

subset of ∆ in the system S′ = 〈∅, ∆〉.
So, the set of defeasible consequences of A in S corresponds exactly to the

set of defeasible consequences of A ∪K in S′, since they are defined exactly

in the same way:

A ∪K ∪∆′ ² β for every maximally A−consistent ∆′ ⊆ ∆

¥

In the preferential systems, we can assume the background knowledge K

restricting the set of valuation available in the model to the set UK = {w ∈
W |w ² φ for every φ ∈ K}. Correspondingly, given a model M = 〈U, δ〉,
with U ⊆ W , we can define the knowledge set of the agent by means

of the disjunction of all the characteristic formulae on the worlds in U :

KU =
∨{αw|w ∈ U}.
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As above, we can show that every such inference relation |∼U,≺ behaves ex-

actly as the previous ones, putting KU between the premises.

Lemma 3.1.10. Given a preferential system M = 〈U, δ〉, A |∼〈U,δ〉 β iff

A ∪ KU |∼〈W,δ〉 β (where W is the set of all the possible valuations of our

language), for every set of premises A.

Proof. We simply have to show that min〈U,δ〉(A) = min〈W,δ〉(A ∪ KU).

Since a world w satisfies KU iff w ∈ U , it is immediate to see that w ∈
min〈W,δ〉(A ∪ KU) iff it is a minimal world in U satisfying A, i.e. w ∈
min〈U,δ〉(A). ¥

From these results, we can generalize the Theorem 3.1.4.

Theorem 3.1.11. Given an arbitrary default-assumption inference relation

|∼〈K,∆〉, we can define a preferential inference relation |∼〈UK ,δ∆〉 s.t. A |∼〈K,∆〉
φ iff A |∼〈UK ,δ∆〉 φ, and, conversely, given an arbitrary preferential infer-

ence relation |∼〈U,δ〉, we can define a default-assumption inference relation

|∼〈KU ,∆δ〉 s.t. A |∼〈KU ,∆δ〉 φ iff A |∼〈U,δ〉 φ

So, given a logically finite language, there is a perfect correspondence

between Shoham’s preferential systems and Default-assumption systems.

3.2 Default-assumption and default-rule in-

ference relations

The connection between default-assumption consequence relation and Re-

iter’s approach is much more feeble, holding only between default-assumption

systems and Reiter’s systems with elementary rules of form >:ω
ω

(normally, if

it is consistent to assume ω, assume ω).

The following is an alternative proof, based on the inductive definition of
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default-rule consequence, to the one given in [45].

Assume we have a default-assumption system defined by a finite set of de-

fault formulae ∆ = {α1, . . . , αn}, and a default-rule system defined by a set

of rules R = {>:α1

α1
, . . . , >:αn

αn
}, s.t. the justifications/consequences of the rules

in R are the same formulae contained in ∆.

It is sufficient to show that the set of extensions of these two systems corre-

spond to each other.

Lemma 3.2.1. Assume a set of premises A, a default-assumption system S∆

with ∆ = {α1, . . . , αn} and a default-rule system SR with R = {>:α1

α1
, . . . , >:αn

αn
}.

Then a set of formulae E is an extension of A in S∆ iff it is an extension

of A in SR.

Proof.

(⇐): Following the inductive definition 2.3.8, every extension of SR is

generated by an ordering 〈R〉 over the set of rules. Working with rules of

form >:ω
ω

, the precondition > is always satisfied, and the inductive condition

for building of the extension E is just:

• set A0 = A.

• Break the definition of An+1 into two cases.

Case 1. Suppose there is a rule >:ω
ω
∈ 〈R〉 such that ω /∈ An and ω is

consistent with An. Then choose the first such rule and put An+1 =

Cn(An ∪ ω).

Case 2. Suppose there is no such rule. Then put An+1 = An.

• Put E =
⋃{Ai}

Designate by ConsR the set of the consequents of the rules in R. Since

the procedure iterates over the elements of R, it triggers a set of rules R′

s.t. R′ ⊆ R. It is immediate to see that we obtain an extension E =
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Cn(A∪ConsR′), where ConsR′ is an A-maxiconsistent subset of ConsR, i.e.,

since ConsR = ∆, we obtain a default-assumption extension of A, given a

set of defaults ∆.

(⇒): We have an A-maxiconsistent subset ∆′ of ∆, defining an extension

E of A in S∆ (E = Cn(A ∪ ∆′)). To see that it is also an extension of A

in SR, it is sufficient to take whichever ordering 〈R〉 s.t. it begins the se-

quence of rules with those having as justifications/consequents the elements

of ∆′, followed by the rules having as justifications/consequents the elements

of ∆/∆′.

¥

From the lemma above we immediately obtain the correspondence of the

two inference operators.

Theorem 3.2.2. Given a default-assumption system S∆ with ∆ = {α1, . . . , αn}
and a default-rule system SR with R = {>:α1

α1
, . . . , >:αn

αn
}, C∆(A) = CR(A) for

every set of formulae A.

Proof.

It is immediate, given that, for every A, they have the same extensions and

that C∆(A) and CR(A) are defined by the intersection of such extensions.

¥

So there is a (very) basic correspondence also between default-assumption

and default-rule approaches. However, such correspondence seems not to be

extendable to more complex structures. The behaviour of default rules is

particular mainly because we are using meta-linguistic rules instead of ma-

terial implications inside the language: while the formers do not participate

in the reasoning processes, unless their precondition is satisfied and they can

be triggered, a material implication does not have to be ‘triggered’ to partic-

ipate to the derivations, and we can reason freely with it by means of a lot
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of classical operations, like contraposition, left strengthening and so on. . .

In this particular case, we have been able to face default-assumption with

Reiter’s approach just because the precondition of every rule was >. > is

always satisfied and the check for the activation of the rule was just of a

consistency kind, as in the other two approaches.
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Chapter 4

The preferential approach

Abstract. We briefly present the main results in the study of defeasible rea-

soning from a consequentialist point of view.

4.1 The KLM models

As we have seen in Chapter 2, Makinson has isolated a set of conditions that

should be satisfied by an inference relation modeling defeasible reasoning.

Kraus, Lehmann and Magidor [25], starting from Shoham’s preferential mod-

els (see Sect. 2.3.3), have shown that possible-worlds settings are an optimal

tool for formalizing defeasible reasoning starting from the desired properties

of the inference relations, and they have investigated which classes of seman-

tical models can represent particular classes of defeasible inference relations.

The move from the syntactical level to the semantical one is made by inter-

preting an agent’s assetion:

‘If α, then normally/usually β′

as meaning

‘In all the most expected/typical situations in which α is true, β is also

true.’
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Kraus, Lehmann and Magidor have keyed out the class of inference rela-

tions satisfying a series of minimal required properties:

REF α |∼ α Reflexivity

LLE
α |∼ γ ² α ↔ β

β |∼ γ
Left Logical Equivalence

RW
α |∼ β β ² γ

α |∼ γ
Right Weakening

CT
α |∼ β α ∧ β |∼ γ

α |∼ γ
Cut (Cumulative Transitivity)

CM
α |∼ β α |∼ γ

α ∧ β |∼ γ
Cautious Monotony

This class of inference relations represents the class satisfying inclusion,

cumulativity and supraclassicality (see section 2.4.2), all core properties of

defeasible reasoning.

Definition 4.1.1 (Cumulative Inference Relations). An inference relation

|∼ is cumulative iff it is closed under REF, LLE, RW, CM, CT.

At the same time, they have defined a class of possible-worlds models,

and a semantical notion of consequence relation related to them.

Definition 4.1.2 (Cumulative Models). A cumulative model M is a triple

〈S, l,≺〉, where

- S is a set, the elements of which are called states,

- l : S 7→ W is a labeling function assigning a propositional valuation (a

world) to each state, and

- ≺ is a binary relation satisfying the smoothness condition (see Def. 2.3.11).

As in the case of Shoham’s model, ≺ is interpreted as a normality order

over the set of states, i.e. s ≺ t means that ‘The situation described by the
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state s is more normal than the situation described by the state t’. Also the

consequence relation is defined analogously to Shoham’s.

Definition 4.1.3. Let M = 〈S, l,≺〉 be a cumulative model. The conse-

quence relation defined by M (we will write |∼M) is defined by:

α |∼M β iff for every state s ∈ S, if s ²≺ α, then s ² β.

That is, every minimal (preferred/most normal) state in [α]S satisfies β,

i.e. β is normally true given α.

Kraus, Lehmann and Magidor have shown that the class of cumulative in-

ference relations is completely represented by the class of cumulative models.

Theorem 4.1.1 (Representation Theorem for Cumulative Relations). [[25],

Theorem 3.25]

An inference relation |∼ is cumulative iff it is defined by some cumulative

model (i.e. it corresponds to a consequence operation |∼M generated by some

cumulative model M).

In the cumulative framework, we can derive easily also other intuitive

structural rules (see [25], Lemma 3.3):

◦ Right conjunction (AND):

α |∼ β α |∼ γ

α |∼ β ∧ γ

◦ |∼-equivalence:

α |∼ β β |∼ α α |∼ γ

β |∼ γ
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◦ Modus Ponens (MP):

α |∼ β → γ α |∼ β

α |∼ γ

We can obtain a new fundamental inference relation if we add the OR

property to cumulative |∼:

OR
α |∼ γ β |∼ γ

α ∨ β |∼ γ
Disjunction in the Premises

Definition 4.1.4 (KML-Preferential Inference Relations). An inference re-

lation |∼ is KML-preferential iff it is closed under REF, LLE, RW, CM, CT,

and OR.

As we have seen (see Sect.2.4.2), OR is an intuitive property, associated

with the distribution rule, that validates the ‘proof by cases’ technique. To

represent KML-preferential relations, it is sufficient to restrict the orders

between the states, imposing transitivity and irreflexivity.

Definition 4.1.5 (KLM-Preferential models). A KLM-preferential model M

is a triple 〈S, l,≺〉 where

- S is a set, the elements of which are called states,

- l : S 7→ W assigns a world to each state, and

- ≺ is a strict partial order on S (i.e. an irreflexive, transitive relation),

satisfying the smoothness condition.

Such a semantical bond over ≺ sounds very intuitive, corresponding to

our standard use of the relation ‘to be more normal than’. If a situation x is

considered more normal than a situation y and, in turn, y is considered more

normal than a situation z, the application of transitivity is spontaneous: x

is more normal than z.

Given a definition of the inference relation |∼M, generated by a KML model,
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identical to the definition of the inference relation in the cumulative case,

Kraus, Lehmann and Magidor have proved a representation result between

such classes.

Theorem 4.1.2 (Representation Theorem for KML-Preferential Relations).

[[25], Theorem 5.18]

An inference relation |∼ is preferential iff it is defined by some KLM-preferential

model (i.e. it corresponds to a consequence operation |∼M generated by some

KML-preferential model M).

As can be seen, Shoham and KLM’s semantical approach to defeasible

reasoning readapt for our interests the classical semantical definition of logical

consequence by Tarski: we move from an ‘all-or-nothing’ notion, in which ev-

ery model satisfying the set of premises has to satisfy also the consequent, to

a more specific notion, in which only some particular models of the premises

(the ‘most normal’ ones) are called into question.

As can be noted by the definitions above, the models proposed by Kraus,

Lehmann and Magidor generalize Shoham’s original proposal (see Section

2.3.3), distinguishing between ‘states’ (elements of the dominion S, and ar-

guments of the relation ≺) and ‘worlds’ (propositional valuation). Such a

move allows for the repetition of the same valuations in different positions in

the model, since the labeling function l permits to associate the same classi-

cal valuation to different states in S. This is needed in order to obtain the

representation results, since there are preferential relations not representable

by models with a unique copy for each valuation (see [25], p.193, for an ex-

ample). However, it is quite counterintuitive to place the same situation in

two different positions in a normality ordering, and this sounds a bit like

a technical trick to guarantee the representation result. Theoretically, this

move has been justified by declaring that two copies of the same valuation

do not represent the same situation, but they have to be assumed as differ-

entiated by ‘inexpressible’ information; such justification does not sound as

a very solid one.
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However, models without multiple copies of the same valuations are identi-

fied as injective models, since the function l is injective. We will meet them

in the following chapters.

From the six KML conditions we can derive also the Hard Half of the De-

duction Theorem (see [25], Lemma 5.2):

S
α |∼ β

|∼ α → β
Conditionalization

A word apart is needed for consistency preservation,

CP
α |∼ ⊥
α ² ⊥

Consistency preservation

which states that our notion of consistency is the same as that of classical

consequence. Our model is consistency preserving only if there is at least one

copy of each valuation of our language.

Lemma 4.1.3. Assume a finite language `. A preferential relation |∼ is

consistency preserving iff in its canonical model M there is at least one copy

of every valuation of our language `.

Proof.

(⇒): Let α 2 ⊥. Then there is at least a valuation w s.t. w ² α. Since

at least a copy of w is present in M, and, since M respects the smoothness

condition, we have min≺(α) 6= ∅, i.e. α 6|∼ ⊥.

(⇐): Assume there is a classical valuation w not present in M and consider

its characteristic formula αw. We have αw |∼ ⊥, since there is not a state in

M satisfying it, but αw 2 ⊥, since it is satisfied by the classical valuation w.

¥

However, we can define a kind of consistency preservation with respect to

the ‘monotonic core’ of our inference relation |∼. First of all we can define
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the notion of knowledge for preferential models, i.e. a fixed and indefeasible

set of formulas which the agent maintains as a set of background laws it has

to respect. So, knowledge is the ‘hard’, indefeasible portion of the agent’s

information, s.t. the agent takes under consideration only situations satisfy-

ing it. On the semantical side, we can identify the set of known formulas as

the set of formulas satisfied by every valuation in the model (that is to say,

we determine the known formulas treating the model as a classical universal

epistemic model, where a formula is known by an agent if and only if it is

satisfied by every valuation in the model).

Definition 4.1.6 (Knowledge set K). Given a preferential model M, its

knowledge set KM is composed by every formula that is satisfied by every

state s of M.

We will call a knowledge base a finite set of formulae AK s.t. Cl(AK) = K.

Given a preferential relation |∼, and its canonical model M|∼, it is easy to

prove that a formula α is in the knowledge set of M|∼ (α ∈ K|∼) iff ¬α |∼ ⊥.

Lemma 4.1.4. α ∈ K|∼ iff ¬α |∼ ⊥.

Proof.

Assume a preferential relation |∼ and its canonical model M|∼.

α ∈ K|∼ iff every valuations in M|∼ satisfies α, i.e. there are no valuations

satisfying ¬α. This corresponds to min≺([¬α]S) = ∅, i.e. ¬α |∼ ⊥.

¥

We can define the monotonic core of an inference relation |∼.

Definition 4.1.7 (Monotonic core of a preferential relation |∼). The mono-

tonic core of an inference relation |∼ is the monotonic consequence operation

Cn|∼ (relation `|∼) obtained from Cl and the addition of K|∼ as a set of

extra-axioms:

Cn|∼(A) = Cl(K|∼ ∪ A) for every A ⊆ `
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A `|∼ α iff A ∪K|∼ ² α for every A ⊆ `

It is easy to prove that every preferential |∼ preserves consistency with

respect to its own monotonic core, as already informally shown in [38], p.81.

Theorem 4.1.5. Given an inference relation |∼ and its monotonic core `|∼,

we have:

α |∼ ⊥ ⇒ α `|∼ ⊥

Proof.

If α |∼ ⊥, then ¬α ∈ K|∼. Since Cn|∼(α) = Cl(K|∼, α), we have α `|∼ ⊥. ¥

Moreover, it is possible to strengthen the supraclassicality of |∼ with

respect to the new monotonic consequence relation:

Theorem 4.1.6. Given an inference relation |∼ and its monotonic core `|∼,

we have:

α `|∼ β ⇒ α |∼ β

Proof.

If α `|∼ β, then every world in [α]M|∼ satisfies also β. Since min≺([α]M|∼) ⊆
[α]M|∼ , we have α |∼ β ¥

On the other hand, we can do an analogous characterization of the be-

liefs of the agent, as the formulas the agent presumes as holding in the most

normal situations, in every minimal state s of the entire domain S (we could

also say all the states s s.t. s ∈ min≺([>]S)). Obviously such set of formulas

corresponds exactly to the set {α|> |∼ α}.

Definition 4.1.8 (Belief set B). Given an inference relation |∼, its belief

set B|∼ is composed by every formula that is satisfied by every minimal state

s of M, which corresponds to say B|∼ = {α|> |∼ α}
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We will call a belief base a finite set of formulae AB s.t. Cn|∼(AB) = B.

One can immediately see that K|∼ ⊆ B|∼ for every inference relation |∼, since

if a formula α is true in every state of a model, it is obviously true in every

preferred state.

4.1.1 Preferential entailment.

As we have seen, KLM-preferential relations are described completely by a

structural axiom (REF) and five structural conditions (LLE, RW, CM, CT,

OR).

Such conditions have the form of Horn-rules, i.e. ‘If α1 |∼ β1, . . . αn |∼ βn,

then αn+1 |∼ βn+1’, with only positive instances in the premises and a single

positive consequence.

It is well known that the satisfaction of Horn-conditions is closed under in-

tersection. That is, given a family I of relations {|∼i |i ∈ I} satisfying a set

R of Horn-conditions, the relation |∼⋂
I obtained by the intersection of the

relations in I (|∼⋂
I=

⋂{|∼i |i ∈ I}) continues to satisfy the conditions in R.

Just to make an example, take a relation |∼1 satisfying a rule of the form

α1 |∼1 β1, . . . αn |∼1 βn/αn+1 |∼1 βn+1

and a relation |∼2 satisfying the corresponding rule of the form

α1 |∼2 β1, . . . αn |∼2 βn/αn+1 |∼2 βn+1

and define a new relation |∼3=|∼1 ∩ |∼2.

|∼3 too will satisfy

α1 |∼3 β1, . . . αn |∼3 βn/αn+1 |∼3 βn+1

For every instance of the scheme, if both |∼1 and |∼2 satisfy the set of

premises, they will both satisfy the conclusion, and so will |∼3, verifying

the rule; if either |∼1 or |∼2 does not satisfy the set of premises, the same |∼3,
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again verifying the rule.

So, the intersection of a set of preferential inference relations will be a

preferential relation too. Then, assume a finite set of sequents B = {α |∼
β, . . . , γ |∼ ρ}, and take under consideration every preferential model sat-

isfying the sequents in B; every such model defines a preferential inference

relation |∼ s.t. B ⊆|∼. The inference relation |∼B, defined by the intersection

of every preferential |∼ satisfying B, will be a preferential relation too; in

particular, it will be the smallest preferential relation satisfying B.

This allows to develop a notion of semantical entailment, with respect to

KLM-preferential models, between sequents: given a set of sequents B, we

can consider as its preferential consequences the set of every sequent satisfied

by every preferential model of B. Moreover, we can reinterpret preferential

structural properties as rules of proof between sequents: we can start from a

finite set of sequents as premises and calculate their preferential consequences

by means of REF, LLE, RW, CM, CT, OR, having a complete semantical

characterization by means of the class of KLM-preferential models.

Now we are going to use |∼ not as a meta-linguistic symbol, but as a con-

nective inside the language: we define a new language `′ composed by all the

formulas of form α |∼ β, s.t. α and β are propositional formulas. We can

define a consequence relation ±P , having as arguments sequents, and the

associated closure operation.

Definition 4.1.9 (Preferential entailment ±P ). Let B be a set of sequents.

α |∼ β is preferentially entailed by B, written ‘B ±P α |∼ β’, iff it is satisfied

by all preferential models of B.

Definition 4.1.10 (Preferential closure). The set of all sequents that are

preferentially entailed by B will be denoted by P(B) (P(B) = {α |∼ β|B ±P

α |∼ β}).
The preferential inference operation P(B) is called the preferential closure of

B.
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From the behaviour of Horn rules under intersection and our representa-

tion result (Theorem4.1.2), we can easily obtain:

Theorem 4.1.7. ([25], Corollary 3.26, reinterpreted for preferential |∼) Let

B be a set of sequents. The following conditions are equivalent:

1. B ±P α |∼ β

2. α |∼ β is provable from B by means of REF, LLE, RW, CM, CT, OR.

This means that the conditions defining the preferential consequence rela-

tions can be used as a complete axiomatic system to derive new valid sequents

from a set of assumed sequents. Moreover, since the proofs are always finite,

and therefore use only a finite number of premises, preferential entailment is

compact.

We can also explicitly model the knowledge and the beliefs of an agent, using

K(α) and B(α) as abbreviations respectively of ¬α |∼ ⊥ and > |∼ α.

It is easy to see that ±P is a tarskian (and hence monotonic) consequence

operator, since this semantic consequence operator is of ‘all-or-nothing’ kind,

i.e. it depends upon the satisfaction of the consequent in all the models of

the premises.

Proposition 4.1.8. ±P satisfies Reflexivity, Monotony and Cut.

proof We check the three properties in turn.

◦ Reflexivity (REF):

B ±P α |∼ β for every α |∼ β ∈ B

This property is obviously satisfied.
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◦ Monotony (MON):

B ±P α |∼ β

B, γ |∼ δ ±P α |∼ β

If α |∼ β is satisfied by every model satisfying B, it will be obviously

satisfied in every model satisfying B∪{γ |∼ δ}, since they form a subset

of the former ones.

◦ Cut (CT):

B, γ |∼ δ ±P α |∼ β B ±P γ |∼ δ

B ±P α |∼ β

If B ±P γ |∼ δ, then the set of models satisfying B and the set of

models satisfying B ∪ {γ |∼ δ} are identical.

¥

KML’s results have been felt as a main turn in the study of defeasible rea-

soning: they have shown that it is possible to develop nonmonotonic systems

on the basis of theoretical desiderata, and moreover they have developed a

complete calculus for defeasible reasoning. Their preferential system is con-

sidered the main reference point in the consequentialist approach.

4.1.2 Other Horn-conditions

The general feeling is that the KML conditions exhaust the set of interesting

Horn-conditions for the characterization of defeasible reasoning.

There are other classical horn conditions to be considered:

◦ Easy half of the deduction theorem (EHD):
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α |∼ β → γ

α ∧ β |∼ γ

◦ Transitivity (T):

α |∼ β β |∼ γ

α |∼ γ

◦ Contraposition (CONTR):

α |∼ β

¬β |∼ ¬α

These three conditions cannot be taken under consideration, since they

are logically connected with monotonicity.

Proposition 4.1.9. ([25], Lemma 3.4) Given cumulativity and supraclassi-

cality, the conditions of Monotonicity, EHD, and Transitivity are all equiva-

lent.

Proposition 4.1.10. ([25], Lemma 3.5) Given LLE and RW, the condition

of Contraposition implies the condition of Monotonicity.

So, we have to avoid consequence relations satisfying these three rules.

There are other possible Horn-conditions between cautious monotony and

monotony (i.e. implied by MON and not by CM), but these are more of a

technical than a conceptual interest (see [4], sect.8).

The only one that could be interesting is Conjunctive Insistence.

◦ Conjunctive Insistence (CI):

α |∼ γ β |∼ γ

α ∧ β |∼ γ
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However, it is easy to find counterexamples to the rationality of such a

rule.

Assume Steve has to study some texts and to do a little lab project to pass

his biology class, but he knows that the teacher is not very demanding; so he

believes that if he studies the texts just superficially, he should presumably

pass the exam the same, and that concluding his project hastily, he should

presumably pass the exam the same. However, he would be irresponsible

in thinking that studying superficially the texts, and concluding hastily his

project, he should presumably pass the exam.

So, generally, we consider as exhausted the set of interesting Horn-conditions

in the field of defeasible reasoning.

4.2 Non-Horn Conditions

A good reasoner should always support the KLM-preferential rules, and

there does not seem to be other Horn-conditions to be included between

our desiderata. However, such rules often appear insufficient for the charac-

terization of an efficient rational behaviour, and we can identify a series of

other desirable conditions which do not have a Horn-form, i.e. which have

one or more premises in negative form:

α1 |∼ β1, . . . αi |∼ βi, αj 6|∼ βj, . . . αn 6|∼ βn/αn+1 |∼ βn+1

Or, equivalently, they have multiple conclusions, to be interpreted disjunc-

tively:

α1 |∼ β1, . . . αi |∼ βi/αj |∼ βj, . . . αn |∼ βn, αn+1 |∼ βn+1

The meaning of such kind of rules is that we can derive that some relations

do hold not only from the presence of some other sequents, but also from

the absence of them. With non-Horn rules, ignorance plays a direct role in

defeasible reasoning.

It is important to note that such non-Horn conditions are not closed under
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intersection as the Horn ones. For example, take the following instance of a

rule:

α |∼ β/γ |∼ δ, π |∼ ρ

Assume a relation |∼1 s.t.

α |∼1 β, γ |∼1 δ, and π 6|∼1 ρ

and a relation |∼2 s.t.

α |∼2 β, γ 6|∼2 δ, and π |∼2 ρ

They both validate the rule. Intersecting the two, we obtain a new relation

|∼3=|∼1 ∩ |∼2, s.t.

α |∼3 β, γ 6|∼3 δ, and π 6|∼3 ρ

|∼3 does not satisfy the above rule anymore.

We are going to present briefly some desirable Non-horn rules, stating the

known representation results and the dependencies between them. They are

all weakened forms of the classical structural rule (monotony, transitivity,

contraposition, deduction,. . . ).

4.2.1 Rational monotony

The ‘patrician’ rule between Non-horn rules is surely Rational Monotony :

◦ Rational Monotony (RM):

α |∼ γ α 6|∼ ¬β

α ∧ β |∼ γ

It is a very strong rule: it allows to add whichever new premise β assum-

ing monotonicity (α |∼ γ ⇒ α ∧ β |∼ γ), unless we are explicitly aware
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that such a formula would be exceptional in the actual situation (α |∼ ¬β).

Probably, it sounds also more intuitive in the form

α |∼ γ α ∧ β 6|∼ γ

α |∼ ¬β

If we think that when Susan sings, normally she is very good, but that if

she sings and she has a cold, normally she is awful, it is natural to conclude

that when Susan sings, normally she does not have a cold.

We define a Rational Inference Relation as a KLM-preferential relation sat-

isfying also RM. In [31], the authors have proved that the class of rational

relations is semantically characterized by the class of modular preferential

models, i.e. models characterized by a ranked preference relation.

Definition 4.2.1. A partial order ≺ over a set S is ranked iff there is a

totally ordered set Ω (the strict order on Ω will be denoted by <) and a

function r : S 7→ Ω (the ranking function) s.t. s ≺ t iff r(s) < r(t).

So, a ranked ≺ generates a model partitioned in a hierarchy of sets of

states. Informally, this has to be interpreted as saying that our notion of

normality is organized in a linear ‘scale’, and every situation finds its place

in such a scale of normality. Whether such a characterization of normality,

ordered on a linear scale, sounds an intuitive model of our everyday notion

of normality is an open question, left to the intuition of everyone. However,

Lehmann and Magidor have shown that every rational |∼ is generated by a

preferential model of such a kind.

Theorem 4.2.1 (Representation Theorem for Rational Relations). [[31],

Theorem 5]

An inference relation |∼ is rational iff it is defined by some modular prefer-

ential model (i.e. it corresponds to a consequence relation |∼M generated by

some ranked preferential model M).
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As we have seen above, transitivity is not a desirable property, since it

implies monotonicity. However, Freund, Lehmann and Morris (see [14], The-

orem 2.1) have proved that, given the KLM-preferential conditions, Rational

monotony is equivalent to a weakened form of transitivity:

◦ Weak Transitivity (WT):

α |∼ β β |∼ γ β 6|∼ ¬α

α |∼ γ

That is, transitivity between α, β, and γ holds just if α does not represent

an out-of-the-ordinary situation in β. Let us recall the penguin example: we

know that penguins are birds (α |∼ β), and that birds normally fly (β |∼ γ):

we are forced to derive that penguins normally fly (α |∼ γ), unless we are

informed that birds are not normally penguins (β |∼ ¬α), excluding penguins

from an acritical attribution of the properties of normal birds.

From rational monotony we can derive every interesting Non-horn condi-

tion for defeasible reasoning. Lehmann and Magidor have argued in favour

of conceiving rational monotony as a universally valid rationality principle,

so maintaining rational inference relations as the ‘core’ system for defeasible

reasoning. Others, as Makinson, think that rational monotony is too strong

a rule, not apt to be assumed in every model of defeasible reasoning.

“Rational monotony is too strong to insist upon, at least for

relations of strong support. For we may have A strongly support-

ing z, and although A does not go so far as to strongly support

¬x, it may still suggest the possibility of ¬x sufficiently to un-

dermine the inference of z from A ∪ {x}.” ([38], p.97)

Sometimes it is better to add to preferential rules only some of the weaker

rules derivable from RM.
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Notwithstanding, rational relations remain a reference point, because RM

is an intuitive rule and is generally applicable, and, moreover, the modular

order of the semantical structures allows to reason on models in a simple

way, as we are going to see below.

4.2.2 Derived properties

RM strictly implies some structural properties which confirm the intuitive-

ness of rational monotony.

◦ Weak Contraposition (WC):

γ ∧ α |∼ β γ 6|∼ β

γ ∧ ¬β |∼ ¬α

◦ Weak Rational Monotony (WRM):

> |∼ α → β > 6|∼ ¬α

α |∼ β

◦ Disjunctive Rationality (DR):

α ∨ β |∼ γ α 6|∼ γ

β |∼ γ

◦ Negation Rationality (NR):

α |∼ β α ∧ γ 6|∼ β

α ∧ ¬γ |∼ β

Weak contraposition allows the contraposition between two formulae α

and β, given a background γ, just if the conclusion that β normally holds

is dependent from the satisfaction of α, i.e. if we have γ, and β is negated,

84



presumably also α does not hold.

For example, we know that it is not normal for Bob to work on Sundays

(γ 6|∼ β), but that, if it is Sunday and he has to finish an urgent work, he

normally goes on working (γ ∧ α |∼ β); then we can conclude that, if it is

Sunday and Bob is not working, he presumably does not have any urgent

work to finish (γ ∧ ¬β |∼ ¬α).

Weak rational monotony is a weakened form of RM, and we will analyze

its properties in the next chapter.

A word apart is needed for Disjunctive rationality.

Disjunctive rationality and Injectivity

The behaviour of disjunctive rationality (DR) has been analyzed deeply by

Freund in [11].

Probably, its most intuitive form is

β 6|∼ γ α 6|∼ γ

α ∨ β 6|∼ γ

That is, for example: I do not think that, given that the day is rainy, it is

normally a good time for a walk (β 6|∼ γ), and that, given that the day is

very cold, it is a good time to go for a walk (α 6|∼ γ). Then I cannot think

that, if the day is rainy or very cold, it is normally a good time to go for a

walk (α ∨ β 6|∼ γ).

Some authors argue against the general validity of DR:

“[. . . ]Suppose a crime has been committed in a house where

two persons x and y live. Let γ stand for ‘Sherlock Holmes is

interested in finding the murderer’, α stand for ‘y is the murderer’

and β for ‘x is the murderer’. Then we have α ∨ β |∼ γ, but we

do not have necessarily α |∼ γ or β |∼ γ”([11], p.234)
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However, this kind of examples refers to the defeasible management of in-

formation in a particular context, that is, in an autoepistemic multi-agent

context; such auto-referentiality has been traditionally recognized as prob-

lematic in the development of logical epistemic models, and has to be often

treated apart. The fact that DR raises problems in such a context does not

weaken its general intuitive value in more standard situations, where the

auto-epistemic dimension of reasoning does not play any role.

If we limit ourselves to the specification of defeasible reasoning about fac-

tual information, then we are not aware of any counterexample to disjunctive

rationality. Also Makinson seems to agree with such an advice.

“[. . . ] disjunctive rationality does seem to be a sine qua non

for a reasonable inference relation on a language without indexical

connectives.” ([38], p.97)

In the language of consequence operators, DR can be rewritten as

C(α ∨ β) ⊆ (C(α) ∪ C(β))

In analyzing DR, Freund has also focused on a weakened version of such

property:

C(α ∨ β) ⊆ Cn(C(α) ∪ C(β))

He has proven that, given a finite language, such a condition characterizes

exactly the class of the inference operations defined by injective models, i.e.

preferential models s.t. every state is labeled by a distinct propositional

valuation (see above in Sect.4.1).

Theorem 4.2.2. ([11], Theorem 4.13)

Let ` be a logically finite language and |∼ a preferential inference relation on `.

Then |∼ is represented by an injective model iff C(α∨β) ⊆ Cn(C(α)∪C(β))

for every pair of formulas α and β.

If an inference relation |∼ satisfies such a property, we will call |∼ an

injective inference relation.

Between injective models, we can identify a particular class of models.
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Definition 4.2.2. A preferential model M = 〈S, l,≺〉 is said to be filtered if

whenever two states s and t of S satisfy a formula α without being minimal

in [α]S, there exists a state r s.t. r ≺ s, r ≺ t and r ² α.

Injective filtered preferential models represent disjunctive inference rela-

tions.

Theorem 4.2.3. ([11], Theorem 5.2) A preferential relation |∼ is disjunctive

if and only if it can be defined by a standard filtered model.

DR has as a special case negation rationality (NR),

α ∧ ¬γ 6|∼ β α ∧ γ 6|∼ β

α 6|∼ β

For example, assume Bob does not believe that if tomorrow is a sunny day,

he will presumably travel to Rome, and, contemporarily, he does not believe

that if tomorrow is not a sunny day, he will presumably travel to Rome. Bob

cannot believe that tomorrow he will presumably travel to Rome. As DR,

negation rationality has a strong intuitive appeal as long as we do not have a

situation with autoepistemic or other self-referential components. Makinson

proposes this example:

“Suppose, for example, that x and z are both propositions of

the language, but z says that the truth value of x is undermined

by the information available to us. Then we may indeed have

A 6|∼ x, A 6|∼ ¬x, so that A |∼ z, but neither A, x |∼ z, nor

A,¬x |∼ z.” ([38], p.92)

In [13] it has been proven that we can obtain DR from NR and injectivity.

As we have seen, RM implies DR, which in turn implies Injectivity. So

every rational relation |∼ has an injective canonical model. Hence, we know

that every rational relation has a ranked canonical model (not necessarily

injective) and an injective canonical model. We could ask whether such an

injective model is also ranked. The answer is affirmative.
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Theorem 4.2.4. ([4], Corollary 4.7) Every rational inference relation |∼ is

generated by some injective ranked preferential model.

4.2.3 Rational closure

It would be interesting to consider the question of building a notion of en-

tailment also for these stronger inference relations. For example, given a set

B of sequents, we would like to define the set of its rational consequences

intersecting all the sets of sequents satisfied by every rational models of B,

analogously to the preferential entailment. Unfortunately, as we have seen

above, non-Horn conditions are not preserved under intersection, and the in-

tersection of a set of rational relations (or, in general, relations characterized

by non-Horn conditions) could be not a rational relation.

In particular, Lehmann and Magidor proved that, given a set of sequents B,

and the corresponding set of those ranked models satisfying it, the notion of

entailment defined by the intersection of the consequence relations satisfied

by such models corresponds to the preferential entailment of B, i.e. the only

conditions preserved are the Horn ones.

Theorem 4.2.5. ([31], Theorem 6) If the sequent α |∼ β is satisfied by all

ranked models that satisfy all the sequents in B, then it is satisfied by all

preferential such models.

A result of this kind can be easily validated for every relation charac-

terized by a non-Horn condition. Such results emphasize the impossibility

of modeling a ‘classical’ notion of entailment for this kind of consequence

relations, i.e. a notion of entailment defined semantically by the intersection

of all the models satisfying the set of premises.

Lehamnn and Magidor ([31]) have proposed to determine the rational con-

sequences of a set B by selecting a single rational model satisfying B. We

could say that, moving on the meta-linguistic level, we move from a skeptical

approach (as in preferential entailment) to a choice approach (see Sect.2.2),

focusing on a specific rational model of B, and determining B’s rational con-
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sequences only referring to it and ignoring the other models.

So, given a set of sequents B, we move from the problem of determining a

form of closure of B by means of a notion of logical entailment (P(B)), to

the definition of a form of rational closure R(B) by choosing a single rational

model of the set B.

The main problem is to define a principle for selecting which of the rational

expansions of B has to be chosen, i.e. which one contains the sequents we

intuitively expect to follow from B.

Lehmann and Magidor suggest that, if we are in a situation s.t., given α |∼ β,

we don’t know which new sequent to add, α |∼ ¬γ or α ∧ γ |∼ β, we should

tend, whenever it is possible, to assume monotonicity and not to add arbi-

trarily new information, i.e. we should tend to add α ∧ γ |∼ β and ignore

α |∼ ¬γ.

Moreover, we should tend not to modify the belief set and the knowledge set

determined by the preferential closure of B, i.e.

> |∼ α ∈ R(B) iff > |∼ α ∈ P(B)

¬α |∼ ⊥ ∈ R(B) iff ¬α |∼ ⊥ ∈ P(B)

Exceptionality ranking

Lehmann and Magidor define a notion of rational closure of a set of sequents

B apt to respect such desiderata. First of all, they build an ordering of

exceptionality for formulas and sequents.

Definition 4.2.3. (Exceptionality) Let B be a set of sequents and α a for-

mula. The formula α is said to be exceptional for B iff B preferentially

entails the sequent > |∼ ¬α. The sequent α |∼ β is said to be exceptional for

B iff its antecedent α is exceptional for B.

We call E(B) the set of all the sequents of B exceptional for B itself

(E(B) ⊆ B). We can define a hierarchy of decreasing subsets of B R =

{C0, . . . , Cn}:
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◦ C0 = B

◦ Ci+1 = E(Ci)

If B is a finite set, the sequence of Ci will be finite, i.e., after some point,

all Cs will be equal and completely exceptional (maybe empty).

Definition 4.2.4 (Rank of formulas). We shall say that a formula α has

rank i for B iff Ci is the least set s.t. α is not exceptional for Ci (i.e.

Ci 6±P > |∼ ¬α and, if i 6= 0, Ci−1 ±P > |∼ ¬α).

If α has rank i, then every sequent α |∼ β will have rank i for every β

A formula α has no rank iff it is completely exceptional, that is iff

∅ ±P α |∼ ⊥ (α is |∼-inconsistent).

On the basis of such a ranking, Lehmann and Magidor define a rational

closure of a set B satisfying the desiderata seen above.

Definition 4.2.5 (Rational closure). Let B be a set of sequents. The rational

closure R(B) of B exists and is the set of all the sequents α |∼ β s.t. either

◦ The rank of α is strictly less than the rank of α ∧ ¬β, or

◦ α has no rank.

So, given a set of sequents B, it is possible to define a rational closure op-

eration R(B) s.t. it observes some intuitive desiderata with respect to B. We

can construct a modular canonical model of R(B) by means of the complex

technique used in [31], Appendix A, to prove the representation theorem for

RM.

In Chapter 6 we will see how the connections with the default-assumption

approach allows for a simple method to build a canonical model for the ra-

tional closure of a set B.
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Valuation of the rational closure

The quality of rational closure has been evaluated by means of a series of

examples. Lehamann and Magidor in [31] have tested the behaviour of ra-

tional closure with respect to some classical example for the valuation of

nonmonotonic logics.

◦ Nixon diamond.

Assume the following conditional base:

1. ρ |∼ ¬π

2. µ |∼ π

We interpret ρ, π, µ respectively as ‘being a republican’, ‘being a pacifist’,

and ‘being a quaker’.

With rational closure, we obtain intuitive results, as ρ∧µ 6|∼ π and ρ∧µ 6|∼ ¬π.

◦ Penguin triangle.

Assume the following conditional base:

1. π |∼ β

2. π |∼ ¬φ

3. β |∼ φ

Here π, β, φ are respectively interpreted as ‘being a penguin’, ‘being a

bird’, and ‘being able to fly’.

The following intuitive sequents result valid:

φ |∼ ¬π, ¬φ |∼ ¬β, ¬φ |∼ ¬π, β |∼ ¬π, ¬β |∼ ¬π, β∧π |∼ ¬φ, β∧green |∼ φ,

π ∧ black |∼ ¬φ.

Instead, the following sequents are counterintuitive, and the rational closure

does not endorse them:

β ∧ ¬φ |∼ π, β ∧ ¬φ |∼ ¬π, π |∼ φ.
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However, notwithstanding a generally satisfying behaviour, rational clo-

sure can return counter-intuitive results. In [44], Paris presents three exam-

ples of strange behaviour of the rational closure.

The first two examples are related to the failure of property inheritance from

a class to an exceptional subclass.

(i) Consider the conditional base B = {β |∼ φ, π |∼ ¬φ, π ∧ ¬β |∼ ⊥, β |∼
ω}, where β, π, φ, ω stand for ‘bird’, ‘penguin’, ‘flies’, and ‘has wings’ respec-

tively. In R(B), the rational closure of B, we have π 6|∼ ω, while we would like

that birds’ property of ‘wingedness’ should be inherited by the exceptional

classes, like penguins, if we are not informed of the contrary.

(ii) Consider the conditional base B = {σ |∼ τ, σ |∼ φ}, where σ, τ, φ

stand for ‘Swedish’, ‘tall’, and ‘fair’ respectively. In this case R(B) does not

satisfy ‘Short Swedes are usually fair’ (¬τ ∧% 6|∼ φ), despite the fact that one

could feel that the property of fairness is sufficiently independent from the

property of tallness to be inherited by the class of short Swedes.

The third example is more significative, since it shows the drawing of un-

justified conclusions; while the non-derivability of desirable conclusions, as

in (i) and (ii), can be justified by the absence of relevant information in the

premises, the derivation of undesired conclusion emphasize a sure problem

in the structure.

(iii) Take B = {φ ∧ π |∼ ω, γ |∼ ¬ω}, where φ, π, ω, γ stand for ‘factory

worker’, ‘manager’, ‘well-off’, and ‘drives an economy car’ respectively.

In R(B) we do not have φ ∧ π ∧ γ |∼ ω. However , if we expand B adding

φ |∼ ¬ω, surprisingly, in R(B∪{φ |∼ ¬ω}) we have φ∧π∧γ |∼ ω, despite the

fact that the added sequent would seem to support the conclusion that man-

agers working in factories and driving economy cars are usually not well-off.
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Hence, rational closure is generally well-behaved, but shows some prob-

lems in the property-heritage from more normal to more exceptional situa-

tions. We will see this better at the end of Chapter 6.
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Chapter 5

Weakly rational inference

relations

Abstract. We prove a representation theorem for weakly rational inference

relations.

We are going to present a representation theorem for the weakly rational

inference relations. Weak rational monotony (WRM) is a property firstly

presented in [19], and it has not received a lot of attention. We are going to

investigate its properties since it will be useful in the following chapters.

We define a weakly rational inference relation |∼ as a preferential relation

closed under weak rational monotony, i.e. satisfying the following rules:
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REF α |∼ α Reflexivity

LLE
α |∼ γ ² α ↔ β

β |∼ γ
Left Logical Equivalence

RW
α |∼ β β ² γ

α |∼ γ
Right Weakening

CT
α |∼ β α ∧ β |∼ γ

α |∼ γ
Cautious Cut (Cautious Transitivity)

CM
α |∼ β α |∼ γ

α ∧ β |∼ γ
Cautious Monotony

OR
α |∼ γ β |∼ γ

α ∨ β |∼ γ
Disjunction in the Premises

WRM
> |∼ α → β > 6|∼ ¬α

α |∼ β
Weak Rational Monotony

WRM is an important property, because, combined with conditionaliza-

tion, it gives a weakened form of the deduction theorem:

> 6|∼ ¬α ⇒ (> |∼ α → β ⇔ α |∼ β)

It is also intuitive, being interpreted as: “If in any normal situation α

implies β, and there are normal situations in which α holds, then, given α,

β normally holds”.

We want to show that this class of consequence relations is represented by a

particular class of preferential models.
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Definition 5.0.6. (Optimal models)

Given a preferential model M = 〈S, l,≺〉, we call it optimal iff its minimal

states (i.e. the set min≺(S)) is composed by states s s.t. s is preferred to

every other nonminimal world in S.

s ∈ min≺(S), t ∈ (S \min≺(S)) ⇒ s ≺ t

This means that a normal situation (a situation in min≺(S)) is considered

more normal than any exceptional situation, and we will call every normal

situation an optimal situation. This seems a very intuitive claim.

5.1 Representation theorem

We want to show that weakly rational inference relations are represented by

the class of optimal preferential models. We will show a representation the-

orem with the same approach used in [25] for their representation theorem

(Theorem 5.18).

First of all, we have to prove the soundness of our rules in every optimal

model.

Lemma 5.1.1 (Soundness). For any optimal model M, the inference relation

|∼M it defines is a weakly rational inference relation.

Proof. Since we already know that every preferential rule is sound with

respect to every KLM preferential model ([25], Lemma 5.8), we need to sim-

ply show that every inference relation defined by an optimal model satisfies

WRM.

Suppose > |∼M α → β and > 6|∼M ¬α. > 6|∼M ¬α implies that there is

at least one optimal state s s.t. s ² α. Since every such state is preferred

to every non-optimal world, we have that min≺([α]S) ⊆ min≺(S). Since

> |∼M α → β, we have that, for every state s, if s ²≺ α, then s ² α → β, i.e.
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s ² β. So, we have that α |∼M β.

¥

Now we have to show that every weakly rational inference relation |∼ cor-

responds exactly to the inference relation |∼M defined by an optimal model

M, its canonical model.

We assume a weakly rational inference relation |∼, and we introduce an or-

dering between the formulas of our language `:

α ≤ β iff α ∨ β |∼ α.

This means that normally, if we know that α ∨ β holds, we assume that

α holds, i.e. that α is at least as normal as β.

It can be shown that ≤ is a reflexive and transitive relation ([25], Lemma

5.10).

Since from REF we have α ∨ β |∼ α ∨ β, and by LLE (α ∨ β) ∨ α |∼ α ∨ β,

we obtain α ∨ β ≤ α for every α, β ∈ `.

We can also see that the beliefs of the agent are exactly the minimal (pre-

ferred) elements of such an ordering, i.e. that a formula α is at least as

normal as β for every β ∈ ` iff > |∼ α.

Proposition 5.1.2. α ≤ β for every β ∈ ` iff > |∼ α.

Proof.

⇐: If > |∼ α, then, by RW, > |∼ α∨ β for every formula β. This implies, by

CM, that α ∨ β |∼ α, i.e. α ≤ β for every β.

⇒: If α ≤ β for every formula β, then we also have α ≤ >, that implies

α ∨ > |∼ α, i.e. > |∼ α by LLE.

¥

There are other properties of the beliefs of a preferential agent that will

be useful in the following:
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Lemma 5.1.3. If > |∼ α and > |∼ β, then C(α) = C(β).

Proof.

If > |∼ α and α |∼ γ, then, by CT, > |∼ γ, and, by CM, β |∼ γ, hence

C(α) ⊆ C(β). The same in the other direction.

¥

Lemma 5.1.4. If > |∼ β and α ≤ β, then > |∼ α.

Proof.

> |∼ β implies > |∼ α ∨ β (by RW).

If α ≤ β, we have α ∨ β |∼ α, which implies, by CT, > |∼ α.

¥

To build the canonical model for |∼, we have to introduce the notion of

normal world with respect to a formula, that is, a valuation satisfying all the

defeasible consequences of such formula.

Definition 5.1.1 (Normal worlds). We call the world w a normal world for

α iff w ² β for every β ∈ ` s.t. α |∼ β.

Kraus, Lehmann and Magidor have shown that the intersection of the

formulas satisfied by every normal world of a formula α returns exactly the

set of the defeasible consequences of such a formula.

Lemma 5.1.5 ([25], Lemma 3.18). Suppose a consequence relation |∼ satis-

fies REF, RW and AND, and let α, β ∈ `. All normal worlds for α satisfy β

iff α |∼ β.

We point toward the construction of an optimal model s.t., for every for-

mula α, the set of α-preferred worlds corresponds to the set of α-normal

worlds.

Since a weakly rational |∼ is also a preferential inference relation, we can use
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some results from [25].

Lemma 5.1.6 ([25], Lemma 5.11). If α ≤ β and w is a normal world for α

that satisfies β, then w is a normal world for β.

Lemma 5.1.7 ([25], Lemma 5.12). If α ≤ β ≤ γ and w is a normal world

for α that satisfies γ, then w is a normal world for β.

Now we are going to define a model M on the basis of the relation ≤. We

will have to prove that it is an optimal model and that it is the canonical

model for our weakly rational inference relation |∼.

M = 〈S, l,≺〉, where:

(i) S = {〈w,α〉| w is a normal world for α}

(ii) l(〈w,α〉) = w

(iii) 〈w,α〉 ≺ 〈v, β〉 iff (α ≤ β and w 2 β) or (> |∼ α and > 6|∼ β)

First of all, we have to show that M is an optimal model, i.e. that ≺ is

a strict order and that M satisfies optimality and smoothness.

Lemma 5.1.8. The relation ≺ is a strict partial order, i.e., it is irreflexive

and transitive.

Proof.

≺ is irreflexive, since 〈w,α〉 ≺ 〈w, α〉 would imply w 2 α and w ² α, or

> |∼ α and > 6|∼ α.

For transitivity, assume 〈w, α〉 ≺ 〈v, β〉 and 〈v, β〉 ≺ 〈s, γ〉. Fist of all we can

see that > 6|∼ β and > 6|∼ γ, otherwise 〈w, α〉 6≺ 〈v, β〉 and 〈v, β〉 6≺ 〈s, γ〉. So

β ≤ γ and v 2 γ.

If > |∼ α, 〈w, α〉 ≺ 〈s, γ〉 immediately.

If > 6|∼ α, we have α ≤ β and w 2 β.

From the transitivity of ≤, we obtain α ≤ γ.
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Since α ≤ β ≤ γ and w 2 β, we have w 2 γ by Lemma 5.1.7.

So, 〈w,α〉 ≺ 〈s, γ〉.
¥

We have to show that M satisfies optimality. First, we characterize the

set min≺(S) by the following.

Lemma 5.1.9. 〈w,α〉 ∈ min≺(S) iff > |∼ α.

Proof.

⇒: Assume > 6|∼ α. Then for every world 〈v, β〉 s.t. > |∼ β we have

〈v, β〉 ≺ 〈w, α〉, hence 〈w,α〉 6∈ min≺(S).

⇐: Assume 〈w,α〉 6∈ min≺(S), i.e. there is a world 〈v, β〉 s.t. 〈v, β〉 ≺ 〈w, α〉.
Since > |∼ α, the second claim in the definition of ≺ cannot be satisfied, and

so β ≤ α and v 2 α.

By Lemma 5.1.4, we wave that if β ≤ α and > |∼ α, we obtain > |∼ β. So,

by lemma 5.1.3, we have that in 〈v, β〉, v ² α. So 〈v, β〉 ≺ 〈w,α〉 cannot

hold.

¥

Lemma 5.1.10. If > |∼ α, then 〈w,α〉 ≺ 〈v, β〉 for every 〈v, β〉 6∈ min≺(S)

Proof.

If 〈v, β〉 6∈ min≺(S), then > 6|∼ β. So, by the definition of ≺, 〈w, α〉 ≺ 〈v, β〉.
¥

This shows that M is an optimal model, since the states defined as nor-

mal worlds for the beliefs of the agent are preferred to any other state.

From optimality it is easy to prove smoothness.
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Lemma 5.1.11. M satisfies smoothness.

Proof.

Optimality implies that [>]S ([>]S = S) is a smooth set, i.e. S 6= ∅ implies

min≺(S) 6= ∅.
Assume that M does not satisfy smoothness, i.e. there is a formula α ∈ `

s.t. we have an infinite descending chain of worlds satisfying α. Since such

worlds would also satisfy >, we would have an infinite descending chain of

worlds satisfying >, and that would contradict the smoothness condition of

the set S.

¥

So, M is a preferential model satisfying optimality.

Now we have to show that, for every formula α, the set of minimal worlds of

α corresponds to the set of its normal worlds.

We have to distinguish two cases: > |∼ ¬α and > 6|∼ ¬α.

First of all, let us consider the case that > 6|∼ ¬α.

Lemma 5.1.12. Let > 6|∼ ¬α.

If w is a normal world for α, then there is a copy of the valuation w, 〈w, β〉,
for every β s.t. > |∼ β.

Proof.

It is sufficient to show that, if w is normal for α and > 6|∼ ¬α, w is a normal

world also for any belief β.

Given > |∼ β, we have, by CT, that > |∼ γ for every γ s.t. β |∼ γ.

From > |∼ γ and > 6|∼ ¬α we obtain, by RW and WRM, α |∼ γ.

So, since w is a normal world for α, if β |∼ γ, then α |∼ γ and so w ² γ, i.e.

w is a normal world for β and 〈w, β〉 ∈ S.
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¥

Lemma 5.1.13. If 〈w, β〉 is an optimal world and w ² α, then w is a normal

world for α.

Proof.

Assume α |∼ γ. By conditionalization, we have > |∼ α → γ. So, since

w ∈ min≺(S), w ² α → γ, that, together with w ² α, gives w ² γ. So w is a

normal world for α.

¥

From the above lemmas and optimality we have:

Lemma 5.1.14. Let > 6|∼ ¬α.

min≺([α]S) ⊆ min≺(S), and there is a state 〈w, β〉 ∈ min≺([α]S) iff w is a

normal world for α.

Now, let us move to the case that > |∼ ¬α.

Lemma 5.1.15. Let > |∼ ¬α.

In the model M, 〈w, β〉 ∈ min≺([α]s) iff w ² α and β ≤ α.

Proof.

⇒: Assume 〈w, β〉 ∈ min≺([α]s). Then w ² α.

If > |∼ β, then β ≤ α for every α.

If > 6|∼ β, we have to prove that α ∨ β |∼ β. Suppose there is a normal

world v for α ∨ β s.t. v 2 β. Since α ∨ β ≤ β for every formula, we have

〈v, α ∨ β〉 ≺ 〈w, β〉. But since v ² α ∨ β and v 2 β, we have v ² α, contrary

to the α-minimality of 〈w, β〉.
So every normal world for α ∨ β satisfies β, and, by Lemma 5.1.5, we have

that α ∨ β |∼ β, i.e. β ≤ α.

⇐: Assume w ² α and β ≤ α and that 〈w, β〉 6∈ min≺([α]S), i.e. there is

a world 〈v, γ〉 s.t. 〈v, γ〉 ≺ 〈w, β〉 and v ² α. Since > |∼ ¬α, v cannot be an
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optimal world and, by Lemma 5.1.9, > 6|∼ γ.

So 〈v, γ〉 ≺ 〈w, β〉 because γ ≤ β and v 2 β.

Hence, γ ≤ β ≤ α, v is a normal world for γ, v 2 β and v ² α, which is in

contradiction with Lemma 5.1.7.

¥

From this Lemma and Lemma 5.1.6, we obtain:

Lemma 5.1.16. Let > |∼ ¬α.

If 〈w, β〉 ∈ min≺([α]s), then w is a normal world for α.

Proof.

If 〈w, β〉 ∈ min≺([α]s), then , by Lemma 5.1.15, 〈w, β〉 ² α and β ≤ α. So,

by Lemma 5.1.6, w is a normal world for α.

¥

Lemma 5.1.17. Let > |∼ ¬α.

If w is a normal world for α, 〈w,α〉 ∈ min≺([α]S).

Proof.

〈w, α〉 ² α and α ≤ α (since α∨α |∼ α is preferentially valid). So, by Lemma

5.1.15, 〈w, α〉 ∈ min≺([α]s).

¥

From Lemma 5.1.14, Lemma 5.1.16 and Lemma 5.1.17, we obtain:

Lemma 5.1.18. In the model M, for every formula α, the set min≺([α]s) is

composed exactly by at least one copy of every normal world w for α.

This result and Lemma 5.1.5 allow to derive that M is a canonical model

for the inference relation |∼.

Lemma 5.1.19. For every α and β, α |∼ β iff α |∼M β
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Proof.

α |∼M β iff w ² β for every w ∈ min≺([α]s); such condition, by Lemma 5.1.18

and Lemma 5.1.5, corresponds to say that α |∼ β.

¥

Now we know that every optimal model generates a weakly rational in-

ference relation (Lemma 5.1.1), and that for every weakly rational inference

relation there is an optimal model representing it (Lemma 5.1.19).

This can be summed up in the following.

Theorem 5.1.20 (Representation Theorem for Weakly Rational Inference

Relations). A consequence relation is a weakly rational inference relation iff

it is defined by some optimal model.

5.2 Relations with Injectivity

Weak rational monotony is a special case of rational monotony. In [13], the

authors have proven that weak rational monotony and negation rationality

are independent, and so it also does not imply disjunctive rationality.

Since RM implies injectivity, we want to investigate if also WRM implies

injectivity, since in the next chapter we will mainly deal with optimal injective

models.

To prove that WRM does not imply injectivity it is sufficient to show that

there is a non-injective model defining a weakly rational consequence relation

that cannot be generated by means of an injective model.

Proposition 5.2.1. Weak rational monotony does not imply injectivity.

Proof. Take a language ` generated from two elementary letters p, q. We

define the optimal non-injective model M described in Fig. 5.1. We have

to prove that there is not an injective model defining the same consequence

relation.
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Figure 5.1: Non-injective optimal model

An injective model of the language ` cannot have more than four states,

since four are the possible valuations for a two-letters language. Observe that

in M the following sequents hold: > |∼ ¬p ∧ q; p ∧ q 6|∼ ⊥; p ↔ q 6|∼ p ∧ q;

p ↔ q 6|∼ ¬p ∧ ¬q; p 6|∼ q; p 6|∼ ¬q; p ∨ ¬q |∼ ¬q.

We can try to build a corresponding injective model (see Fig. 5.2).

(1) > |∼ ¬p∧q implies that the valuation (¬p, q) has to be the preferred one.

(2) Since p∧q 6|∼ ⊥, the valuation (p, q) has to be in the model, above (¬p, q).

(3) Since p ↔ q 6|∼ p ∧ q and p ↔ q 6|∼ ¬p ∧ ¬q, in the model there must be

also (¬p,¬q). It has to be above (¬p, q), but it cannot be neither preferred to

(p, q) (otherwise p ↔ q |∼ ¬p ∧ ¬q), nor above it (otherwise p ↔ q |∼ p ∧ q).

(4) Since p 6|∼ q and p 6|∼ ¬q, with an argument similar to that in (3), we are

forced to position (p,¬q) above (¬p, q) and disjoint from the other valuation.

However, this model does not satisfy p ∨ ¬q |∼ ¬q.

¥
So, this counterexample shows that there can be non-injective weakly ra-

tional consequence relations.
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Figure 5.2: Injective model
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Chapter 6

Using default-assumptions in

closure operations

Abstract. We shall show how it is possible to use the default-assumption

approach in order to build in a simple way semantical models for non-Horn

closures of conditional bases.

In Chapter 3 we have seen that there is a correspondence between Shoham’s

preferential models and default-assumption models. In this chapter we are

going to see how such a correspondence can be used in the construction of

semantic models for some non-Horn inference relations.

The chapter is organized as follows.

In Section 6.1 we are going to analyze more deeply the behaviour of pref-

erential models generated from sets of default-formulas. In particular, we

shall see that such generation methods can be used only in dealing with

injective preferential models, and we will check, assuming consistent default-

assumption sets, which kind of preferential models we can obtain.

In Section 6.2 we shall define the generation of preferential models represent-

ing weakly rational closures and rational closures of a given set of sequents

B. We shall begin by stating the desiderata of such closure operations, then
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we shall investigate more deeply the role of knowledge, beliefs and inconsis-

tencies in such closures, and how they are related to the construction of a

default-assumption set. Finally, we shall present our closure operations.

6.1 Generated preferential models

First of all, we have to analyze the behaviour of the preferential models

generated by sets of default formulae.

6.1.1 Injectivity

We can note from the constructions in chapter 3 that the correspondence

between the default-assumption approach and the preferential one is limited

only to injective models, and cannot be extended to models with multiple

copies. The reason is simple: in generating an order from a set of defaults

∆ (see Definition 3.1.1), we refer only to the valuations associated with the

states, and it becomes impossible to differentiate the relative positions in the

ordering of different states associated with the same valuation. We say that

two states have the same relative position in a preferential model iff they

have the same sets of states above and below them.

Lemma 6.1.1. Assume a set of states S, a non-injective labeling function l

and a set of default formulae ∆. If two states s, t ∈ S are associated with the

same propositional valuation w, then they have the same relative position in

the ordering δ∆.

Proof.

Recall that δ∆ = {(r, u) ∈ S × S | ∆r ⊃ ∆u}. Since s and t are associated

with the same valuation w, we have that ∆s = ∆t, both equal to ∆w.

Obviously from the definition of δ∆, for every state r:

r ≺ s iff r ≺ t
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s ≺ r iff t ≺ r

¥

We say that two preferential models are inferentially equivalent if they

define the same inference relation |∼.

We can prove that a non-injective model generated by a set of default-

assumptions, as the one described in the lemma above, is inferentially equiv-

alent to its injective restriction (i.e. the model obtained by eliminating every

state labeled with the same valuation as another state).

Lemma 6.1.2. Assume a model M = 〈S, l,≺〉 s.t. two states s, t ∈ S are

associated with the same valuation w and have the same relative position in

≺. Let M′ be a model s.t. it corresponds to M restricted to the set of states

S ′ = S − t. Then |∼M=|∼M′

Proof.

We have to show that for every pair of formulas α and β, α |∼M β iff α |∼M′ β.

Given the same relative position and the same associated valuation, for every

formula α, s ∈ min≺([α]S) iff t ∈ min≺([α]S).

Take a state r s.t. r 6= t. We have to show that, for every formula α,

r ∈ min≺([α]S) in M iff r ∈ min≺([α]S′) in M′. If r ∈ min≺([α]S), then

for every state q s.t. q ≺ r, q 2 α. Since S ′ is a restriction of S, then, also

in S ′, for every state q s.t. q ≺ r, q 2 α, and r ∈ min≺([α]S′). Assume

r ∈ min≺([α]S′); then, moving to S, the only possibility for r /∈ min≺([α]S)

is that t ≺ r and t ² α. But, since s is in the same relative position of t and

is associated to the same valuation, in S ′ we would have s ≺ r, s ² α, and

r /∈ min≺([α]S′).

So, for every formula α s.t. s, t /∈ min≺([α]S), we have min≺([α]S) =

min≺([α]S′).

Take a formula α s.t. s, t ∈ min≺([α]S). Since s and t contribute with the

same valuation to the determination of the defeasible consequences of α, if

we eliminate t from the set min≺([α]S), min≺([α]S′) contains the same set
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of valuations, since the contribution of t is preserved by s. Conversely, if

s ∈ min≺([α]S′), we shall have that s, t ∈ min≺([α]S), but, since the contri-

bution of t is guaranteed in S ′ by s, its addition is redundant and min≺([α]S)

contains the same valuations as min≺([α]S′).

Hence, for every formula α, min≺([α]S) and min≺([α]S′) contain the same

valuations, i.e. α has the same defeasible consequences. ¥

From Lemmas 6.1.1 and 6.1.2, we can easily derive the following:

Proposition 6.1.3. Given a ∆-generated non-injective model M, it defines

the same inference relation |∼ generated by the corresponding ∆-generated

injective model M′.

Analogously, such problems with the use of default assumptions in an-

alyzing non-injective preferential models also arise if we try to extract the

characteristic set of defaults (see Section 3.1) from a non-injective preferen-

tial model. Here is an example.

Assume the non-injective model depicted in Fig. 6.1.

Using the method delineated in Proposition 3.1.3, we obtain the character-

Figure 6.1: Non-injective model

istic set of defaults ∆ = {ϕ1, ϕ2, ϕ3, ϕ4}, where ϕ1 is (p∧ q)∨ (p∧¬q), ϕ2 is

(p ∧ q) ∨ (¬p ∧ ¬q), ϕ3 is (p ∧ ¬q), and ϕ4 is (¬p ∧ ¬q).
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If we try to re-generate the ordering of such set of worlds by means of ∆, we

obtain a totally disjoint model, depicted in Fig. 6.2, which obviously does

not generate the same inference relation as the previous one.

Figure 6.2: Model generated by ∆ (every state has in parenthesis the defaults

it satisfies)

Hence, the method to extract the characteristic set of an ordering, pre-

sented in Section 3.1, does not work for non-injective models. The corre-

spondence between the preferential and the default-assumption approaches

is restricted to injective inference relations.

6.1.2 Consistent default-assumption sets

We would also like to analyze the behaviour of ∆-generated preferential mod-

els, assuming we are working with a consistent default-set ∆. In fact, as we

will see in more detail in the next chapter, the consistency of ∆ is not nec-

essary for the construction of well-behaved injective preferential models, but

the consistency of our set of default-assumptions is obviously an intuitive

desideratum, and corresponds to an interesting class of preferential models.

At the end of Section 3.1, we have generalized our default-assumption con-

sequence relations in order to also admit ‘hard’ background information, i.e.

an agent with a knowledge set. So, we need a notion of consistency relative

to such knowledge set.

Definition 6.1.1. (K-consistency)
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Assume a default-assumption system S = 〈K, ∆〉. We say that ∆ is K-

consistent iff ∆ ∪K 2 ⊥

Remember that, given a system S = 〈K, ∆〉, we can construct the cor-

responding preferential model M = 〈UK , δ∆〉, where UK is the set of all the

valuations satisfying all the formulae in K, and δ∆ the preferential order

generated by ∆ over UK (see Theorem 3.1.11).

Lemma 6.1.4. Assume a system S = 〈K, ∆〉, and the corresponding pref-

erential model M = 〈UK , δ∆〉. If ∆ is K-consistent , then M is an optimal

model (see Definition 5.0.6).

Proof.

If ∆ is K-consistent, then there is at least a world w in UK s.t. w ² γ for

every γ ∈ ∆ (∆w = ∆). [∆]U is the set of such worlds in UK satisfying every

formula in ∆. From the definition of the generated order δ∆ (see Definition

3.1.1), it is immediate to see that the worlds in [∆]U are preferred to any

other world in UK . Hence M is an optimal model.

¥

We can also prove that every optimal injective model can be generated by

a consistent set of default-assumptions. Recall from Section 3.1 the formula

KU =
∨{αw|w ∈ U}, characterizing the knowledge contained in a set of

valuations U (αw is the formula characterizing univocally a valuation w).

Lemma 6.1.5. Given an optimal model M = 〈U, δ〉 there is a KU -consistent

default-assumption set generating it.

Proof.

Assume an optimal model M = 〈U, δ〉. Define the set minδ(U) of its optimal

valuations. Recall from Section 3.1 the notion of the characteristic set ∆δ of

the order δ:

∆δ = {βw|w ∈ U}
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where

βw := αw ∨
∨

v≺δw

{αv}

We know, generalizing Proposition 3.1.3, that S = 〈KU , ∆δ〉 generates M =

〈U, δ〉.
Transform ∆δ in ∆′, substituting β′w to every βw in the following way:

β′w =

{
βw If w /∈ min(U)∨{αv|v ∈ min(U)} If w ∈ min(U)

Since w ²
∨{αv|v ∈ min(U)} iff w ∈ min(U), it is easy to see by Defini-

tion 3.1.1 that ∆′ generates the same order as ∆δ, so S′ = 〈KU , ∆′〉 generates

M = 〈U, δ〉.
We have to show that ∆′ is KU -consistent, i.e.

∧
∆′ 0 ⊥ (where ` is the

supraclassical monotonic consequence relation generated from the classical ²
adding KU as extra-axioms).

Since, by optimality, w ∈ minδ(U) iff w ≺ v for every v /∈ minδ(U), we have

that
∨{αv|v ∈ minδ(U)} is part of the disjunction forming every β′w, i.e.

every β′w has the form γ ∨ ∨{αv|v ∈ minδ(U)} for some γ, with ` γ ↔ >
only in case w ∈ min(U).

Let π be short for
∨{αv|v ∈ minδ(U)}. Then we have that

∧
∆′ is equiva-

lent to π ∧ (γ1 ∨ π) ∧ . . . ∧ (γn ∨ π), with each γi ∨ π characterizing a βw for

w /∈ min(U).

Since we have that, for every formulas φ and ψ, (φ ∨ ψ) ∧ ψ is logically

equivalent to ψ, we have that
∧

∆′ is logically equivalent to π, i.e. to∨{αv|v ∈ minδ(U)}.
Since every αv with v ∈ U is necessarily KU -consistent, we have that

∨{αv|v ∈
minδ(U)} is KU -consistent.

¥

From Lemmas 6.1.4 and 6.1.5, we obtain:

Theorem 6.1.6. An injective model M = 〈U, δ〉 is optimal iff it can be gen-

erated by a default-assumption system S = 〈K, ∆〉, s.t. ∆ is K-consistent.
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Analogously to the preferential definition (see Definition 4.1.8), we define

the belief set BS of a default system S = 〈K, ∆〉 as the set of formulas

holding in most normal situations: BS = {α|> |∼S α}.
Given a system S = 〈K, ∆〉 with a K-consistent ∆, it is easy to define the

belief set.

Proposition 6.1.7. Assume a default-assumption system S = 〈K, ∆〉 with

a K-consistent ∆. Then BS = Cl(K ∪∆)

Proof.

If ∆ is K-consistent, then > |∼S α iff K ∪∆ ² α. Hence BS = Cl(K ∪∆).

¥

6.1.3 Injective weak rationality

We know from the previous chapter that every optimal preferential model

generates a weakly rational inference relation |∼, and from chapter 4 that

every injective preferential model generates an injective inference relation |∼.

Hence, from Theorem 6.1.6, we can derive the following proposition.

Proposition 6.1.8. Every default-assumption system S = 〈K, ∆〉, with a

K-consistent ∆, defines an injective weakly rational inference relation |∼.

We want to show that (assuming that ` is a finite propositional language,

as usual) every injective weakly rational inference relation |∼ has an optimal

injective canonical model. Up to this point, in fact, we can derive that every

injective weakly rational inference relation |∼, being injective, has an injec-

tive canonical model, and, being weakly rational, has an optimal canonical

model; this does not imply that |∼ has a canonical model that is both injec-

tive and optimal.

To show this, it is sufficient to prove that every non-optimal injective model

generates an inference relation that is not weakly rational.
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Lemma 6.1.9. If M = 〈U, δ〉 is an injective non-optimal model, then the

inference relation |∼M defined by M is not weakly rational.

Proof.

If M is injective and non-optimal, then there are two worlds w and v s.t.

w ∈ min≺(U), v 6∈ min≺(U), and w 6≺ v.

We want to show that there is a formula α s.t. > |∼ α → β, > 6|∼ ¬α and

α 6|∼ β.

Define αv,w as the characteristic formula of the set {w, v}, i.e. αv,w =

αw ∨ αv. Take a formula β as the characteristic formula of min≺(U), i.e.

β =
∨{αw|w ∈ min≺(U)}. The definition of β implies that, given a world

u, u ² β iff u ∈ min≺(U).

We have > 6|∼ ¬αv,w, since w ∈ min≺(U) and w ² αv,w

From the definition of β, we obtain > |∼ β, and hence > |∼ αv,w → β by

RW.

But we also have αv,w 6|∼ β, since v ∈ min≺([αv,w]U) and, given v 6∈ min≺(>),

v 2 β.

So WRM fails.

¥

Hence, if |∼ is an injective weakly rational inference relation, its injective

canonical model has to be also optimal.

From Theorems 4.2.2, 5.1.20, and Proposition 6.1.9, we can state:

Theorem 6.1.10. (Representation Theorem for Injective Weakly Rational

Inference Relations)

A consequence relation is an injective weakly rational inference relation iff it

is defined by some injective optimal model.

Finally, from Theorems 6.1.10 and 6.1.6, we obtain the following result.
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Theorem 6.1.11. A consequence relation is an injective weakly rational in-

ference relation iff there is a default-assumption system S = 〈K, ∆〉, with a

K-consistent ∆ generating it.

6.2 Default-assumption closures

We have seen that every injective inference relation can be generated by a

default-assumption system S = 〈K, ∆〉 (Theorem 3.1.11), and that every

injective weakly rational inference relation can be generated by a default-

assumption system S = 〈K, ∆〉, with a K-consistent ∆ (Theorem 6.1.11).

We want to see how such connections can be used to easily create models for

interesting closures of finite sets of sequents. In particular, we will see how

to generate interesting models for weakly rational and rational closures of a

set of sequents.

6.2.1 Desiderata

Assume we have a finite set of sequents B = {α |∼ β, . . . , γ |∼ φ}; we will call

such a set a conditional base. KLM-rules allow to determine its preferential

closure (see Section 4.1.1). However, as we have seen, if we want to go

beyond preferential closure by means of the satisfaction of non-Horn rules,

we have to renounce to the preferential axiomatic characterization and to the

classical notion of entailment, and to choose a semantical model representing

an interesting closure of B of the desired kind (see Section 4.2).

We will call C(B) an arbitrary closure operation of B.

There is a set of minimal requirements that we want to be satisfied by

C(B) in order to consider it a reasonable closure of B:

1. B ⊆ C(B).

2. P(B) ⊆ C(B) (where P(B) is the preferential closure of B, see Section

4.1.1).
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3. The knowledge and belief sets of C(B) have to be the same as those of

P(B).

The first desideratum is an obvious requirement, i.e. our closure has

to be reflexive. However, it is not always satisfied by default-assumption

preferential models: given a set of sequents B, it could not be easy to find a

set of formulae ∆ generating a preferential model satisfying B.

The most intuitive potential candidate to represent B by means of a set of

default-formulae is surely the set
−→B of the materializations of the sequents

in B, i.e. the material implications corresponding to the sequents:

−→B = {α → β|α |∼ β ∈ B}

However, it is easy to see that stating ∆ =
−→B we do not guarantee the gen-

eration of a preferential model satisfying B.

Let us refer to the ‘penguin’ example. We have B = {β |∼ γ, α |∼ ¬γ, α |∼ β}.
Using

−→B as the default-assumption set, we have ∆ = {β → γ, α → ¬γ, α →
β}. Such a default set is consistent, so there are some worlds satisfying it,

and such worlds are the preferred ones. Since ∆ is consistent with β, our

model validates β |∼ γ. However, ∆ ² ¬α, so we have to identify the α-

maximal consistent subsets of ∆ to determine the plausible consequences of

α. There are three such α-maximal consistent sets: ∆′ = {α → ¬γ, α → β},
∆′′ = {β → γ, α → β}, ∆′′′ = {β → γ, α → ¬γ}.
As can be easily seen, α, ∆′ ² β, α, ∆′′ ² β, but α, ∆′′′ 2 β, so α 6|∼ β. Anal-

ogously for α |∼ ¬γ: α, ∆′ ² ¬γ, α, ∆′′′ ² ¬γ, but α, ∆′′ 2 ¬γ, so α 6|∼ ¬γ.

The second point is a desideratum since, as we have seen in Chapter

4, the preferential closure is considered as the minimal requirement for the

characterization of a rational agent. However, the satisfaction of the first

desideratum implies automatically the satisfaction of the second: if M is a

preferential model of B, automatically it is also a model of P(B).
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For the third point, we prefer not to modify the belief and knowledge

sets generated by the preferential closure: in defining a closure operation

amplifying the preferential one, we want to amplify the agent’s reasoning

capabilities with respect to sequents; the epistemic situation of the agent is

primarily characterized by what it maintains as hard background informa-

tion, its knowledge, and what it holds as normally holding, its beliefs. Such

kinds of information are defined in a solid logical way by the preferential

closure (see Chapter 4), and we do not feel any need to change them. Hence,

every modification of knowledge and belief sets would sound as an unjustified

move. Moreover, as we are going to see below, the knowledge and belief sets

preferentially defined from a set of sequents can be used to define a notion

of preferential consistency.

6.2.2 Knowledge and beliefs

In Chapter 4 we have defined the knowledge set of a preferential |∼ as the

set K|∼ = {α|¬α |∼ ⊥}, and every set AK s.t. Cl(AK) = K|∼ as a knowledge

base of K|∼ . So, we want the knowledge set associated to a set of sequents

B (KB) to be the knowledge set defined by its preferential closure:

KB = {α|¬α |∼ ⊥ ∈ P(B)}

Moreover, we would like, given a set B, to identify a finite knowledge base for

KB. Bochman, in [5], has defined a simple method to identify the knowledge

base associated to a set of sequents.

Assume a set of sequents D, and define D∨ the disjunction of all the an-

tecedents of the sequents in D, i.e.

D∨ =
∨
{α|α |∼ β ∈ D}

Bochman defines D a clash iff
−→D ² ¬D∨, i.e. a set of sequents which, in its

materialized form, classically implies the negation of all its antecedents.

He proves the following lemma.
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Lemma 6.2.1. ([5], Lemma 7.5.4)

α ∈ KB iff ¬D∨ ² α, for some clash D ⊆ B.

Since the union of every clash is itself a clash, for every set B we can

identify a unique greatest clash CB of B, given by the union of all the clashes

in B.

So, we can define a knowledge base QB, which closure is the knowledge set

of P(B).

Definition 6.2.1. (Knowledge base of B)

Given a set of sequents B, and identified its greatest clash CB, we call the

knowledge base of B the set QB s.t.

QB = {¬α|α |∼ β ∈ CB}
Lemma 6.2.2. ([5], Lemma 7.5.5)

QB is a knowledge base for KB,i.e.

KB = Cl(QB)

So, given a set of sequents B, we can identify its greatest clash, and

consequently, we can define the knowledge base of B. This, in turn, defines

the monotonic core (see Definition 4.1.7) of B.

Definition 6.2.2. (Monotonic core of B)

The monotonic core of set of sequents B corresponds to the monotonic core

of its preferential closure P(B), i.e. the monotonic consequence operation

CnB (relation `B) obtained from Cl and the addition of QB as a set of extra-

axioms:

CnB(A) = Cl(QB ∪ A) for every A ⊆ `

A `B α iff A ∪QB ² α for every A ⊆ `

As expressed in the desideratum, we look for a closure of B that preserves

KB as its knowledge set.

So, as Bochman suggests ([5], p.180), we can partition a conditional base B
in the part defining its knowledge core, its greatest clash CB, and the part

defining defeasible information, B\CB.
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Definition 6.2.3. (knowledge and defeasible portion of B)

Given a conditional base B, we define:

◦ BK = CB: the knowledge portion of B (where CB is the greatest clash

in B).

◦ BD = B\CB: the defeasible portion of B.

Analogously, we want our closure operation C(B) to preserve the same

belief set of P(B), which is (see Definition 4.1.8):

BB = {α|> |∼ α ∈ P(B)}

We shall show that, given a set B, with its monotonic core CnB, the

belief set of B is equivalent to the closure under B’s monotonic core of the

materialization of the conditional part of B, i.e.:

BB = CnB(
−→BD)

As a first step, we want to show that BB = Cl(
−→B ).

Lemma 6.2.3. If α ∈ Cl(
−→B ), then α ∈ BB

Proof.

Recall that α ∈ BB iff > |∼ α ∈ P(B).

So, we have to show that if α ∈ Cl(
−→B ), then > |∼ α ∈ P(B).

From conditionalization, we have that φ |∼ ψ ∈ B implies > |∼ φ → ψ ∈
P(B). So we have that if α ∈ −→B , then > |∼ α ∈ P(B). Assume β ∈ Cl(

−→B ).

Then, by compactness, there is a finite set {γ1, . . . , γn} s.t. {γ1, . . . , γn} ⊆ −→B
and {γ1, . . . , γn} ² β.

Correspondingly, we have {> |∼ γ1, . . . ,> |∼ γn} ⊆ P(B); since {γ1, . . . , γn} ²
β, we have that {> |∼ γ1, . . . ,> |∼ γn} implies > |∼ β by AND and RW, and

> |∼ β ∈ P(B), i.e. β ∈ BB.

¥
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Lemma 6.2.4. If α |∼ β ∈ P(B), then α → β ∈ Cl(
−→B )

Proof.

We prove it by cases w.r.t. the derivation steps of α |∼ β from B by means

of the preferential rules.

If α |∼ β ∈ B, then, by definition, α → β ∈ −→B .

By reflexivity, α |∼ α ∈ P(B) for every α, and, by tautology, α → α ∈ Cl(
−→B )

for every α.

-LLE:

If α |∼ β ∈ P(B) and ² α ↔ γ, then γ |∼ β ∈ P(B).

If α → β ∈ Cl(
−→B ) and ² α ↔ γ, then γ → β ∈ Cl(

−→B ).

-RW:

If α |∼ β ∈ P(B) and ² β → γ, then α |∼ γ ∈ P(B).

If α → β ∈ Cl(
−→B ) and ² β → γ, then α → γ ∈ Cl(

−→B ).

-CM:

If α |∼ β, α |∼ γ ∈ P(B), then α ∧ β |∼ γ ∈ P(B).

If α → β, α → γ ∈ Cl(
−→B ), then (α ∧ β) → γ ∈ Cl(

−→B ).

-CT:

If α ∧ γ |∼ β, α |∼ γ ∈ P(B), then α |∼ β ∈ P(B).

If (α ∧ γ) → β, α → γ ∈ Cl(
−→B ), then α → β ∈ Cl(

−→B ).

-OR:

If α |∼ γ, β |∼ γ ∈ P(B), then α ∨ β |∼ γ ∈ P(B).

If α → γ, β → γ ∈ Cl(
−→B ), then (α ∨ β) → γ ∈ Cl(

−→B ).

¥

Corollary 6.2.5. If > |∼ α ∈ P(B), then α ∈ Cl(
−→B )

Proof.

It is just a special case of the lemma above.

¥

Hence, by Lemma 6.2.3 and Corollary 6.2.5, we have:
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Proposition 6.2.6. α ∈ BB iff α ∈ Cl(
−→B )

Now we shall prove that Cl(
−→B ) = CnB(

−→BD).

Proposition 6.2.7. Cl(
−→B ) = CnB(

−→BD)

Proof.

It is sufficient to prove that
−→BK is logically equivalent to QB (recall that

QB = {¬α|α |∼ β ∈ BK}).
Given that BK is the greatest clash in B, we have that

−→BK ² ¬α for every

¬α ∈ QB.

By RW we have that QB ² α → β for every ¬α ∈ QB, i.e. for every

α → β ∈ −→BK.

Obviously, Cl(
−→B ) = Cl(

−→BD ∪ −→BK). Given the logical equivalence between

QB and
−→BK, we have that Cl(

−→BD ∪ −→BK) = Cl(
−→BD ∪QB) = CnB(

−→BD).

¥

Hence, by Propositions 6.2.6 and 6.2.7, we have proven the following:

Theorem 6.2.8. α ∈ BB iff α ∈ CnB(
−→BD)

From Proposition 6.2.7 we also have the following result.

Corollary 6.2.9.
−→B is classically consistent iff

−→BD is CnB-consistent.

Preferential inconsistency

From Proposition 6.2.6, we can also derive an interesting corollary about the

presence of inconsistencies in a conditional base B. As we have seen, there

is nothing wrong if a sequent α |∼ ⊥ is preferentially derivable from B, since

it simply means that, assuming B, the agent takes for sure the truth of ¬α.

That is, α |∼ ⊥ means that α is a |∼-inconsistent formula, but now we are on

the meta-level: our object language does not contain formulae, but sequents,

so we would like to see when a set of sequents B is to be considered as in-

consistent.
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Obviously, the problem of inconsistency would arise if we had in our knowl-

edge both α and ¬α, i.e., by OR, B ±P α ∨ ¬α |∼ ⊥, or, equivalently,

B ±P > |∼ ⊥.

Equivalently, if we have both α and ¬α between our beliefs, which, by AND,

gives again B ±P > |∼ α ∧ ¬α, i.e. B ±P > |∼ ⊥.

If our conditional base preferentially entails > |∼ ⊥, then our agent will be-

lieve everything, since ⊥ will be in its knowledge set and in its belief set.

Moreover, from > |∼ ⊥, we can derive every possible sequent by means of

CM and RW.

Take two formulae φ and ψ: From > |∼ ⊥, by RW, we have > |∼ φ, and, by

CM, φ |∼ ⊥. Apply again RW and we obtain φ |∼ ψ.

Definition 6.2.4. (preferential inconsistency) A conditional base B is pref-

erentially inconsistent iff B ±P > |∼ ⊥

We can prove that the inconsistency of a conditional base is directly

connected to the inconsistency of its materialization.

Theorem 6.2.10. B ±P > |∼ ⊥ iff ⊥ ∈ Cl(
−→B )

Proof.

B ±P > |∼ ⊥ is equivalent to ⊥ ∈ BB. By Proposition 6.2.6 such an occur-

rence is possible iff ⊥ ∈ Cl(
−→B ) ¥

Hence, we can check the inconsistency of a set of sequents B simply by

checking the inconsistency of its materialization.

Obviously, if B is preferentially inconsistent, B will be the clash of itself.

Proposition 6.2.11. If B is preferentially inconsistent, then its knowledge

base QB will be inconsistent, and its defeasible portion BD will be empty.

Proof.

If B ±P > |∼ ⊥, then, by Corollary 6.2.10,
−→B ² ⊥. Hence

−→B ² ¬α for every

α |∼ β ∈ B, and consequently B is a clash of itself, and BD, its defeasible

portion, will be empty.
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Given that CB = B, we have that QB = {¬α|α |∼ β ∈ B}. Since ¬α ² α → β

for every α, we have that QB ²
∧−→B , i.e. QB ² ⊥.

¥

Hence, the preferential closure of an inconsistent set of sequents simply

determines an inconsistent knowledge set.

These results stress the importance of keeping fixed the knowledge and belief

sets determined by the preferential closure of a conditional base in defining a

new closure operation (the third desideratum in Section 6.2.1), since, assum-

ing that the conditional base is preferentially consistent, we guarantee that

such consistency is preserved, impeding the validity of > |∼ ⊥ by means of

our closure operation.

6.2.3 Weakly rational closure

We want, given a conditional base B, to use the default-assumption approach

to build in a simple way a satisfying weakly rational closure W(B).

As we have said, the general desiderata are

• P(B) ⊆W(B)

• The knowledge and belief sets of W(B) have to be the same as P(B)

From the second desideratum, we can derive the following rule:

• If we have > |∼ α → β in P(B), and > |∼ ¬α /∈ P(B), α |∼ β /∈ P(B),

we prefer a closure operation including α |∼ β instead of > |∼ ¬α.

Recalling that WRM can be written also as

> |∼ α → β

> |∼ ¬α α |∼ β
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So the request above can be interpreted as saying that WRM is an ‘edu-

cated’ application of the easy half of the deduction theorem (> |∼ α → β ⇒
α |∼ β), not a way to amplify our belief set.

So, given B, we want to build an optimal preferential model M satisfying

B and s.t. BM = BB and KM = KB, where BM and KM are, respectively,

the belief set and the knowledge set defined by the model M.

Assume an agent characterized by B; we can define the knowledge set by

looking for the biggest clash, identifying the knowledge base QB.

Once we have found QB, we have to restrict the set of possible valuations of

our model to those respecting the knowledge of the agent, that is, we have

to construct our model over U = {w ∈ W |w ² φ for every φ ∈ QB}, where

W is the set of all the valuations of our language.

If we want a weakly rational closure, we need to define an optimal model,

which can be done by means of a consistent set of defaults ∆.

Moreover, given Theorem 6.2.8, if we want our belief set to be the same as

the preferential one, we need to have CnB(∆) = CnB(
−→BD) = Cl(

−→B ), i.e.

our set of defaults has to be logically equivalent (with respect to `B) to the

materialization of the defeasible part of our conditional base.

However, in Section 6.2.1, we have seen that taking as default set simply

the materialization
−→B of the conditional base B is not sufficient for the first

desideratum, i.e. for the sequents in B to be satisfied in the model.

So we have to define a set of defaults such that its conjunction is CnB-

equivalent to
−→BD, and it guarantees the validity of every sequent in B.

To reach such an aim, we can use the exceptionality order defined in [31] for

the rational closure (see Section 4.2.3).

Construction of the model.

Let B be a conditional base.

Lehmann and Magidor ([31]) define a formula α exceptional for B iff B pref-

erentially entails the sequent > |∼ ¬α. The sequent α |∼ β is said to be
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exceptional for B iff its antecedent α is exceptional for B.

The exceptionality of a formula α simply means that α is not satisfied in

most normal worlds, i.e. the agent presumes that α is false (i.e. > |∼ ¬α).

So, to verify a sequent α |∼ β, we have to move to exceptional situations.

By definition, we have that > |∼ ¬α iff ¬α ∈ BB, and we know, by Theorem

6.2.8, that ¬α ∈ BB iff ¬α ∈ Cl(
−→B ), that is, iff ¬α ∈ CnB(

−→BD).

So we can construct the exceptionality ordering presented in [31] by checking

the materializations of our sequents.

Proposition 6.2.12. α is exceptional for a base B iff
−→B ² ¬α.

Proof.

It is immediate from Definition 4.2.3 and Theorem 6.2.8.¥

It is easy to see that, if every sequent in B is not exceptional, i.e. its an-

tecedent is consistent with the agent’s belief set, then we can build a model

just stating ∆ =
−→BD.

Lemma 6.2.13. Assume a base B, partitioned in a knowledge portion BK

(with QB as the associated knowledge base) and a defeasible portion BD. If

BD is non-empty and does not contain exceptional sequents, then the default-

assumption system SB = 〈QB,
−→BD〉 is an injective weakly rational closure of

B.

Proof.

If BD is non-empty, then, by Proposition 6.2.11, B is preferentially consis-

tent, and, by Corollary 6.2.10,
−→B is consistent. By Corollary 6.2.9, we have

also that
−→BD is CnB-consistent.

This implies, by Theorem 6.1.11, that SB = 〈QB,
−→BD〉 generates an injective

weakly rational inference relation |∼SB .

The knowledge set of SB is obviously the one defined by the preferential

closure of B, since QB is its knowledge base.
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The belief base of P(B) is defined by the set CnB(
−→BD) (see Theorem 6.2.8);

the belief set of SB = 〈QB,
−→BD〉 is BSB = Cl(QB ∪ −→BD) (see Proposition

6.1.7), that corresponds to BSB = CnB(
−→BD). Hence, also the belief set is

preserved.

Given WRM and the non-exceptionality of the sequents, it is immediate to

check that B is satisfied by SB: if α |∼ β ∈ B, then > |∼SB α → β is valid.

Since α |∼ β is not exceptional for B, and SB has the same belief set as B,

we have > 6|∼SB ¬α, and, since |∼SB satisfies WRM, α |∼SB β.

¥

This result is also valid for preferential models M = 〈UB, δBD
〉, generated

by SB = 〈QB,
−→BD〉, i.e. where UB is the set of worlds satisfying QB, and δBD

is the preferential order generated from the default set
−→BD.

Proposition 6.2.14. Assume a base B, partitioned in a knowledge portion

BK (with QB as the associated knowledge base) and a defeasible portion BD.

If BD is non-empty and does not contain exceptional sequents, then the pref-

erential model M = 〈UB, δBD
〉 generates an injective weakly rational closure

of B.

Otherwise, if we have in B some exceptional sequent α |∼ β, we have

to guarantee the validity of such a sequent in the model, since it cannot be

derived by means of its material implication and WRM.

The use of the exceptionality ranking of [31] (see Section 4.2.3) seems the

right tool.

Take a finite BD and define the rank of every sequent (see Definition 4.2.4),

in such a way that it is directly proportional to the exceptionality of the

sequent: rank(α |∼ β) = 0 if α |∼ β is not exceptional, while rank(γ |∼ ρ) ≥
rank(φ |∼ ψ) means that γ |∼ ρ is no less exceptional than φ |∼ ψ.

Since BD is clash-free, there will be a last rank n+1 which will result empty.
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Lemma 6.2.15. If a finite set of sequents B is clash-free, then its ranking

is upper-bounded by ∅.

Proof.

If B is clash-free, then there is no subset D ⊆ B s.t.
−→D ² ¬D∨, i.e. s.t. every

sequent in D is exceptional for D itself. This implies that every set Ci+1 in

the construction of the ranking (see Section 4.2.3) is a strict subset of the set

Ci.

As said in Section 4.2.3, if B is a finite set, the sequence of Ci will stabilize

to ∞, i.e., after some point, all Cs will be equal and completely exceptional.

But, since Ci+1 ⊂ Ci for every Ci+1 and B is finite, the stable set will neces-

sarily be the empty set.

¥

Let Ai indicate the set of the antecedents of the sequents in BD of rank

i.

Ai = {α|α |∼ β ∈ BD and rank(α) = i}.
The intuition behind the construction of the default base is the following.

Assume as default set the materializations of the sequents
−→BD. If a sequent

γ |∼ ρ is exceptional, its antecedent is not consistent with the entire default

set
−→BD, in particular it is negated by the conjunction of its own materializa-

tion with the materializations of more normal sequents. So, given
−→BD `B ¬γ,

in looking for γ-maxiconsistent subsets of
−→BD, we could find some set in which

γ → ρ is not present (see the ‘penguin’ example in Section 6.2.1, with respect

to the exceptional sequents α |∼ β and α |∼ ¬γ); in such a case it is possible

that the exceptional sequent γ |∼ ρ is not satisfied by the model.

We want to modify our default set in such a way that γ → ρ is present in

every γ-maxiconsistent set. We could change the default formulae associated

with a more normal sequent, i.e. generated by its materialization, in such

a way that it will be γ-inconsistent by itself; in this way, we eliminate the

defaults associated to more normal situations from the construction of γ-

maxiconsistent sets. In particular, we shall obtain a single γ-maxiconsistent
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set, composed by the defaults associated to the sequents in B at least as ex-

ceptional than γ, since, by the construction of the ranking, the conjunction

of their materializations is consistent with γ, and all the other sequents, more

normal than γ |∼ ρ, have been made γ-inconsistent by themselves.

We can obtain the γ-inconsistency of more normal sequents in a direct way:

If γ is an exceptional formula, while α |∼ β is sequent of lower ranking, we

can think of the normal situations for α |∼ β, i.e. the minimal valuations for

the antecedent α, to be such that γ is negated. To do this is sufficient to

conjunct ¬γ to the materialization α → β.

An example. Assume a conditional base BD = {α |∼ β, γ |∼ ρ} and sup-

pose α |∼ β > γ |∼ ρ, because α → β, γ → ρ ² ¬γ, but α → β 2 ¬γ,

α → β 2 γ → ρ and γ → ρ 2 ¬γ. Assume as our defaults the materializa-

tions α → β and γ → ρ. In this case, when we look for γ-maxiconsistent

sets, we have {α → β} and {γ → ρ}, and, as a result, γ 6|∼ ρ.

Add ¬γ to the materialization α → β, so that a world satisfying (α → β)∧¬γ

becomes more normal than (preferred to) every world satisfying γ.

Imposing this, in looking for the minimal worlds satisfying γ, we do not

take into consideration the defaults generated by more normal sequents than

γ |∼ ρ.

On the basis of this intuition, we can define a default formula σα|∼β from

every sequent α |∼ β in BD:

given α |∼ β ∈ BD and rank(α |∼ β) = i,

σα|∼β = (α → β) ∧
∧
{¬γ|γ ∈ Aj, with j > i}

and we define the default-assumption set ∆WRB for the weakly rational

closure as

∆WRB = {σα|∼β|α |∼ β ∈ BD}
The form of the formula σα|∼β may look a bit cumbersome, but it simply

states that we put in our default set the materialization of every sequent

together with the negation of the antecedent of every more exceptional se-

quent.
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First of all, we can prove that ∆WRB is CnB-equivalent to
−→BD and so pre-

serves the preferential belief set.

Lemma 6.2.16. Assume a conditional base B s.t. BD is its defeasible por-

tion and CnB the consequence operation defining its knowledge. ∆WRB is

CnB-equivalent to
−→BD.

Proof.

It is sufficient to show that ∆WRB and
−→BD are logically equivalent, since the

supraclassical monotonic operator CnB satisfies Left Logical Equivalence.

Since
−→BD ² ¬γ for every exceptional γ, i.e. every γ s.t. rank(γ) > 0, and

since Cl satisfies idempotence, the adding of such formulae ¬γ to
−→BD does

not change its classical closure. Hence,

Cl(∆WRB) = Cl(
−→BD)

¥

This guarantees that, substituting ∆WRB to
−→BD as default set, the belief

set does not change.

We can prove that the default base ∆WRB validates every sequent in B.

Lemma 6.2.17. Assume a base B, partitioned in a knowledge portion BK

(with QB as the associated knowledge base) and a defeasible portion BD. The

default-assumption system SB = 〈QB, ∆WRB〉 is an injective weakly rational

closure of B.

Proof.

Since ∆WRB and
−→BD are logically equivalent, we have that ∆WRB is CnB-

consistent, and so SB defines an injective weakly rational inference relation
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|∼SB .

From the definition of QB and the lemma above we are guaranteed that the

belief and the knowledge sets are the preferential ones.

We have to show that if α |∼ β ∈ B, then α |∼SB β.

Assume rank(α) = 0; then α is consistent with the entire set ∆WRB. Since

α → β is a conjunct in σα|∼β, then ∆WRB ² α → β, and α, ∆WRB ² β.

So, α |∼SB β.

Assume, rank(α) = i, with i > 0. Then α is inconsistent with every σγ|∼ρ

with rank(γ |∼ ρ) < i, since in every such formula is present ¬α. On the

other hand, from the Definition 4.2.4, we can see that α is consistent with

the set ∆α ⊆ ∆WRB, s.t. ∆α = {σγ|∼ρ|rank(γ |∼ ρ) ≥ i}, and that ∆α is the

α-maximal consistent subset of ∆WRB.

Since σα|∼β ∈ ∆α, we have ∆α ² α → β, hence α, ∆α ² β and α |∼SB β.

¥

As above, we can state the same result referring to the generated prefer-

ential model.

Proposition 6.2.18. Assume a base B, partitioned in a knowledge portion

BK (with QB as the associated knowledge base) and a defeasible portion BD.

The preferential model M = 〈UB, δ∆WRB〉 generates an injective weakly ratio-

nal closure of B.

Hence, given whatever conditional base B, we can find in an easy way a

default-assumption set generating a satisfying weakly rational closure of B.

Clash identification

As mentioned above, Bochman defined the notion of a clash of sequents,

but he did not define a method to identify the “biggest” clash of a set of

sequents. The use of materializations and Lehmann and Magidor exception-

ality ranking can help us in finding such a clash in an easy way, suggested
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by the Lemma 6.2.15.

We want to show that, given a finite conditional base B, it has a largest clash

iff its ranking ends up with a non-empty stable set.

Proposition 6.2.19. Assume a finite conditional base B and rank its se-

quents. B has a largest clash BK iff its ranking has a non-empty stable set

of exceptional sequents ST , and BK = ST

Proof.

Recall that a clash is a set of sequents D s.t.
−→D ² ¬D∨. As said in Section

4.2.3, if B is a finite set, the sequence of Ci will end with a stable set, i.e.,

after some point, all Cs will be equal and completely exceptional (maybe

empty); we will call such final set ST .

Lemma 6.2.15 says us that if ST 6= ∅, then B has a clash. Equally, the

definition of the notion of clash tells us that the ranking construction stops

in a non-empty ST exactly if it finds a clash.

By the construction of the ranking, since we start from B eliminating step-

by-step non-exceptional formulas, ST has to be the largest clash of B.

¥

Construction steps

So, given a conditional base B, the construction of its injective weakly rational

closure can be defined by means of the following steps:

◦ Materialize B in
−→B .

◦ Define the ranking of the sequents in B by means of
−→B .

◦ Identify the knowledge portion BK of B by means of the stable set of

the ranking operation. Automatically we have defined also QB and BD.

◦ Use the ranking and
−→BD to define ∆WRB.
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◦ Construct M = 〈UB, δ∆WRB〉.

Valuation of the W-closure

For some authoritative authors, as Makinson, Rational Monotony is too

strong a condition for the definition of a satisfying closure operation over

sequents (see Section 4.2.1), while we deem both Weak Rational Monotony

and Disjunctive Rationality as desirable conditions. Hence, our original aim

was the definition of a closure operation over sequents satisfying both WR

and DR in an intuitive way, but not RM.

First of all, note that the satisfaction of WR and DR does not imply the

satisfaction of RM.

Proposition 6.2.20. The satisfaction of Weak Rational Monotony and of

Disjunctive Rationality does not imply the satisfaction of Rational Monotony

Proof.

It is sufficient to build a counter-example. Consider the model in Fig. 6.3.

Such a model is optimal and filtered, and consequently, by Theorems 4.2.3

and 5.1.20, it defines an inference relation that is both weakly rational and

disjunctive. Notwithstanding, it does not satisfy Rational Monotony: we

have ¬p∨¬q |∼ ¬(p ↔ q) and ¬p∨¬q 6|∼ q, but (¬p∨¬q)∧¬q 6|∼ ¬(p ↔ q).

¥

Notwithstanding, we have not been able by now to identify a syntactical

constraint over a default set ∆ implying the satisfaction of the filteredness

condition by the generated model. Hence, our closure operation does not

imply the satisfaction of DR.

Our model does not satisfy DR.

For example, assume a preferentially consistent conditional base B composed

of four sequents of rank 0, s.t. we can define a default set for the W-closure

with four default formulas {σ1, σ2, σ3, σ4}. They are mutually consistent and
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Figure 6.3: A model defining an inference relation satisfying WR, DR, but

not RM.

the formula φ := ¬(σ1 ∧ σ2 ∧ σ3 ∧ σ4) is of rank 1, i.e. an exceptional for-

mula. The formula φ cannot be satisfied by the optimal worlds of the model,

i.e. the worlds satisfying (σ1 ∧ σ2 ∧ σ3 ∧ σ4). However, assume we have six

valuations w1 − w6 such that:

w1 ² σ1 ∧ σ2 ∧ σ3 ∧ ¬σ4

w2 ² σ1 ∧ σ2 ∧ ¬σ3 ∧ σ4

w3 ² σ1 ∧ ¬σ2 ∧ σ3 ∧ σ4

w4 ² ¬σ1 ∧ σ2 ∧ σ3 ∧ σ4

w5 ² σ1 ∧ σ2 ∧ ¬σ3 ∧ ¬σ4

w6 ² ¬σ1 ∧ ¬σ2 ∧ σ3 ∧ σ4

We have that w1, w2, w3, w4 ∈ min≺([φ]) and w5, w6 /∈ min≺([φ]). However,

we have that only w1 and w2 are preferred to w5, while only w3 and w4 are

preferred to w6. Hence, our model is not filtered.

Since RM implies DR, this example automatically shows also that W-closure

does not satisfy Rational Monotony, as desired.

Hence, W-closure satisfies WR and Injectivity, that can be seen as a weak-

ened form of Disjunctive Rationality (see Section 4.2.2).
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However, does W-closure define a satisfying inference relation?

We can evaluate it with respect to the examples presented in Section 4.2.3

for the evaluation of the behaviour of the rational closure.

◦ Nixon diamond:

1. ρ |∼ ¬π

2. µ |∼ π

We interpret ρ, π, µ respectively as ‘being a republican’, ‘being a pacifist’,

and ‘being a quaker’.

The ranking of both the sequents is 0, since ρ → ¬π, µ → π 2 ¬ρ and ρ →
¬π, µ |∼ π 2 ¬µ. Hence, by Theorem 6.2.13, we have ∆ = {ρ → ¬π, µ → π}.
As in the rational case, we have ρ ∧ µ 6|∼∆ π and ρ ∧ µ 6|∼∆ ¬π, as desired.

◦ Penguin triangle:

1. π |∼ β

2. π |∼ ¬φ

3. β |∼ φ

Here π, β, φ are respectively interpreted as ‘being a penguin’, ‘being a

bird’, and ‘being able to fly’.

(1) and (2) are exceptional sequents, while (3) is not. Hence, the default set

is ∆ = {π → ¬β, π → ¬φ, (β → φ) ∧ ¬π}.
Again, we have the same behaviour as rational closure. The following se-

quents are valid, since the premise is consistent with the entire ∆:

φ |∼∆ ¬π, ¬φ |∼∆ ¬β, ¬φ |∼∆ ¬π, β |∼∆ ¬π, ¬β |∼∆ ¬π, β ∧ π |∼∆ ¬φ,

β ∧ green |∼∆ φ.

penguin ∧ black |∼∆ ¬fly is valid too, since the only subset of ∆ maxicon-

sistent with π ∧ black |∼∆ ¬φ is ∆′ = {π → ¬β, π → ¬φ}.
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As in the rational case, the following sequents are not endorsed:

β ∧ ¬φ |∼∆ π, β ∧ ¬φ |∼∆ ¬π, π |∼∆ φ.

Also, for the examples that result problematic for rational closure, the

behaviour of our W-closure is quite similar to the rational one. Only in the

case of example (ii) we solve the problem.

(ii) Assume a conditional base B = {σ |∼ τ, σ |∼ φ}, where σ, τ, φ stand

for ‘Swedish’, ‘tall’, and ‘fair’ respectively. The sequents are not exceptional,

and so the default set is simply ∆ = {σ → τ, σ → φ}. Contrary to R(B),

W(B) satisfies ‘Short Swedes are usually fair’ (¬τ ∧ σ |∼ φ). The reason of

such a difference, as will be clarified in the next session, is due to the fact

that rational closure treats the satisfaction of the sequents on the same level

conjunctively, and if one of these sequents is not valid, then also the other

ones do not hold; on the other hand, one advantage of W-closure is just that

the validity of each sequent on the same level is treated independently.

However, with examples (i) and (iii), W-closure manifests exactly the

same behaviour as R-closure, showing the same problems of property-heredity

from a situation to a more exceptional one. As the treatment by means of

default-assumptions shows, the problem is mainly linked to the fact that

we associate with the materialization of every sequent the negation of more

exceptional situations, preventing, for example, normal properties to be in-

herited by exceptional items, even if they could be consistently added, as in

the ‘winged penguin’ of example (i) in Section 4.2.3.

Hence, W-closure seems to have a slightly better behaviour than rational

closure, but they are still strongly similar.
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6.2.4 Rational closure

We can extend this method to deal with closure under Rational Monotony.

We will define a method to generate a preferential model corresponding to

the rational closure presented in [31] (see Section 4.2.3), R(B). Such a result

has been developed independently, finding only later that an analogous result

was presented in [12].

Again, we start from a conditional base B, and we define the ranking of its

sequents working with the set of materializations
−→B .

By means of such ranking we define the knowledge portion BK , the associated

knowledge base QB, and the defeasible portion BD.

Given such ‘parameters’, it is sufficient to change the definition of the set of

default-assumptions to obtain a rational closure.

Recall that RM has the form

α |∼ γ α 6|∼ ¬β

α ∧ β |∼ γ

Since WRM can be equivalently rewritten as

> |∼ β > 6|∼ ¬α

α |∼ β

intuitively, RM can be seen as a generalization of WRM from the premise >
to every kind of antecedent formula α. This is also reflected by the charac-

teristic models: weak rational inference relations are characterized by prefer-

ential models with a ‘ground’ level of optimal worlds, while rational inference

relations are characterized by modular preferential models.

We will call our rational closure operation C(B), proving only at the end that

it is equivalent to the rational closure R(B) by Lehmann and Magidor.

The main desiderata are the same as before:

• P(B) ⊆ C(B)

• The knowledge and belief sets of C(B) have to be the same as P(B)
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And we have to readapt the third desiderata to deal with RM:

• If we have α |∼ γ in P(B), and α |∼ ¬β, α ∧ β |∼ γ /∈ P(B), we prefer a

closure operation adding α ∧ β |∼ γ instead of α |∼ ¬β.

This is to stress that RM is a principle finalized to regulate the use of the

monotony principle, i.e. it is functional to the strengthening of the premises,

and not to the adding of unjustified information, as the adding of α |∼ ¬β

would be.

Essentially, we have to modify the construction of the set of default-assumptions

(that we will call ∆RB) in order to generate a modular model M, but we have

to preserve the validity of B in M and the logical equivalence between ∆RB

and
−→B , in order to leave the belief set BB unchanged.

The intuition is the following.

We want a modular model respecting the ranking of the sequents in BD.

Assume the sequents in BD have been divided into n ranks.

Let us call BDi the set of the sequents in BD of rank i.

BDi = {α |∼ β ∈ BD|rank(α |∼ β) = i}
Such sets form a partition of BD (BD =

⋃{BDi|0 ≤ i ≤ n}).
We point to the construction of a modular model of n levels, s.t. the worlds

in level i are functional to the satisfaction of the sequents of rank i.

For example, assume that the domain of our model is the set of valuations UB,

i.e. the valuation satisfying the knowledge base QB. We want to partition UB

in levels UBi (0 ≤ i ≤ n) in such a way that, given a sequent α |∼ β of rank i,

the minimal worlds for α are between the worlds of level i (min([α]UB) ⊆ UBi),

and α → β is satisfied in every world in level i.

To obtain such a model, we can use the defaults generated for the weakly

rational closure of the preceding paragraph. It is sufficient to join in a single

default all the defaults generated for the sequents of the same rank.

That is, we want to generate a set ∆RB of default formulas composed by n

defaults, one for each level of the ranking.

∆RB = {σi|0 ≤ i ≤ n}
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where

σi =
∧
{σα|∼β|rank(α |∼ β) = i}.

σα|∼β is the default generated by the sequent α |∼ β ∈ B, defined in the

previous section for the weakly rational closure operation.

By logical equivalence, we obtain that

σi =
∧
{α → β|rank(α |∼ β) = i} ∧

∧
{¬γ|γ ∈ Aj, with j > i}

By means of such defaults, we can obtain what we were looking for: for every

sequent α |∼ β of rank i, the antecedent α is negated exactly by every σj

with j < i, while σi is α-consistent (min([α]UKB
⊆ UBi) and α → β is implied

by σi.

Since from the construction of the exceptionality ranking (see Section 4.2.3),

we have that

∧
{α → β|rank(α |∼ β) ≥ i} ²

∧
{¬γ|γ ∈ Aj, with j > i},

and we have that ¬γ ² γ → ρ for every γ and ρ, by logical equivalence we

obtain

σi =
∧
{α → β|rank(α |∼ β) ≥ i}

We have to show that S = 〈QB, ∆RB〉 generates a model M = 〈UB, δ∆RB〉
that is modular.

Lemma 6.2.21. M = 〈UB, δ∆RB〉 is a modular model.

Proof.

Recall by Definition 4.2.1 that an order δ over a set S is ranked iff there is

a totally ordered set Ω (the strict order on Ω will be denoted by <) and a

function r : S 7→ Ω (the ranking function) s.t. s ≺δ t iff r(s) < r(t).

From our last formulation of the σis in ∆RB (σi =
∧{α → β|rank(α |∼ β) ≥

i}) it is immediate to see that, if i < j, then

σi =
∧
{α → β|j > rank(α |∼ β) ≥ i} ∧ σj
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That is, if i < j, σi ² σj. So, for every valuation w ∈ UB, if w ² σi, then

w ² σj, for every j ≥ i.

Hence, (∆RB)w ⊃ (∆RB)v iff |(∆RB)w| ⊃ |(∆RB)v|, i.e. the superset ordering

corresponds exactly to the size ordering.

Hence, we can define a totally ordered set Ω = {0, . . . , n}, and a function

r : UB 7→ Ω based on the cardinality of the set of defaults satisfied by every

valuation:

r(w) = i iff |(∆RB)w| = i

¥

So, given |(∆RB)| = n, we have n + 1 levels of valuations, where the most

normal worlds satisfy n defaults, and the most exceptional one satisfies no

defaults at all.

Since the model is modular, it defines a rational inference relation. Obviously,

we preserve also the preferential belief set, since ∆RB is logically equivalent

to
∧{−→B }.

We have to show that the sequents in B are valid in M

That is obvious, since, as we have seen before, if rank(α |∼ β) = i, then

min([α]UB) ⊆ UBi and α → β is satisfied in every world in UBi.

Finally, we can show that the inference operator defined by M = 〈UB, δ∆RB〉
corresponds exactly to the rational closure operation defined by Lehmann

and Magidor.

Theorem 6.2.22. The preferential model M = 〈UB, δ∆RB〉 is a canonical

model of the rational closure R(B) defined in [31]

Proof.

Assume a finite set of sequents B.

Recall from Definition 4.2.5 that the rational closure R(B) of B is the set of

all the sequents α |∼ β s.t. either

◦ The rank of α is strictly less than the rank of α ∧ ¬β, or
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◦ α has no rank.

By definition, α has no rank iff it is completely exceptional, i.e. iff there

is a sequent α |∼ β in the clash of B. This corresponds to say that ¬α is

known by the agent, and that α |∼ ⊥ is valid in M. Hence, if α has no rank,

α |∼ β is valid in M for every β, and, conversely, if α |∼ ⊥, then α has no rank.

rank(α) < rank(α∧¬β) means that, assumed rank(α) = i, we have min([α]UB) ⊆
UBi, and UBi ² ¬(α ∧ ¬β), i.e. UBi ² α → β. Hence α |∼ β is valid in M.

Conversely, if α |∼ β is valid in M, and rank(α) = i, then σi ² α → β, and, by

monotony, for every σj s.t. j < i, σj ² α → β. Hence rank(¬(α → β)) > i.

¥

So, we have defined a simple way to build a model of the rational closure

of a finite set of sequents B.

Construction steps

Given a conditional base B, the construction of its rational closure can be

defined by means of the following steps:

◦ Materialize B in
−→B .

◦ Define the ranking of the sequents in B by means of
−→B .

◦ Identify the knowledge portion BK of B by means of the stable set of

the ranking operation. Automatically we have defined also QB and BD.

◦ Use the ranking and
−→BD to define ∆RB.

◦ Construct M = 〈UB, δ∆RB〉.

6.2.5 Conclusions

As we have just seen, the default-assumption approach can be used to de-

fine injective preferential models appropriate for the definition of interesting
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non-Horn closures of sets of conditionals.

Lehmann and Magidor’s rational closure can be built by means of a default

set which turns out very easy to define. Moreover, we have defined a new

closure operation which, referring to the examples, seems to have a slightly

better behaviour than rational closure. However, both the operations mani-

fest a problem with respect to the heredity of normal properties in exceptional

situations; this is a problem that, by now, can be solved only in a trivial way,

declaring explicitly in the conditional base which normal properties remain

valid in the exceptional cases.
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Chapter 7

Working with

default-assumptions: reasoning

about normality

Abstract. We define in a precise way the behaviour of default formulae by

means of the correspondence between default-assumption and preferential

approaches. In the end of the chapter we present a generalization of a model

of stereotypical reasoning by Lehmann.

In the previous chapter, we have seen how the default-assumption ap-

proach can be used in the preferential framework to build up in a simple way

interesting models of non-Horn closures. Instead, in the present chapter, we

shall use the correspondence with injective preferential models to investigate

more deeply the behaviour of the default-assumption approach.

The chapter is organized as follows.

In Section 7.1, we shall analyze, given a default-assumption set, which kinds

of changes we can do to it without changing the generated consequence re-

lation. Such behaviour shall be formalized by means of a normality operator

B.
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In Section 7.2, we shall try to define the role of default-assumptions in

common-sense reasoning on the basis of the results of the previous section,

and finally, we propose a model for reasoning with stereotypes.

7.1 Characterizing normality

It is immediate from Definition 2.3.3 that distinct choices of a default infor-

mation set ∆ might give rise to indistinguishable consequence relations |∼∆.

For example, it is evident that ∆ = {α, β} and ∆′ = {α, β, α ∧ β} give rise

to the same default-assumption consequence relations, since ∆ and ∆′ give

rise to logically equivalent maxiconsistent sets for every formula γ. Notwith-

standing, it is a notorious fact (see [39], p.34) that the behaviour of default-

assumption systems is dependent upon the syntactical form of the set ∆,

i.e. logically equivalent sets of formulae can give rise to different default-

assumption inference relations.

On the other hand, on the side of injective preferential models, each prefer-

ential order δ determines uniquely the preferential inference relation |∼δ.

Proposition 7.1.1. Assume a set of valuations U . Given two strict orders

δ, δ′ over U ,

δ = δ′ iff |∼δ=|∼δ′

Proof. The direction from left to right follows directly from Definition 2.3.12.

As to the converse, assume that |∼δ=|∼δ′ but δ 6= δ′. Then there is at least

a pair (w, v) such that either (w, v) ∈ δ and (w, v) /∈ δ′, or (w, v) ∈ δ′ and

(w, v) /∈ δ. Assume, without loss of generality, that the first case holds. Let

γ be a sentence satisfied only by w and v. Since (w, v) ∈ δ and (w, v) /∈ δ′

we have that minδ({w, v}) = {w}, while

minδ′({w, v}) =




{w, v}, if (v, w) /∈ δ′

{v}, if(v, w) ∈ δ′.
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Either way, by the injectivity of the preferential model, we have {φ | γ |∼δ

φ} 6= {φ | γ |∼δ′ φ}, contradicting the hypothesis that |∼δ=|∼δ′ .

¥

Note that by Theorem 3.1.3 this extends immediately to default-assumption

consequence relations, that is to say, each ordering determines uniquely the

corresponding default-assumption consequence relation.

If we think of a consequence relation as an agent, this can be intuitively

interpreted as saying that, given a set of default information ∆, there is a cer-

tain amount of “change” that we can operate on a set ∆ itself while keeping

its generated ordering fixed, that is to say, according to our discussion of pref-

erential reasoning, without altering the normality of the situation at hand.

Roughly speaking then, our characterization of normality could be viewed as

identifying the “epistemic changes” that a default-assumption consequence

relation is capable of tolerating before “disgregating”.

That is, we want to see which changes can be done to our default-assumption

set without modifying the inference relation it determines, i.e. without mod-

ifying the preferential order it generates.

Definition 7.1.1. (Order stability)

Given a default assumption set ∆ and a sentence φ, we shall say that the

generated strict ordering δ∆ is stable with respect to φ just if δ∆ = δ∆∪{φ}.

It so happens that the statement and the proof of many of the following

results is greatly simplified if we take reflexive orders as primitives instead of

strict orders. This, however, does not make any conceptual difference, since,

as Theorem 7.1.1 below shows, a strict order δ∆ is stable with respect to a

formula φ exactly when the correspondent preorder ε∆ (see Definition 3.1.2)

is stable with respect to φ.

Lemma 7.1.2. δ∆ = δ∆∪{φ} if and only if for every (w, v) ∈ δ∆ and every

w, v s.t. ∆w = ∆v, v ² φ implies w ² φ.
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Proof.

(⇒): δ∆ = δ∆∪{φ} ⇒ v ² φ implies w ² φ for every (w, v) ∈ δ∆ and

every w, v s.t. ∆w = ∆v

This is obvious by Definition 3.1.1.

(⇐): v ² φ implies w ² φ for every (w, v) ∈ δ∆ and every w, v s.t.

∆w = ∆v ⇒ δ∆ = δ∆∪{φ}

If φ ∈ ∆ the result is obvious, because the implicated part (δ∆ = δ∆∪{φ})

is always true.

So we are going to analyze only the case in which φ /∈ ∆.

Suppose that δ∆ 6= δ∆∪{φ}. We want to show that this implies that there is a

(w, v) ∈ δ∆ or there is a couple of worlds w,v with ∆w = ∆v s.t. v ² φ does

not imply w ² φ, i.e. v ² φ and w 2 φ.

If δ∆ 6= δ∆∪{φ}, then there is at least a couple (u, t) s.t. (u, t) ∈ δ∆ and

(u, t) /∈ δ∆∪{φ} or s.t. (u, t) ∈ δ∆∪{φ} and (u, t) /∈ δ∆. We’ll treat each option

separately.

First, some obvious facts.

The content of (∆ ∪ {φ})w,i.e. the subset of ∆ ∪ {φ} satisfied by w, can be

defined in relation to ∆w and the valuation of φ in w:

If w ² φ, (∆ ∪ {φ})w = ∆w ∪ {φ}
If w 2 φ, (∆ ∪ {φ})w = ∆w

So, we have that (∆ ∪ {φ})w ⊇ ∆w.

Let’s see the first option:

(a). If there is a couple (u, t) s.t. (u, t) ∈ δ∆ and (u, t) /∈ δ∆∪{φ}, then

there is a (w, v) ∈ δ∆ or there is a couple of worlds w,v with ∆w = ∆v s.t.
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v ² φ doesn’t imply w ² φ, i.e. v ² φ and w 2 φ.

Suppose (u, t) ∈ δ∆ and (u, t) /∈ δ∆∪{φ}. Then we have that ∆u ⊃ ∆t and

not (∆ ∪ {φ})u ⊃ (∆ ∪ {φ})t.

The values of (∆ ∪ {φ})u and (∆ ∪ {φ})t depend on the valuations of φ in u

and t. So we have four possible situations:

1a) u ² φ t ² φ

2a) u ² φ t 2 φ

3a) u 2 φ t ² φ

4a) u 2 φ t 2 φ

1a) We have (∆ ∪ {φ})u = ∆u ∪ {φ} and (∆ ∪ {φ})t = ∆t ∪ {φ}.
∆u ⊃ ∆t, φ /∈ ∆u and φ /∈ ∆t hold, so we have (∆∪{φ})u ⊃ (∆∪{φ})t, and

(u, t) must belong to δ∆∪{φ} too. We are in contradiction with the hypothesis.

2a) We have (∆ ∪ {φ})u = ∆u ∪ {φ} and (∆ ∪ {φ})t = ∆t.

∆u ⊃ ∆t, and ∆u ∪ {φ} ⊃ ∆u hold, so we also have ∆u ∪ {φ} ⊃ ∆t, and

(u, t) must belong to δ∆∪{φ} too. We are in contradiction with the hypothesis.

3a) We have (∆ ∪ {φ})u = ∆u and (∆ ∪ {φ})t = ∆t ∪ {φ}.
We have φ /∈ (∆ ∪ {φ})u and φ ∈ (∆ ∪ {φ})t, so obviously (∆ ∪ {φ})u ⊃
(∆ ∪ {φ})t is not true.

4a) We have (∆ ∪ {φ})u = ∆u and (∆ ∪ {φ})t = ∆t.

We have ∆u ⊃ ∆t, so we have (∆ ∪ φ)u ⊃ (∆ ∪ φ)t, and (u, t) must belong

to δ∆∪{φ} too. We are in contradiction with the hypothesis.

The only case in which we don’t have contradiction with the premise is

(3a); that is, if (3a) is not satisfied, then it doesn’t hold that (u, t) ∈ δ∆ and

(u, t) /∈ δ∆∪φ. So, if there is a pair (u, t) s.t. (u, t) ∈ δ∆ and (u, t) /∈ δ∆∪φ,

then there is a (w, v) ∈ δ∆, i.e. (u, t) itself, s.t. v ² φ and w 2 φ.
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(b). If there is a pair (u, t) s.t. (u, t) ∈ δ∆∪{φ} and (u, t) /∈ δ∆, then there

is a (w, v) ∈ δ∆ or there are two worlds w,v with ∆w = ∆v s.t. v ² φ doesn’t

imply w ² φ, i.e. v ² φ and w 2 φ.

Suppose (u, t) /∈ δ∆ and (u, t) ∈ δ∆∪{φ}. Then we have that (∆∪{φ})u ⊃
(∆ ∪ {φ})t and not ∆u ⊃ ∆t.

We define again our possible four possible situations:

1b) u ² φ t ² φ

2b) u ² φ t 2 φ

3b) u 2 φ t ² φ

4b) u 2 φ t 2 φ

1b) We have (∆ ∪ {φ})u = ∆u ∪ {φ} and (∆ ∪ {φ})t = ∆t ∪ {φ}.
∆u ∪ {φ} ⊃ ∆t ∪ {φ}, φ /∈ ∆u and φ /∈ ∆t hold, so we have (∆)u ⊃ (∆)t,

and (u, t) must belong to δ∆ too. We are in contradiction with the hypothesis.

2b) We have (∆ ∪ {φ})u = ∆u ∪ {φ} and (∆ ∪ {φ})t = ∆t.

∆u ∪ {φ} ⊃ ∆t, φ /∈ ∆u and φ /∈ ∆t hold. So we have that ∆u ⊇ ∆t.

In this case, the only possibility in which we have that ∆u ⊃ ∆t is not true

is when we have ∆u = ∆t.

3b) We have (∆ ∪ {φ})u = ∆u and (∆ ∪ {φ})t = ∆t ∪ {φ}.
We have ∆u ⊃ ∆t ∪ {φ} and ∆t ∪ {φ} ⊃ ∆t, so ∆u ⊃ ∆t and (u, t) must

belong to δ∆ as well. We are in contradiction with the hypothesis.

4b) We have (∆ ∪ {φ})u = ∆u and (∆ ∪ {φ})t = ∆t.

We have (∆ ∪ φ)u ⊃ (∆ ∪ φ)t, so we have ∆u ⊃ ∆t, and (u, t) must belong

to δ∆ as well. We are in contradiction with the hypothesis.
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The only case in which we don’t have contradiction with the premise is

(2b) with ∆u = ∆t; that is, if (2b) with ∆u = ∆t is not satisfied, then it

doesn’t hold that (u, t) /∈ δ∆ and (u, t) ∈ δ∆∪φ. So, if there is a pair (u, t)

s.t. (u, t) /∈ δ∆ and (u, t) ∈ δ∆∪φ, then there are two worlds w and v, i.e. t

and u respectively, s.t. ∆w = ∆v and v ² φ doesn’t imply w ² φ (v ² φ and

w 2 φ).

Then our results are:

(a) If there is a pair (u, t) s.t. (u, t) ∈ δ∆ and (u, t) /∈ δ∆∪φ, then there is a

(w, v) ∈ δ∆, i.e. (u, t) itself, s.t. v ² φ doesn’t imply w ² φ.

(b) If there is a couple (u, t) s.t. (u, t) /∈ δ∆ and (u, t) ∈ δ∆∪φ, then there

are two worlds w and v, i.e. t and u respectively, s.t. ∆w = ∆v and v ² φ

doesn’t imply w ² φ.

From these we have that:

If δ∆ 6= δ∆∪φ, then there is a (w, v) ∈ δ∆ s.t. v ² φ doesn’t imply w ² φ

or there are two worlds w and v s.t. ∆w = ∆v and v ² φ doesn’t imply w ² φ.

From this we obtain:

If v ² φ implies w ² φ for every (w, v) ∈ δ∆ and every w, v s.t. ∆w = ∆v,

then δ∆ = δ∆∪φ.

¥

On the other hand, the stability of a generated preorder ε∆ is regulated

by the following simple rule.

Lemma 7.1.3. ε∆ = ε∆∪{φ} if and only if v ² φ implies w ² φ for every

(w, v) ∈ ε∆

Proof. The implication from left to right follows directly from the definition

of ε∆∪{φ}.
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As to the other direction note that

ε∆ = {(w, v) | v ² ψ ⇒ w ² ψ for every ψ ∈ ∆}. (7.1)

ε∆∪{φ} = {(w, v) | v ² ψ ⇒ w ² ψ for every ψ ∈ ∆ ∪ {φ}}. (7.2)

Now, since v ² φ implies w ² φ for every (w, v) ∈ εK , then equations

(7.1) and (7.2) define exactly the same pairs. Thus ε∆ = ε∆∪φ.

The upshot of Lemma 7.1.2 and Lemma 7.1.3 is the following:

Theorem 7.1.1. δ∆ = δ∆∪{φ} if and only if ε∆ = ε∆∪{φ}, that is, if and

only if v ² φ implies w ² φ, for every (w, v) ∈ ε∆.

As a consequence of Theorem 7.1.1, we shall be freely swapping between

δ∆ and ε∆ in what follows.

7.1.1 The normality operator B

Recall from Proposition 7.1.1 that every distinct default-assumption conse-

quence relation is semantically represented by a distinct strict preferential

order. We now define a preferential model and a corresponding notion of

satisfiability, with the desideratum that only those sentences which, if added

to ∆ keep |∼∆ fixed, should be satisfied. This satisfiability relation gives us

the building block to construct our normality operator.

Let CU be the class of models of the form M = (U, ε), with U a fixed set

of valuations and ε a preorder over U .

Recall that the dominion U reflects the ‘hard’ information of the agent, its

knowledge core (with KU naming the associated knowledge set and CnU the

associated monotonic consequence operator). To characterize the behaviour

of defeasible information, we will assume that our agent has a fixed knowledge

set, i.e. the models in the class CU vary only with respect to the preorder ε,

while the knowledge of the agent, i.e. the valuations in the dominion U of

the model, is fixed.
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We say that M satisfies φ, written M ° φ, just if φ is compatible with ε, that

is

M ° φ iff v ² φ ⇒ w ² φ, ∀(w, v) ∈ ε. (7.3)

We can now define our normality operator B by putting ∆ B φ only if φ

is satisfied by every model M ∈ CU that satisfies ∆, in the sense of formula

(7.3):

Definition 7.1.2.

∆ B φ iff M ° ψ, ∀ψ ∈ ∆, impliesM ° φ.

The next Proposition justifies the intuitive reading of B as a normality

operator in the light of the above discussion.

Proposition 7.1.4.

∆ B φ iff ε∆ = ε∆∪{φ}.

Proof. (⇒): suppose that ∆ B φ. This amounts to say that v ² φ ⇒ w ² φ

holds in every preorder ε such that v ² ψ ⇒ w ² ψ, for every ψ ∈ ∆ and

every (w, v) ∈ ε . Since ε∆ is one of those preorders, we have v ² φ ⇒ w ² φ

for every (w, v) ∈ ε∆. So ε∆ = ε∆∪{φ}.

(⇐): Suppose that ε∆ = {(w, v) ∈ U × U | v ² ψ ⇒ w ² ψ for every

ψ ∈ ∆} = ε∆∪{φ}. Let M = (U, ε) be an arbitrary model in CU . If M ° ψ

for every ψ ∈ ∆, then every pair (w, v) ∈ ε satisfies v ² ψ ⇒ w ² ψ for

every ψ ∈ ∆. But since all those pairs of valuations are in ε∆, it follows that

ε ⊆ ε∆. Since ε∆ = ε∆∪{φ}, then v ² φ ⇒ w ² φ for every (w, v) ∈ ε∆.

It therefore holds that v ² φ ⇒ w ² φ for every (w, v) ∈ ε, that is to

say, M ° φ. But M was an arbitrary model, so we conclude that ∆ B φ, as

required.

¥

It is natural to ask, at this point, which kind of object is the operator B.

We shall begin by observing that B is a Tarskian operator.

Proposition 7.1.5. B satisfies Reflexivity, Monotony and Cut.
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Proof.

◦ Reflexivity (REF ):

∆ B φ for every φ ∈ ∆

This property is obviously satisfied: if M ° ψ for every ψ ∈ ∆, then

M ° ψ for every ψ ∈ ∆.

◦ Monotony (MON):

∆ B φ

∆ ∪ {ψ}B φ

Let ∆′ be a superset of ∆. If M ° γ for every γ ∈ ∆′, then, since

∆ ⊆ ∆′, it holds that M ° ψ for every ψ ∈ ∆. Therefore, since ∆ B φ,

we obtain M ° φ.

◦ Cut (CT):

∆ ∪ {ψ}B φ ∆ B ψ

∆ B φ

Suppose that ∆∪{ψ}Bφ and ∆Bψ. Then, Proposition 7.1.4, the equa-

tions ε∆∪{ψ} = ε∆∪{ψ}∪{φ} and ε∆ = ε∆∪{ψ} hold. Thus, by substitution

we obtain ε∆ = ε∆∪{φ}. And from this we get, again by Proposition

7.1.4, that ∆ B φ, as required.

¥

The following proposition relates B to the classical consequence relation

².

Proposition 7.1.6. B satisfies

◦ Tautology (>):

∆ B>, for any tautology > of `.
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◦ Contradiction (⊥):

∆ B⊥, for any contradiction ⊥ of `.

◦ Singleton Left Logical Equivalence (sLLE):

² φ ↔ ψ ∆ ∪ {φ}B γ

∆ ∪ {ψ}B γ

◦ Right Logical Equivalence (RLE):

² φ ↔ ψ ∆ B φ

∆ B ψ

Proof. (>) is straightforward: every world satisfies >, so for every couple

of worlds (w, v) in every ordering is valid v ² > ⇒ w ² >.

This means that we can add whichever tautology to our assumption set with-

out changing the consequence relation.

Analogously, (⊥) is valid since no world satisfies a contradiction, and so for

every couple of worlds (w, v) in every ordering is valid v ² ⊥ ⇒ w ² ⊥.

Hence, adding a contradiction to ∆ does not affect the maximally A-consistent

subsets of ∆ and therefore leaves the generated order unchanged.

Both (sLLE) and (RLE) follow from the fact that ² φ ↔ ψ implies M ° φ if

and only if M ° ψ. ¥

If we assume an agent equipped with a knowledge set KU (i.e. the do-

minion of our preferential models is a set of valuation U ⊂ W , with W the

set of all the valuation of our language), then we can strengthen the above

rules with respect to KU :

◦ CnU -Tautology (K −>):

If > `U α (i.e., if α ∈ KU), then ∆ B α
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◦ CnU -Contradiction (K −⊥):

If α `U ⊥ (i.e., if ¬α ∈ KU), then ∆ B α

◦ Singleton Left CnU -Equivalence (sLKE):

`U φ ↔ ψ ∆ ∪ {φ}B γ

∆ ∪ {ψ}B γ

◦ Right CnU -Equivalence (RKE):

`U φ ↔ ψ ∆ B φ

∆ B ψ

Again, they are proved by the fact that CnU -tautologies are satisfied by

every world in U , while CnU -contradiction by no world in U .

Both (sLKE) and (RKE) follow from the fact that `U φ ↔ ψ implies M ° φ

if and only if M ° ψ, for every M with U as dominion.

Note that since B aims at characterizing invariance under any “normal

refinement” of a default information set, it is only sensitive to contingent facts

and therefore disregards as uninformative both tautologies (as we remarked

above) and contradictions. This latter case can be illustrated by taking

∆ = {p, q} and A = {¬q}. Clearly there is only one maximally A-consistent

subset of ∆, namely ∆1 = {p}. Let us now add a contradiction to ∆, so

∆′ = {p, q, α ∧ ¬α}. Again, there is only one maximally A-consistent subset

of ∆′, which is still ∆1 = {p}.
Note also that although default-assumption consequence relations are not

closed under substitution of logically equivalent default information sets (see

below, about Right Weakening), (sLLE) ensures that B is closed under sin-

gleton substitution.

We now move on to the behaviour of B with respect to the standard

propositional connectives. Let us begin with the properties which B satisfies.
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◦ Disjunction in the premises (OR):

∆ ∪ {φ}B γ ∆ ∪ {ψ}B γ

∆ ∪ {φ ∨ ψ}B γ

Let M = (U, ε) be a model. Assume ∆ ∪ {φ} B γ, ∆ ∪ {ψ} B γ and

M ° ρ for every ρ ∈ ∆∪{φ∨ψ}, which means that for every (w, v) ∈ ε,

if v ² ρ, then w ² ρ. Take one of those pairs (w, v) ∈ ε. We need to

check three cases:

1) v ² φ ∨ ψ and w ² φ ∨ ψ.

Since w ² φ ∨ ψ, then either w ² φ or w ² ψ. Hence at least one

of v ² φ ⇒ w ² φ and v ² ψ ⇒ w ² ψ is satisfied. Either way,

v ² γ implies w ² γ

2) v 2 φ ∨ ψ and w ² φ ∨ ψ.

The same argument as (1) applies.

3) v 2 φ ∨ ψ and w 2 φ ∨ ψ.

We have v 2 φ, v 2 ψ, w 2 φ and w 2 ψ. Then v ² φ implies

w ² φ and v ² ψ implies w ² ψ. Hence v ² γ implies w ² γ.

Summing up, if we assume that ∆∪ {φ}B γ, ∆∪ {ψ}B γ, and M ° ρ

for every ρ ∈ ∆ ∪ {φ ∨ ψ}, then, for every pair (w, v) ∈ ε, v ² γ ⇒
w ² γ holds, that is M ° γ. So ∆ ∪ {φ ∨ ψ}B γ, as required.

◦ Introduction of conjunction (I∧):

{φ} ∪ {ψ}B φ ∧ ψ

If an ordering ε satisfies φ and ψ, then for every (w, v) ∈ ε, if v ² φ,

then w ² φ, and if v ² ψ, then w ² ψ. Therefore, for such (w, v), if

v ² φ ∧ ψ, we have that v ² φ and v ² ψ, so also w ² φ and w ² ψ, i.e.

w ² φ ∧ ψ.
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This property, together with MON and CT, gives us the AND rule:

∆ B φ ∆ B ψ

∆ B φ ∧ ψ

◦ Cautious Introduction of disjunction (CI∨):

{φ} ∪ {ψ}B φ ∨ ψ

If an ordering ε satisfies φ and ψ, that means that for every (w, v) ∈ ε,

if v ² φ, then w ² φ, and if v ² ψ, then w ² ψ. Then, for such (w, v),

if v ² φ ∨ ψ, we have that v ² φ or v ² ψ, so also w ² φ or w ² ψ, i.e.

w ² φ ∨ ψ.

Note that we need both premises to derive the disjunction. In partic-

ular the classical Introduction of disjunction (φ B φ ∨ ψ) is not valid.

To see this, take (w, v) ∈ ε s.t. v 2 φ, v ² ψ, w 2 φ and w 2 ψ,

so v ² φ ∨ ψ and w 2 φ ∨ ψ. For this pair v ² φ ⇒ w ² φ, but

v ² φ ∨ ψ ; w ² φ ∨ ψ.

Finally, let us look at some of the properties which B does not satisfy.

◦ Right Weakening (RW):

² φ → ψ ∆ B φ

∆ B ψ

◦ Modus Ponens (MP):

∆ B φ → ψ ∆ B φ

∆ B ψ

To see that B satisfies neither of the above, let (w, v) be v 2 φ, v ² ψ, w 2 φ,

and w 2 ψ. This pair satisfies v ² φ ⇒ w ² φ, both v and w satisfy φ → ψ,

but v ² ψ ; w ² ψ.
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◦ Contraposition (CONTR):

∆ ∪ {ψ}B φ

∆ ∪ {¬φ}B ¬ψ

Given ∆ ∪ {ψ} B φ, it is sufficient to show that there is a model M s.t.

M ° ∆ ∪ {¬φ} and M 1 ¬ψ, i.e. there is a pair (w, v) s.t. (w, v) satisfies

v ² ρ ⇒ w ² ρ for every ρ ∈ ∆, v ² ¬φ ⇒ w ² ¬φ and v ² ¬ψ ; w ² ¬ψ.

Take a pair (w, v) s.t. v ² ρ for every ρ ∈ ∆, v ² φ, v 2 ψ, w ² ρ for every

ρ ∈ ∆, w ² φ, and w ² ψ. This pair satisfies v ² ρ ⇒ w ² ρ for every

ρ ∈ ∆, v ² φ ⇒ w ² φ, v ² ψ ⇒ w ² ψ, and v ² ¬φ ⇒ w ² ¬φ, but it

does not satisfy v ² ¬ψ ⇒ w ² ¬ψ.

The failure of LLE is connected with the failure of another rule of classical

consequence relation:

◦ Left Conjunction (L
∧

):

∆ B φ
∧

∆ B φ

Such a rule is not valid, and thus we cannot substitute a set of premises

with a single formula obtained by their conjunction.

Let us look at a simple example. We always have φ, ψ B φ by REF, but it is

possible that φ ∧ ψ B φ results not valid. Assume a pair of worlds (w, v) s.t.

v ² φ, v 2 ψ, w 2 φ and w 2 ψ. They satisfy v ² φ ∧ ψ ⇒ w ² φ ∧ ψ, since

φ ∧ ψ is false in both of them, but v ² φ 6⇒ w ² φ.

Obviously, this is also a counter-example for a special case of RW, the

elimination-of-conjunction rule (E∧):

φ ∧ ψ B φ.
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Completeness

Let CB be the normality operator defined by the relation B:

CB(A) = {α|A B α}.

Given a set of default-assumptions ∆, CB(∆) defines all the formulas we can

add to ∆ without changing the generated consequence relation |∼∆. We can

prove that CB(∆) corresponds to the closure under conjunction and disjunc-

tion of the set ∆ (modulo CnU -equivalence).

Note : in this paragraph and the following one we shall not consider the

presence in the default set of logical equivalent formulae. That is, given a

default system 〈K, ∆〉, by ‘α’, for example, we do not refer properly to a for-

mula α ∈ ∆, but the class of the CnK-equivalent formulae to α. Obviously,

given RKE, if α ∈ ∆, every CnK-equivalent formula to α is in CB(∆).

Hence, from now to the end of the chapter, the constraints and results in

the proofs have to be considered modulo CnK-equivalence, i.e. considering

as if in our default sets we have only a single witness for every set of CnK-

equivalent formulae.

First of all, some notation.

Given a set of formulae A, A∧ is the set of formulae obtained by closing A

under conjunction.

A∧ = {
∧

B|B ⊆ A}

Analogously for disjunction.

A∨ = {
∨

B|B ⊆ A}

We can immediately see that these operations are monotonic, that is, if

A ⊆ B, then A∧ ⊆ B∧ and A∨ ⊆ B∨.

We also have to introduce the notion of maximal worlds for a formula α, i.e.

the most exceptional worlds satisfying α.

160



Given a formula α, we call maxε([α]U) the set of the maximal worlds in [α]U

with respect to the preorder ε.

maxε([α]U) = {w ∈ [α]U | there is no v ∈ [α]U , s.t. w ≺ε v}

A world w is maximal for α iff w ∈ maxε([α]U).

Given that we work with finite models, the smoothness condition (see Def-

inition 2.3.11) is valid also with respect to maximal worlds, i.e. [α]U 6= ∅
implies maxε([α]U) 6= ∅ for every formula α.

Recall also that, given a preferential model M = 〈U, ε〉, we can define its

characteristic default set ∆ε (see Proposition 3.1.7):

∆ε = {βw|w ∈ U}

with

βw :=
∨

v¹εw

{αv}

where αv is the formula characterizing the valuation v.

We can use a generalization of Observation 15 in [12] to show that the

closure under disjunction of the characteristic default set ∆ε defines every

default formula in ε.

Lemma 7.1.7. Given a model M = 〈U, ε〉, and its characteristic default-

assumption set ∆ε, then a formula φ is a default formula in M (∆ε B φ) iff

it is CnU -equivalent to a formula ρ ∈ (∆ε)∨.

Proof.

From the validity of the CI∨ rule, we automatically have that φ ∈ (∆ε)∨

implies that φ is a default in M.

We have to prove the converse. Assume φ is a default formula in M. If φ is

CnU -inconsistent, then it is a disjunction over an empty set.

Suppose φ is consistent. Denote by βφ the disjunction of every βw, s.t.

w ∈ maxε([φ]U). We want to prove that φ is CnU -equivalent to βφ.
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Suppose that a world v satisfies φ. If v ∈ maxε([φ]U), then v ² βv, and

hence v ² βφ. If v /∈ maxε([φ]U), then there is a world u s.t. v ≺ u and

u ∈ maxε([φ]U); then v ² βu, and hence u ² βφ. So every world in U satisfy-

ing φ satisfies βφ. φ `U βφ.

For the converse, take a world v s.t. v ² βφ. There is a world u s.t.

u ∈ maxε([φ]U) and v ² βu.

We can have that v = u or v ¹ u. If v = u, then obviously v ² φ.

If v ¹ u we have the same that v ² φ, since u ² φ and φ is a default formula

in M (hence downward persistent).

So every world in U satisfying βφ satisfies φ. βφ `U φ.

Hence, every default formula φ in M = 〈U, ε〉 is CnU -equivalent to the dis-

junction of some subset of ∆ε.

¥

Given a default-assumption set ∆, we can build the generated preorder

ε∆, and from this we can identify its characteristic default set ∆ε∆ . We want

to show that ∆ε∆ is equal to the closure of ∆ under conjunction, i.e. the set

∆∧.

Assume, as usual, a set of worlds U as dominion of our models, defining

our background knowledge KU . First, let us prove that every consistent

subset of ∆ is CnU -equivalent to some ∆w for some w ∈ U (recall that

∆w = {α ∈ ∆|w ² α}).

Lemma 7.1.8. Assume that Ψ ⊆ ∆ and that Ψ is CnU -consistent; then Ψ

is CnU -equivalent to ∆w for some w ∈ U .

Proof.

Assume Ψ ⊆ ∆. Define a set ∆Ψ as

∆Ψ = ∆ ∩ CnU(Ψ)

Obviously, ∆Ψ ⊆ ∆ and , since Ψ ⊆ ∆, we have Ψ ⊆ ∆Ψ, and Ψ and ∆Ψ are

CnU -equivalent.

It is sufficient to prove that ∆Ψ is the maximally consistent subset of ∆ for
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some formula.

Given a set ∆, define the set ∆¬ as the set composed by the negated formulas

in ∆:

∆¬ = {¬φ|φ ∈ ∆}
Take the set ∆\∆Ψ. If ∆\∆Ψ = ∅, then ∆Ψ = ∆, and, given the consistency

of Ψ, ∆Ψ is the set of defaults satisfied in every optimal world. If ∆\∆Ψ 6= ∅,
then take the set of the negated defaults that are not in ∆Ψ, i.e. (∆ \∆Ψ)¬.

There is at least one nonempty subset (∆\∆Ψ)¬
′
of (∆\∆Ψ)¬ s.t. (∆\∆Ψ)¬

′

is CnU -maxiconsistent with ∆Ψ. Otherwise, we have that ∆Ψ,¬φ `U ⊥ for

every φ in ∆ \∆Ψ, that is, ∆Ψ `U φ. In such a case, by the definition of ∆Ψ

and since φ ∈ ∆, we would have φ ∈ ∆Ψ, which contradicts φ ∈ ∆ \∆Ψ.

Hence, there is a set (∆ \∆Ψ)¬
′
s.t. (∆Ψ∪ (∆ \∆Ψ)¬

′
) is satisfied by a world

w, and ∆Ψ is the maximal subset of ∆ consistent with
∧{(∆ \∆Ψ)¬

′}, that

is, ∆Ψ = ∆w.

¥

Assumed a background knowledge K, let ⊥K be the symbol for CnK-

contradictions.

Lemma 7.1.9. Given a default-assumption system S = 〈K, ∆〉, every φ in

∆ε∆ is CnK-equivalent to a formula in ∆∧ −⊥K, and conversely.

Proof.

Assume a default-assumption system S = 〈K, ∆〉. From S generate the

corresponding preferential model M = 〈UK , ε∆〉. We can define its charac-

teristic default set ∆ε∆ :

∆ε∆ = {βw|w ∈ U}
with

βw :=
∨

v¹εw

{αv}

Obviously, every βw is consistent, since it is a disjunction of consistent for-

mulas.
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As a first step, we want to show that, if ∆ is CnK-consistent, then ∆∧ = ∆ε∆ ,

i.e. that every βw is CnK-equivalent to a consistent conjunction of defaults

in ∆; otherwise, if ∆ is not CnK-consistent, ∆ε∆ = ∆∧ −⊥K .

Name
∧

Ψ the conjunction of the elements of some Ψ ⊆ ∆.

Assume ∆ is CnK-consistent; then every
∧

Ψ is CnK-consistent as well.

It is sufficient to prove that every βw in ∆ε∆ is CnK-equivalent to ∆w, the set

of every default satisfied in w.

It is easy to prove that, for every v in UK , v ² βw iff v ² φ for every φ ∈ ∆w:

if v ² φ for every φ ∈ ∆w, then ∆v ⊇ ∆w and v ¹ w, hence v ² βw; otherwise,

if v 2 φ for some φ ∈ ∆w, then ∆v 6⊇ ∆w, v 6¹ w and v 2 βw.

This implies the CnK-equivalence between βw and ∆w.

Given that every
∧

Ψ is CnK-consistent, by the lemma above we have that∧
Ψ is CnK-equivalent to some ∆w.

Hence, every formula
∧

Ψ, with Ψ ⊆ ∆, is CnK-equivalent to some βw, and,

conversely, every βw is CnK-equivalent to some
∧

Ψ, with Ψ ⊆ ∆ (in partic-

ular, it is CnK-equivalent to
∧

∆w).

So, given the validity of the substitution of equivalent single formulas (sLKE

and RKE), if ∆ is CnK-consistent, then ∆∧ = ∆ε∆ .

If ∆ is not CnK-consistent, then
∧

Ψ could be inconsistent too.

If
∧

Ψ is inconsistent, then
∧

Ψ is logically equivalent to ⊥K .

If
∧

Ψ is consistent, then the argument above applies here too.

Hence, ∆ε∆ = ∆∧ −⊥K .

¥

Finally, by Lemmas 7.1.7 and 7.1.9, we can obtain

Proposition 7.1.10. CB(∆) is composed by the formulas CnU -equivalent to

the formulas in (∆∧)∨.

Proof.
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By Lemmas 7.1.7 and 7.1.9 we have

CB(∆) = (∆ε∆)∨ = (∆∧ −⊥K)∨

Since ∅ ⊆ ∆ε∆ and (∅)∨ = ⊥K , we have ⊥K ∈ (∆∧ − ⊥K)∨, and we can

simplify the above equation to:

CB(∆) = (∆∧)∨

¥

We can simplify the proposition above, showing that the closure under

conjunction and under disjunction of ∆ corresponds exactly to (∆∧)∨, mod-

ulo CnU -equivalence.

Theorem 7.1.11. φ is a default formula in a generated preferential model

M = 〈UK , ε∆〉 iff φ is CnU -equivalent to a formula in the disjunctive and

conjunctive closure of ∆.

Proof.

Since every formula in (∆∧)∨ is obviously also a formula in the conjunctive

and disjunctive closure of a set of formulae ∆, it is sufficient to prove that ev-

ery formula in the conjunctive and disjunctive closure of ∆ is CnU -equivalent

to a formula in (∆∧)∨. We can prove this by induction in the construction

of the conjunctive and disjunctive closure of ∆.

Let γ be in such closure of ∆.

If γ ∈ ∆, obviously we have that γ ∈ (∆∧)∨. Otherwise, γ have been ob-

tained by the conjunction or the disjunction of two formulae α, β.

By induction step, we assume α, β ∈ (∆∧)∨, or better, that they are CnU -

equivalent to two formulae in (∆∧)∨. This corresponds to saying that α is

CnU -equivalent to a formula α1 ∨ . . .∨αn, with α1, . . . , αn ∈ ∆∧, and that β

is CnU -equivalent to a formula β1 ∨ . . . ∨ βm, with β1, . . . , βm ∈ ∆∧.

If γ is CnU -equivalent to α ∨ β, then γ is CnU -equivalent to α1 ∨ . . . ∨ αn ∨
β1 ∨ . . . ∨ βm, which is a formula in (∆∧)∨.
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If γ is CnU -equivalent to α∧β, then γ is CnU -equivalent to (α1 ∨ . . .∨αn)∧
(β1 ∨ . . . ∨ βm), which, in turn, is equivalent to (α1 ∧ β1) ∨ . . . ∨ (α1 ∧ βm) ∨
. . . ∨ (αn ∧ β1) ∨ . . . ∨ (αn ∧ βm). Since every subformula (αi ∧ βj) is in ∆∧,

we have that the formula is in (∆∧)∨, i.e. γ is CnU -equivalent to a formula

in (∆∧)∨.

¥

Hence, logical equivalence, closure under disjunction and closure under

conjunction allow to reach every default formula determined by a preorder ε

over a set of worlds U ; this corresponds to saying that, given a set of default

formulae ∆ and a knowledge set K, the structural rules

◦ (K −>)

◦ (K −⊥)

◦ (RKE)

◦ (I∧)

◦ (CI∨)

represent a complete characterization of the derivation of default formulae

from a set ∆, given a background knowledge K.

Minimal bases

Since we work with finite sets of formulae, given a finite default set ∆, it is

easy to see that also its closures under conjunction (∆∧) and under disjunc-

tion (∆∨) are finite: if |∆| = n, then |∆∧| = |∆∨| = 2n; hence, also (∆∧)∨ is

finite (|(∆∧)∨)| = 22n
).

It is possible to show that every B-closed set D has got, again modulo Cn-

equivalence, a minimal base, i.e. a smaller set of formulae that generates D

under B-closure. This will be especially useful in the next chapter, when we
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shall analyze default revision.

Theorem 7.1.12. If a finite set D is closed under conjunction (D = D∧),

then there is a minimal set of formulae ∆ s.t. ∆∧ = D.

Proof.

Assume a background knowledge K (corresponding to a semantical dominion

U) and a finite set D, closed under conjunction. Given three formulae α, β, γ,

we know that γ is CnU -equivalent to α ∧ β iff [γ]U = [α]U ∩ [β]U .

Define an enumeration 〈D〉 = 〈α1, . . . , αn〉 of the formulae in D.

We construct ∆ in the following way:

αi ∈ ∆ iff [αi]U 6= [αj]U ∩ [αk]U for everyj, k 6= i

This simply states that we put a formula α in ∆ iff we cannot obtain α from

the conjunction of two other formulas in D. We have to prove that ∆∧ = D.

Since ∆ ⊆ D, we obviously have that ∆∧ ⊆ D. Assume that D 6⊆ ∆∧,

i.e. there is a formula αi s.t. αi ∈ D and αi /∈ ∆∧. This implies that

[αi]U = [αj]U ∩ [αk]U for some αj, αk ∈ D. Define as α↑i the finite set of the

formulae in D implied by αi, that is, the set of the formulae s.t. the set of

the worlds satisfying one of them includes the set of the worlds satisfying αi;

obviously, αj, αk ∈ α↑. Necessarily, at least one between αj and αk is not in

∆∧, otherwise αi ∈ ∆∧.

Assume, without loosing generality, that αj /∈ ∆∧. We can apply the same

argument used for αi, identifying two formulae in the set α↑j s.t. αj corre-

sponds to their conjunction. Obviously α↑j ⊂ α↑i .

Since, given the finiteness of D, for every formula γ, γ↑ is a finite set, the

iteration of the procedure above will end up with a formula β s.t. β↑ = ∅.
That means that β does not correspond to the conjunction of any other for-

mula in D. This implies that β is in ∆. Contradiction.

Hence, ∆∧ = D.

Finally, we have to show that ∆ is a minimal base for D, i.e. that for every

Γ ⊆ D s.t. Γ∧ = D, ∆ ⊆ Γ.
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Assume there is a Γ s.t. ∆ 6⊆ Γ. Then there is a formula α s.t. α ∈ ∆ and

α /∈ Γ.

α ∈ ∆ implies that [α] 6= [β]∩ [γ] for every β, γ ∈ D, i.e. for every β, γ ∈ Γ∧.

Hence α /∈ Γ∧ and Γ∧ 6= D. Contradiction.

Hence ∆ ⊆ Γ for every set Γ s.t. Γ∧ = D.

¥

Theorem 7.1.13. If a finite set D is closed under disjunction (D = D∨),

then there is a minimal set of formulae ∆ s.t. ∆∨ = D.

Proof.

The proof is analogous to the previous one. It is sufficient to refer to union

instead of disjunction ([γ]U = [α]U ∪ [β]U instead of [γ]U = [α]U ∩ [β]U), and

to define, instead of γ↑, the set γ↓ of the formulae s.t. the set of the worlds

satisfying them is included in the set of the worlds satisfying γ.

¥

Theorem 7.1.14. Given a default set ∆, its closure (∆∧)∨ has got a minimal

default base ∆m, that is, (∆∧
m)∨ = (∆∧)∨ and ∆m ⊆ Γ for every Γ s.t.

(Γ∧)∨ = (∆∧)∨.

Proof.

By Theorem 7.1.13, (∆∧)∨ has got a minimal base Φ s.t. Φ∨ = (∆∧)∨ and

Φ ⊆ ∆∧.

We have that Φ ⊆ Φ∧ ⊆ ∆∧; by the monotonicity of ∨-closure and the fact

that Φ∨ = (∆∧)∨, we have that Φ∨ = (Φ∧)∨ = (∆∧)∨.

By Theorem 7.1.12, Φ∧ has too a minimal base ∆m, s.t. ∆m ⊆ Φ ⊆ ∆ and

∆∧
m = Φ∧.

Hence, (∆∧
m)∨ = (Φ∧)∨ = (∆∧)∨.

¥
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7.2 What are default-assumptions?

Default-assumptions are generally deemed as referring to formulae holding

in normal situations. However, if we defend such an interpretation, the anal-

ysis above highlights a strange behaviour. In particular, the failure of Right

Weakening and Modus Ponens sounds strange.

Let us briefly comment on these two negative results. The failure of MP

means that the normality closure of a sentence given a set of default infor-

mation does not obey the laws of material implication. For example, in the

default-assumption model, if an agent has as default information that the

weather is sunny, and that if the weather is sunny the streets are not wet,

such an agent is not allowed to deem as a default that the streets are not

wet.

In particular, note that failure of RW implies the failure of Supraclassicality,

that is, our operator B does not extend the classical consequence operator

If we want our default-formulae to describe a normal situation, it would be in-

tuitive for such a characterization to be classically closed. Moreover, there is

a gap between the formulae B-derivable from a set ∆ and the set of sequents

of form > |∼∆ α generated by ∆: for example, given a ∆ = {α, α → β}, we

cannot generally add β to ∆ without modifying the associated inference re-

lation |∼∆, but we will have > |∼∆ β as valid, i.e. we will deem β as normally

holding in the model generated from ∆.

So, we cannot interpret default-assumption sets simply as sets containing

formulae we deem as holding in normal situations, as generic expectations,

in the way Gärdenfors and Makinson have characterized them (see [19]): the

kind of closure defined by B does not account for such an interpretation.

If we interpret our defaults as simple expectations, we feel the need to char-

acterize the default information of an ideal agent by means of the classical

closure of its default set Cl(∆). However, it is well known that if we close

the set of default-assumptions ∆ under classical consequence, not only we

radically change the generated inference relation |∼∆, but, moreover, such

change results in a trivial behaviour.
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Theorem 7.2.1. ([39], Theorem 2.7) When ∆ = Cl(∆), then C∆(A) =

Cl(A) whenever A is inconsistent with ∆.

Such a behaviour has been felt as one of the main flaws of default-

assumption approach.

Hence, there is the risk to be forced to hold the default-assumption approach

just as an useful tool to be combined with the classical preferential approach

in order to make model-construction more simple, as in the previous chap-

ter, without giving to it any role in the epistemological interpretation of our

agents.

We do not think it is the case. Simply, it is necessary to differentiate be-

tween formulae simply holding in normal situations and formulae character-

izing normal situations, i.e. formulae that allow us to distinguish a normal

situation from an exceptional one. Undertaking such an interpretation, the

failure of (RW) and (MP) does not sound strange anymore.

Let us give an example. Assume that a normal tiger is characterized by a

tawny coat with black stripes (∆ = α ∧ β), and consequently we recognize

that a tiger is a normal one if we are informed that its coat is tawny and has

black stripes.

The fact that normally its coat has black stripes (> |∼∆ β), with the known

fact that a striped coat is not uniform (` β → γ), implies by MP that

normally a tiger does not have an uniform coat (> |∼∆ γ). However, the

non-uniformity of the tiger’s coat does not give us any information about

the normality of the situation: if we only know that a particular tiger has

a non-uniform coat, this does not allow us to say that it is a normal tiger,

since its coat could be, for example, a spotted coat. If a spotted tiger is

more normal than a tiger with a uniform coat would be an open question,

and hence we are not justified in adding the non-uniformity of the coat (γ)

to the default set ∆.

Hence, default-assumptions acquire a prominent status between the formu-

lae holding in normal situations, i.e. as distinguishing features of normality.

Such a status makes them a useful formalization, for example for stereotyp-
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ical reasoning, as pointed out by the tiger example just made.

This characterization of default formulae justifies also the other properties

of B.

Let us give some examples.

The introduction of conjunction is very intuitive, since, given that a couple

of formulae α and β characterizes the normality status of a situation, all the

more the satisfaction of both of them, i.e. of α ∧ β, will indicate that the

situation we are in is a normal one. Conversely, the failure of the elimination

of conjunction is desirable: if we have that a normality is characterized by

the satisfaction of α∧ β, then it is not obvious at all to deem also α by itself

as a default formula. The example above about the tiger is clarifying: the

normal coat of a tiger must be both tawny and striped; if we simply know

that the coat of a tiger is tawny, and we do not know anything about its

pattern, we do not have sufficient clues to judge the normality of the tiger’s

coat.

The same can be said about the properties of disjunction. Cautious introduc-

tion of disjunction is intuitive: if we maintain α and β as default formulae,

it is obvious that the satisfaction of at least one of them, that is, the sat-

isfaction of α ∨ β, will indicate that we are moving toward normality. The

same cannot be said about the traditional introduction of conjunction: if

α characterizes typicality, every normal situation will also satisfy α ∨ γ for

every γ. However, such a formula cannot be used to characterize normality:

a situation satisfying γ would also satisfy α ∨ γ, but, since γ does not char-

acterize normality, the satisfaction of α ∨ γ does not tell us anything about

the typicality of the situation.

7.2.1 Reasoning with stereotypes

As the above example about the coat of the tiger shows, the operator B
seems appropriate for the management of stereotypes.

Stereotypes have played an essential role, both in philosophy and in cog-
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nitive science, in the development of a theory of concepts, both for what

regards their structures and their role in reasoning (for an introduction, see

[28]). Stereotypes play an essential role in Putnam’s social characterization

of meaning ([47]), and play a role in most of the actual notions of conceptu-

alizations: for some commentators, they are at the core of the structure of

many kinds of concepts (see [43]), but such a position has often been criti-

cized. Despite this, the role of stereotypes in many dimensions of common-

sense reasoning, from the classification of an object to uncertain reasoning,

is universally recognized.

“Most actual cases of prototype phenomena simply are not

used in ‘identification’. They are used instead in thought - making

inferences, doing calculations, making approximations, planning,

comparing, making judgments, and so on - as well as in defining

categories, extending them, and characterizing relations among

subcategories. Prototypes do a great deal of the real work of

mind, and have a wide use in rational processes.” [27], p.418

Given a concept X, a stereotype can be seen as the most distinctive ex-

ample of X. In a logical approach, it can be characterized by means of a set

of formulae, defining the most typical properties that an element of X should

satisfy.

The use of stereotypes differs from the classical definitional theory of con-

cepts, which most authoritative reference is Locke: in the latter approach,

the properties connected to a concept X are individually necessary and jointly

sufficient for the application of the concept X to an item; in a stereotypical

perspective toward classification, the properties connected to the stereotype

of X are not strictly necessary conditions for an item to be an X, but rep-

resent simply the most prominent properties connected with the elements of

the category X. The stereotypical view accounts for the vagueness of con-

cepts: the satisfaction of every property expressed by a stereotype identifies

especially good examples of a concept, but other items are recognized as el-

ements of the category, despite not satisfying every stereotypical property.
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The behaviour of default formulae makes them good candidates for model-

ing stereotypical properties. Such an intuition has already been suggested

by Lehmann ([30]). He proposes a logical model for stereotypical reasoning:

the agent starts with a set of n ‘stereotypes’, represented by means of a finite

set of sets of default formulae S = {∆1, . . . , ∆n}, and the information about

an individual, represented, as usual, by means of a finite set of premises A.

He proposes a notion of semantic distance d(A, ∆) between actual informa-

tion and stereotypical information, in order to model the classification of our

individual under a stereotype represented in S. The agent associates the set

of premises A to the ‘nearest’ default set in S (that we call SA), allowing the

agent to complete its own premises by means of the information contained

in the chosen stereotype.

Lehmann proposes a set of minimal intuitive constraints that such notion

of distance should satisfy; the chosen stereotype should be the one that fits

better the information in the premises, and he valuate such ‘fitness’ referring

to the overlap between the set of semantic valuations of both premises and

defaults ([A] and [∆] respectively).

In particular, given a set of stereotypes S and a premise set A, he imposes

that:

◦ For every A and S, the choosing procedure picks up just a single element

in S (that is, |SA| = 1). This is just a simplifying assumption.

◦ For every ∆ ∈ S, d(A, ∆) should be anti-monotonic with respect to

[∆] ∩ [A] (the larger the overlap, the smaller the distance).

◦ For every ∆ ∈ S, d(A, ∆) should be monotonic with respect to [∆]−[A]

(the larger the set of situations in which the defaults can be satisfied,

but not the premises, the larger the distance).

Hence, Lehmann imposes the following basic constraint over our notion

of distance:
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[∆′] ∩ [A′] ⊆ [∆] ∩ [A]

[∆]− [A] ⊆ [∆′]− [A′]

}
⇒ d(A, ∆) ≤ d(A′, ∆′)

The chosen stereotype is the one with a minimal distance from A:

SA = {∆i ∈ S| d(A, ∆i) ≤ d(A, ∆j) for every ∆j ∈ S)}

The consequence operator is defined by adding the formulae in the default

set ∆A ∈ SA to the premise set A.

A |∼S β iff A ∪∆A ² β

Lehmann proves that, if the distance function d satisfies the constraint

above, then the choice function defines a cumulative inference relation ([30],

Corollary 5.6). Lehmann maintains cumulativity as an intuitive property of

this kind of reasoning, but admits that it should be tested experimentally.

However, Lehmann’s model manifests a series of problems. As you can see,

Lehmann’s proposal associates a prototype ∆ as background knowledge to

a set of premises A only in case they are mutually consistent, otherwise

there would be no overlap between the two sets of valuations. This is made

explicit in the following extract, where we have to interpret the notation in

the following way: capital Roman letters represent sets of valuations, and,

in particular, given, in our notation, a premise set A and the chosen default

set ∆A, F and SA correspond, respectively, to our sets of valuations [A] and

[∆A].

“The reasoner will then conclude that the actual state of af-

fairs is one of the members of the intersection F ′ :=def F ∩ SF .

The nonmonotonicity of the reasoning stems from the jump from

F to the subset F ′. Clearly, we do expect F ′ to be non-empty,

assuming F is non-empty, since we want to avoid jumping to

contradictory conclusions. It will be the task of the function that

defines the best stereotype to pick a stereotype that has a non-

empty intersection with the information F at hand.” [30], p.51
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Lehmann does not even take under consideration the possibility that every

prototype in S is inconsistent with the set of premises A. Hence, from the

definition of the inference relation |∼S and the quotation above, we feel free

to assume that, in case of mutual inconsistency, the distance between a set of

premises and a stereotype can be set to ∞, referring by ∞ to the maximum

value of the distance d.

d(A, ∆) = ∞ iff A ∪∆ ` ⊥

So, in the case that every stereotype is inconsistent with the premises, the

choice of the stereotype will be vacuous. That is, if A is inconsistent with

every stereotype in S, SA = S.

Such a model is really limited, since one of the main characteristics of

the use of stereotypes is the fact that an item can be related to a stereotype

also if its characteristics are not consistent with every property described

in the stereotype, and we can derive our suppositions on the basis of the

pieces of information codified in the stereotype which are compatible with

the premises.

Hence, we should define a notion of distance able to manage also relative

distances between a set of premises A and A-inconsistent default sets; in such

a way, in the absence of A-consistent stereotypes, we allow the choice of the

‘nearest’ A-inconsistent default sets. Consequently, we should modify also

the definition of the inference relation to one appropriate to the management

of possible inconsistences between the premises and the chosen default set.

That can be done, obviously, by referring to default-assumption inference

relations:

A |∼S β iff A |∼∆A β

For example, knowing that Tweety is a penguin, we can reason about him

using the information contained in the stereotype of bird, apart from the

information that are known to be inconsistent with being a penguin (flying,

nesting in trees. . . ).
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Hence, we feel the necessity to move to a notion of semantic distance able to

manage also distances between sets of formulae inconsistent between them.

In order to obtain this, we move to a notion of semantic distance proposed by

Lehmann, Magidor and Schlechta in [32], proposed in order to model belief

revision and appropriate for the measure of a sort of ‘consistency distance’

between formulae.

We define a total function of semantical pseudo-distance d defined over the

valuations of our domain U (d : U × U 7→ Z, where Z is a generic set).

d is a pseudo-distance on U iff

(d1) The set Z is totally ordered by a strict order <.

This is the minimal requirement in order to define a notion of pseudo-

distance. We also require that d respects identity, i.e. Z has a <-smallest

element 0, and d satisfies the following property

(d2) d(w, v) = 0 iff w = v.

Pseudo-distance is a generalization of the notion of distance: it does not

require that the set Z corresponds to reals, there is no need for a definition of

a notion of addition of values, and it does not even require symmetry to hold

(i.e. d(w, v) = d(v, w) for every w, v ∈ U). The possibility of failure of such

properties is interesting with respect to a ‘cognitive’ interpretation of the

notion of distance, where we want to read such notion of distance in terms

of ‘informational cost’ of the acceptance of different clusters of information

with respect to a set of premises.

Given a finite language `, we model the distance between different sets of

formulae A and B on the basis of a semantical definition of distance with

respect to the set of valuations [A] and [B] satisfying such formulae.

We define the distance between two sets of valuations T and T ′ as the minimal

distance between the valuations in T and T ′.
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d(T, T ′) = min{d(w, v)|w ∈ T, v ∈ T ′}

Again, given a finite set S of default sets {∆1, . . . , ∆n}, and a set of

premises A, we define as SA the subset of S composed by the default sets

resulting as the ‘nearest’ ones to A.

SA = {∆i ∈ S| d(A, ∆i) ≤ d(A, ∆j) for every ∆j ∈ S)}

Since d is a total function, S 6= ∅ implies SA 6= ∅.
We abandon Lehmann’s simplifying assumption that SA must be composed

by a single default set; we take under consideration the possibility that a

set of premises could be equally distant from distinct default sets. In such a

case, our agent shall reason in a skeptical way with such conflicting default

sets.

In the following, we will use as arguments of the function d both sets of

formulae A or sets of valuations [A]. That is, we state d(A, ∆) = d([A], [∆])

for every set of formulae.

If our function d respects identity (satisfies d2), then the distance between

a set of premises and a default set mutually consistent is 0, since they share

at least a valuation. Hence, the default sets which result consistent with our

set of premises have, intuitively, the priority over inconsistent ones.

Having defined a pseudo-distance function d, satisfying (d1), we define |∼S

as the skeptical inference relation defined by the choice of the stereotypes

with respect to the set of premises A:

A |∼S β iff A |∼∆ β for every ∆ ∈ SA

That is, CS(A) =
⋂{C∆(A)|∆ ∈ SA}, where CS is the inference opera-

tion corresponding to the relation |∼S.

It is easy to check that our inference relations satisfies some basic important

properties.
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Lemma 7.2.2. Assume a pseudo-distance d and a set of stereotypes S. The

inference relation |∼S satisfies REF, LLE, RW, AND.

Proof.

Assume a set of premises A and a set of stereotypes S. By means of our

distance function d, we can identify the set SA.

From the properties of default-assumption inference relations, we obtain the

following properties holding for every ∆i ∈ SA:

A |∼∆i
α for every α ∈ A (REF).

A |∼∆i
α iff B |∼∆i

α, for every set B s.t. Cl(B) = Cl(A) (LLE).

If A |∼∆i
α and ² α → β, then A |∼∆i

β (RW).

If A |∼∆i
α and A |∼∆i

β, then A |∼∆i
α ∧ β (AND).

Consequently, it is easy to see that, since CS(A) is defined by the inter-

section of every C∆(A) s.t. ∆ ∈ SA, and the above properties are all of Horn

form, then CS(A) satisfies the above properties as well.

¥

Given the validity of REF and RW, our inference relation will satisfy

also supraclassicality, and by LLE we have also Left Conjunction (A |∼S β iff∧{A} |∼S β), which allows us to treat only single-premises sequents, without

loss of generality.

However, this notion of distance is not sufficient to guarantee cumulativity,

since we do not have any coherence constraint that can relate the choice

function with respect to possible variations in the premise set. Hence, the

default sets chosen with respect to a premise set α will not possibly have any

connection with the default sets chosen with respect to a premise set α ∧ β.

For a trivial example, assume we have a set of stereotypes S = {∆, ∆′},
where ∆ = {¬p, p → r, p → t} and ∆′ = {¬p, p ∧ r → ¬t}. Since both ∆

and ∆′ are p-inconsistent, we have that d(p, ∆) 6= 0 and d(p, ∆′) 6= 0. We

can state that d(p, ∆) < d(p, ∆′) and d(p∧ r, ∆′) < d(p∧ r, ∆); this does not
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violate neither (d1) nor (d2).

However, in such a case, we obtain p |∼S r, p |∼S t, since CS(p) = C∆(p),

but, given that CS(p ∧ r) = C∆′(p ∧ r), we have that p ∧ r |∼S ¬t, against

cautious monotony.

To satisfy cumulativity, it is sufficient to add a new property to the dis-

tance d. In order to introduce such a property, recall the definition of a

remainder set ∆⊥α (Definition 2.3.2). Moreover, define [∆⊥α] as the set of

valuations satisfying an element of the remainder set ∆⊥α:

v ∈ [∆⊥α] iff v ∈ [B], for some B ∈ ∆⊥α

In the following property (d3), we impose to the distance function d an

intuitive constraint, stating that, given a premise α and a default set ∆, a

valuation satisfying both α and a α-maxiconsistent subset of ∆ is at least as

near to ∆ as any other valuation in [α].

(d3) If w ∈ [α] ∩ [∆⊥¬α], and v ∈ [α], then d(w, [∆]) ≤ d(v, [∆]).

It is sufficient also to use a weakened form:

(d3’) There is a w ∈ [α] ∩ [∆⊥¬α] s.t. d(w, [∆]) ≤ d(v, [∆]) for every

v ∈ [α].

We can prove that if d satisfies (d1)− (d3′), then we obtain a cumulative

inference relation.

Lemma 7.2.3. If [α] ⊆ [α′], then d(α′, ∆) ≤ d(α, ∆) for every ∆.

Proof.

d(α, ∆) = min{d(w, v)|w ∈ [α], v ∈ [∆]}. Since w ∈ [α] implies w ∈ [α′], we

have that min{d(w, v)|w ∈ [α′], v ∈ [∆]} ≤ min{d(w, v)|w ∈ [α], v ∈ [∆]},
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i.e. d(α′, ∆) ≤ d(α, ∆).

¥

We need to prove that, if α |∼S β, then Sα = Sα∧β, that is, d(α, ∆) ≤
d(α, ∆′) for every ∆, ∆′ ∈ S iff d(α ∧ β, ∆) ≤ d(α ∧ β, ∆′).

Lemma 7.2.4. If α |∼S β and ∆ ∈ Sα, then d(α ∧ β, ∆) = d(α, ∆).

Proof.

Recall that Sα = {∆ ∈ S| d(α, ∆) ≤ d(α, ∆′) for every ∆′ ∈ S}.
By (d3’), we have that d([α], [∆]) = d(w, [∆]) for some w ∈ [α] ∩ [∆⊥¬α].

α |∼S β implies that α |∼∆ β for every ∆ ∈ Sα, which implies that if

w ∈ [α] ∩ [∆⊥¬α], then w ∈ [α ∧ β].

Given that d([α], [∆]) = d(w, [∆]), we have that d(w, [∆]) ≤ d(v, [∆]) for

every v ∈ [α]. Since [α ∧ β] ⊆ [α], we have that d(w, [∆]) ≤ d(v, [∆]) for

every v ∈ [α ∧ β], that is, d(α ∧ β, ∆) = d(w, [∆]) = d(α, ∆).

¥

Lemma 7.2.5. If α |∼S β, then Sα = Sα∧β.

Proof.

Assume α |∼S β.

(⇒): If ∆ ∈ Sα, then ∆ ∈ Sα∧β.

If ∆ ∈ Sα, then d(α, ∆) ≤ d(α, ∆′) for every ∆′ ∈ S. By Lemma7.2.3,

since [α ∧ β] ⊆ [α], we have that d(α, ∆) ≤ d(α ∧ β, ∆′) for every ∆′ ∈ S.

Since ∆ ∈ Sα, by Lemma7.2.4, we obtain d(α∧β, ∆) ≤ d(α∧β, ∆′) for every

∆′ ∈ S, i.e. ∆ ∈ Sα∧β.

(⇐): If ∆ /∈ Sα, then ∆ /∈ Sα∧β.
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If ∆ /∈ Sα, then d(α, ∆′) < d(α, ∆) for every ∆′ ∈ Sα. By Lemma7.2.3,

we have that d(α, ∆′) < d(α ∧ β, ∆). Since ∆′ ∈ Sα, by Lemma7.2.4, we

obtain d(α ∧ β, ∆′) < d(α ∧ β, ∆), i.e. ∆ /∈ Sα∧β.

¥

Theorem 7.2.6. Given a set of stereotypes S and a notion of distance sat-

isfying (d1)-(d3’), the consequence relation |∼S is cumulative.

Proof.

We have to show that |∼S satisfies CM and CT.

CM: assume α |∼S β and α |∼S γ, which correspond to saying that α |∼∆ β

and α |∼∆ γ for every ∆ ∈ Sα. Since every default-assumption consequence

relation |∼∆ satisfies CM, we have α ∧ β |∼∆ γ for every ∆ ∈ Sα. Given

α |∼S β, we have, by Lemma7.2.5, that Sα = Sα∧β, which implies that

α ∧ β |∼∆ γ for every ∆ ∈ Sα∧β, i.e. α ∧ β |∼S γ.

CT: assume α ∧ β |∼S γ and α |∼S β. α ∧ β |∼S γ means that α ∧ β |∼∆ γ

for every ∆ ∈ Sα∧β. α |∼S β implies, again by Lemma7.2.5, that Sα = Sα∧β.

Hence, we have that α ∧ β |∼∆ γ and α |∼∆ β for every ∆ ∈ Sα. Since every

such |∼∆ satisfies CT, we have α |∼∆ γ for every ∆ ∈ Sα, i.e. α |∼S γ.

¥

This notion of distance seems appropriate for the classification of an item

under a stereotype also in case of lack of mutual consistency. However, with

this measure there is a problem if there are more than a stereotype coherent

with the premise, since in such a case, if d satisfies identity, we have that the

distance between the stereotype and the premise is always 0.

Hence, on one hand we have Lehmann’s distance, that can manage the choice

of a stereotype in case of consistency with the premise. On the other hand

we have our use of semantical pseudo-distance, appropriate for the choice of

stereotypes if they are inconsistent with the premise. One possible solution

could be the combination of both notions, using Lehmann’s distance in order

to ‘refine’ our notion of distance, in case of more stereotype consistent with
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the premise. This could result in a lexicographic ordering of a distance dlex,

built by giving precedence to the pseudo-distance proposed here, that from

now on we indicate with d1, and, in case of equality, refining with Lehmann’s

distance, from now on called d2.

dlex(α, ∆) < dlex(α
′, ∆′) ⇔





d1(α, ∆) < d1(α
′, ∆′)

or

d1(α, ∆) = d1(α
′, ∆′) and d2(α, ∆) < d2(α

′, ∆′)

Given a set of stereotypes S and a premise α, the previous definition of

the set of the chosen stereotypes holds:

Sα = {∆i ∈ S| dlex(α, ∆i) ≤ dlex(α, ∆j) for every ∆j ∈ S)}

|∼S is defined as for d1, referring to default-assumption inference relations:

α |∼S β iff α |∼∆ β for every ∆ ∈ Sα

At this point, we can show that also this new definition of distance generates

a cumulative inference relation.

From now on, given a premise α, we indicate by Sα the stereotypes chosen

on the basis of dlex, Sα
d1

the stereotypes chosen on the basis of d1, and Sα
d2

the stereotypes chosen on the basis of d2. They define, respectively, three

inference relations (operations): |∼S, |∼S,d1, and |∼S,d2 (CS, CS,d1, and CS,d2).

Consequently, from the lexicographic definition of the dlex-ordering, we have:

Sα =





Sα
d1

if |Sα
d1
| = 1

(Sα
d1

)α
d2

if |Sα
d1
| > 1

Proposition 7.2.7. if α |∼S β, then Sα = Sα∧β

Proof.

We have three possibilities.
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(1) |Sα
d1
| = 1.

(2) |Sα
d1
| > 1 and d1(α, ∆) > 0 for every ∆ ∈ Sα.

(3) |Sα
d1
| > 1 and d1(α, ∆) = 0 for every ∆ ∈ Sα.

(1): |Sα
d1
| = 1 implies that Sα

d1
= Sα and CS(α) = CS,d1(α). By Lemma

7.2.5, from α |∼S β we obtain Sα
d1

= Sα∧β
d1

, that implies |Sα∧β
d1

| = 1 and

Sα∧β = Sα∧β
d1

, that is, Sα∧β = Sα.

(2): d1(α, ∆) > 0 for every ∆ ∈ Sα implies that the default sets in Sα

are not consistent with the premise α. Therefore, d2 is not able to choose

between them, and we have (Sα
d1

)α
d2

= Sα
d1

. Again we have that Sα
d1

= Sα and

CS(α) = CS,d1(α), and we can apply the argument at point (1).

(3): d1(α, ∆) = 0 for every ∆ ∈ Sα implies that the default sets chosen

by means of d1 are consistent with α, and we can refine the choice by means

of d2.

Since α |∼S β, we have that some default sets in Sα
d1

are consistent with

α∧ β (surely those in (Sα
d1

)α
d2

), and, therefore, these are the default sets in S

minimally d1-distant from α∧ β. Hence, we have (Sα
d1

)α
d2
⊆ Sα∧β

d1
⊆ Sα

d1
, that

is,

Sα ⊆ Sα∧β
d1

⊆ Sα
d1

Since every element in (Sα
d1

)α
d2

is in Sα∧β
d1

, we have that (Sα∧β
d1

)α
d2

= (Sα
d1

)α
d2

=

Sα. Now we have to use a Theorem from Lehmann. Remember that the

choice function determined by d2 selects a single default set, i.e. |Sα
d2
| = 1 for

every S and every α. In particular, we will indicate by ∆α
d2

the only default

set in Sα
d2

.

[30], Theorem 5.5: If ([α] ∩ [∆α
d2

]) ⊆ [α′] ⊆ [α], then Sα′
d2

= Sα
d2

In particular, let α′ be α ∧ β, S be Sα∧β
d1

, and consequently (Sα∧β
d1

)α
d2

=

{∆α
d2
}; given that α |∼S β and Sα = (Sα∧β

d1
)α
d2

, we have that ([α] ∩ [∆α
d2

]) ⊆
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[α∧ β] ⊆ [α], and this, by the theorem above, implies (Sα∧β
d1

)α∧β
d2

= (Sα∧β
d1

)α
d2

.

Combining the equations, we have (Sα
d1

)α
d2

= (Sα∧β
d1

)α∧β
d2

, that is

Sα = Sα∧β

as desired.

¥

Theorem 7.2.8. Given a set of stereotypes S and a notion of distance dlex

(defined lexicographically from d1 and d2 as above), the consequence relation

|∼S is cumulative.

Proof.

Since CS(α) is obtained by the intersection of default-assumption inference

operations, it satisfies REF, LLE, RW, AND (see Lemma 7.2.2).

Cumulativity can be proven using Proposition 7.2.7, restating appropriately

the proof of Theorem 7.2.6.

¥

So, combining our notion of pseudo-distance, which seems appropriate in

cases of inconsistencies between the item and the stereotypes, and Lehmann’s

distance, which is more appropriate in case of consistent item-stereotype

pairs, we have defined a notion of distance that seems appropriate for mod-

eling stereotypical reasoning: it gives back a cumulative inference relation in

every case.
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Chapter 8

Default updating

Abstract. We present a possible approach to the revision of default informa-

tion.

In this chapter we shall propose a model for the revision of default-

assumption sets. We will start by briefly depicting the main results in the

classical theory of belief change, and then we will move to a corresponding

characterization for defaults. After a brief presentation of the AGM approach

to belief revision, we shall consider the logical constraints appropriate for the

characterization of the revision of default sets, i.e. sets of formulae closed

under B, and then we shall consider also the possibilities of revision models

with respect to default bases, i.e. sets of formulae not necessarily closed un-

der B, representing the defaults explicitly considered by a real agent.

8.1 Theory revision

Assume an agent characterized by a consistent belief base H, i.e. a set of

formulae representing its explicit beliefs, and by a tarskian supraclassical

closure operation Cn (relation `); if the agent acquires a new piece of infor-
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mation α, it is possible for α to be Cn-inconsistent with its previous belief

base H (Cn(H, α) = ⊥). To manage such a situation we can undertake one

of two possible attitudes.

On one hand, we can admit that an inconsistent belief set is a realistic and

not undesirable possibility, and hence we point to the definition of a rea-

soning process (i.e. a consequence relation) appropriate for the management

of inconsistent information, avoiding the triviality of the ex falso quod libet

property; such a position refers to the so-called paraconsistent logics (see e.g.

[46]).

On the other hand, we can maintain logical consistency as an unrejectable

requisite for satisfactory databases. If we point to such an approach, we

need to define a mechanism in order to keep our database consistent after

every informational update. Belief revision is a theory developed to define

the logical constraints appropriate for the definition of such a mechanism.

If we add to a belief base H a formula α s.t. α and H are mutually incon-

sistent, we have to eliminate some of the content of the agent’s database in

order to restore consistency. In general, in belief revision we assume that

the incoming information α has to be accepted, and so it is the previous

information H that has to be revised.

The following is a typical simple example:

“Suppose you have a database that contains, among other

things, the following pieces of information (in some form of code):

The bird caught in the trap is a swan. A

The bird caught in the trap comes from Sweden B′

Sweden is part of Europe B′ → B

All European swans are white A ∧B → C

If your database is coupled with a program that can compute

logical inferences in the given code, the following fact is derivable:

The bird caught in the trap is white C
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Now suppose that, as a matter of fact, the bird caught in the

trap turns out to be black. This means that you want to add the

fact ¬C, i.e. the negation of C, to your database. But then the

database becomes inconsistent. If you want to keep the database

consistent - which is normally a sound methodology - you need

to revise it. This means that some of the beliefs in the original

database must be retracted.” ([20], p.36)

The problem of belief revision corresponds to the characterization of

methodologies for modifying the database in order to keep it logically con-

sistent. The main preoccupation for a logician is the definition of rationality

postulates working as ideal constraints for the behaviour of a real agent.

Such constraints are both of logical and economical kind.

On the logical side, our main interest is the logical consistency of the beliefs

of the agent. Since we are working on the level of ideal agents, we assume

that we operate on deductively closed sets of formulae, that is, if a database

entails a sentence α, then we should consider α as included in the database.

Consistency and closure have to be considered as necessary properties for

the characterization of rationality and coherence in the epistemic states of

an ideal agent.

We refer to deductively closed sets of formulae as belief sets K (K = Cn(K)),

opposed to belief bases H, which are finite sets of formulae representing the

explicit content of a real database.

Beyond logical principles such as consistency and closure, we have desiderata

of economical kind: in particular, since we maintain information as a pre-

cious resource, we adopt the conservativity principle, or maxim of minimum

mutilation: in every belief change, the loss of information should be kept

minimal. We should abandon as little information as possible in order to

keep the belief set consistent.

As suggested by Rott (see [53],[54]), on the basis of such desiderata we can

distinguish three senses of coherence that a theory of belief revision should
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satisfy. Fist of all, there is a static sense of coherence, the synchronic or

inferential coherence, tied to the notion of consistency and closure and im-

posing constraints on the isolated belief sets: the agent’s beliefs should be

‘well balanced’, i.e. we should avoid not closed and not consistent epistemic

states.

Then, we can identify a relational, diachronic, kind of coherence, with respect

to the move from an epistemic state to a new one, which has to account for

the economical constraints imposed by the conservativity principle.

In the end, we can also identify a third sense of coherence, pointing toward

the inclusion of every potential update of an epistemic state into a com-

prehensive rational framework: while diachronic coherence is aimed to the

comparison of the prior and the posterior belief sets in the case of a revision

by a particular input, dispositional coherence compares the potential revi-

sions of a belief set with respect to different but logically related formulas:

for example, given a belief set K, it is natural to relate the behaviour if the

revision of K with respect to a formula α ∧ β to its revision with respect to

the single formulas α and β.

Moreover, we have a basic principle connected to the formalism we chose in

defining the epistemic state of an agent.

Definition 8.1.1. Principle of categorial matching ([20], p.37):

The representation of a belief state after a belief change has taken place should

be the same format as the representation of the belief state before the change.

The principle of categorial matching simply states that, starting with an

epistemic state characterized by a particular formal structure, the output of

every belief change operation should be an epistemic state with the same kind

of formal structure: for example if we start from a closed belief set, we have to

obtain a new closed belief set, and, analogously, if we start with a finite belief

base, every change has to result in a finite belief base. Such a principle seems

quite intuitive and obvious, and is considered necessary in particular for the

iteration of belief-change operations. However, it is often not very simple to

be satisfied, especially if we work with epistemic structures involving special
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expectation relations between formulas, as the entrenchment relation we are

going to see below, which has to be redefined after every change.

The connection between nonmonotonic logics and belief revision theory is

very strong (see [37]). In particular, the meet contraction presented below

have a clear connection with default-assumption models, since they resemble

the same construction by means of maxiconsistent sets.

On the theoretical side, we can define two main approaches to the prob-

lem of belief revision: the coherentist approach and the foundationalist one.

Notwithstanding that they both generally concord with the coherence con-

straints above, they are distinguished with respect to the characterization of

the epistemic state of the agent.

On one hand, coherentists identify the epistemic state of the agent with its

belief set, i.e. with a closed theory; such a theory is confronted with new

information in an holistic way, and every formula in the theory has the same

epistemological status.

On the other hand, foundationalists emphasise the role of the belief base of

the agent, i.e. the finite set of formulas the agent explicitly ‘has in mind’,

the real database of the agent. Notwithstanding the fact that the rationality

constraints of revision have to be formulated with respect to ideal conditions

of coherence (closure and consistency), the operations of belief revision have

to be modeled with respect to the changes of the belief base; given an agent

with a belief base H and a new piece of information α, the formulae in H,

the basic formulae, front the new information with a different status with

respect to the formulae in Cn(H), called derivative formulae, which presence

in the belief set of the agent depends only on their derivability from some

formulas in H.

In order to define the ideal rational desiderata of belief revision, we have to

work at a high level of idealization; this means that we have to refer to logi-

cal closed sets of formulae as the representation of the epistemic states of an

agent. Referring to the belief sets instead of the belief bases in order to define

189



the rationality postulates of revision operations, we aim to a representation

of the behaviour of an ideal reasoner when it is forced to reorganize its be-

liefs in front of new incoming information. The coherentist approach points

toward the definition of an ideal prescriptive model defining what rational

agents should do, abstracting from the restrictions of their real reasoning

capabilities.

Hence, we could see the coherentist approach as positioned on a higher level

of idealization, abstracting from a distinction between explicit and implicit

information in an agent’s epistemic state. It’s from such a perspective that

Alchourròn, Gärdenfors and Makinson have proposed in [1] some rationality

postulates for belief revision, known as the AGM approach, that have been

recognized as the standard view in the field.

In such a characterization of belief change operations, we assume that the

possible change operations on a belief set consist in the addition or the elim-

ination of pieces of information. With respect to the way we undertake such

additions and eliminations, we can identify three kinds of operations:

1. Expansion: given a belief set K, we want to add a formula α to K.

The addition of α to K is done without any consistency constraint.

2. Contraction: given a belief set K, we want to eliminate a formula α

from K.

3. Revision: given a belief set K, we want to add a formula α to K, but

we want the belief set to remain consistent.

The AGM theory presents a series of rationality postulates for these three

operations, assuming we are working with closed belief sets, without consid-

ering any relation between formulae besides a closure operator; we assume as

our closure operation a supraclassical monotonic consequence operator Cn

(and the corresponding relation `).

We are going to briefly present the main results of the classical theory of

belief revision in order to be able to introduce default revision. Notwith-

standing, assuming the characterization of nonmonotonic systems given in
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the previous chapters, as generated by a knowledge set and a default set,

we can deem the following results of theory revision as appropriate tools for

the revision of the knowledge set K|∼ associated to a nonmonotonic inference

relation |∼.

8.1.1 Expansion

Given that in the operation of expansion we do not assume any consistency

constraint, such an operation is usually the most simple one to be defined,

and generally it results in quite a trivial operation. Obviously, it is possible

for the result of an operation of expansion to be an inconsistent belief set,

written K⊥, i.e. a deductively closed set corresponding to the entire language

` (K⊥ = `).

We indicate the operation of expansion by means of a function +, that is,

+ : T × ` 7→ T , where T ⊆ ℘(`) is the set of the Cn-theories in `. Given a

belief set K, K+
α is the belief set obtained by the addition of α to K.

There are six rationality postulates that such an operation should satisfy.

(K + 1) K+
α is a belief set.

(K + 1) imposes the respect of the principle of categorial matching, forc-

ing the result of expansion to be again a belief set, i.e. a set of formulae

closed under Cn.

(K + 2) α ∈ K+
α .

(K + 2) is the success postulate: since expansion is finalized to the addi-

tion of α in our epistemic state, α must be a member of the new belief set.

(K + 3) K ⊆ K+
α .

(K+3) is a postulate referring to informational economy: since we do not
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impose any consistency constraint, we do not have any reason to abandon

information: it guarantees that no previous information is affected by the

expansion of K with α.

(K + 4) If α ∈ K, then K+
α = K.

(K + 4) captures a degenerate case: if the information to be added is

already in the agent’s belief set, nothing changes.

(K + 5) If K ⊆ K ′, then K+
α ⊆ K ′+

α .

(K + 5) is known as the monotonicity postulate. If K ⊆ K ′, then the

addition of α to K does not add anything that is not included also in K ′+
α .

(K + 6) For all belief sets K and all sentences α, K+
α is the

smallest belief set that satisfies (K + 1)− (K + 5).

(K + 6) is known as the minimality postulate. It imposes that the new

belief set does not contain any extra information with respect to the addition

of α to K.

It is easy to show that the operation satisfying these postulates simply cor-

responds to the closure of K ∪ {α} under Cn.

Theorem 8.1.1. ([17], Theorem 3.1)

The expansion function + satisfies (K+1)-(K+6) iff K+
α = Cn(K ∪ {α}).

Modeling expansion by means of this definition, the iteration of the oper-

ation is very simple to analyze given the properties of a monotonic supraclas-

sical operator Cn. For example, the operation of expansion is commutative.

(K+
α )+

β = (K+
β )+

α

Moreover, the successive expansion of K by means of two formulae α and
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β corresponds to a single expansion of K by means of α ∧ β.

(K+
α )+

β = K+
α∧β

8.1.2 Contraction

The contraction of a belief set K with respect to a formula α consists in

the elimination of α from K without adding any new piece of information.

Given the closure assumption, i.e. that the epistemic state of the agent is

represented by means of a closed belief set, such an operation is not as trivial

as expansion: we want α to be no more Cn-derivable in our epistemic state,

and so we have to eliminate from K every set of formulae H s.t. H ⊆ K and

H ` α. In this operation, the economic principle of conservativity plays a

fundamental role, since we want to avoid the derivation of α but at the same

time eliminating from K as few pieces of information as possible. However,

as argued by Rott in [52], there has often been a misunderstanding in the role

of the AGM postulates with respect to conservativity: notwithstanding that

most of the commentators have indicated the AGM theory as an approach

centered on the principle of minimum mutilation, AGM logical constraints

do not fully account for the respect of such economical constraints, or better,

they fully account for such constraints just for trivial cases; at most, we could

say that they determine the compatibility of the contraction operation with

the principle of minimum mutilation. As we are going to see below, there are

constructions, such as full meet contraction, that satisfy the AGM postulates

without respecting conservativity. For now, economical constraints remain

mainly an extra-logical problem, not to be valuated by means of logical con-

straints but with respect to the particular constructions of the belief change

operators.

As we are going to see in the next section, the main theoretical justification of

the operation of contraction is with respect to its role in the definition of the

revision operation, and it has been debated if we can recognize ‘pure’ cases of
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contraction, i.e. if there are cases in which an agent simply eliminates a belief

in α from its belief set, without adding the belief in ¬α. In general, however,

we recognize the possibility of the move from an epistemic state in which α

is believed to an epistemic state in which we simply suspend our judgment

about α, since we could have received information forcing us to raise doubts

about the truth value of α, without driving us towards a commitment with

respect to the truth of ¬α. Moreover, we can imagine the use of contraction

in counterfactual reasoning, imaging situations in which we do not assume

the truth of α, everything else remaining the same.

We indicate by −̇ a contraction function over belief sets (−̇ : T × ` 7→ T ):

given a belief set K, K−̇
α is the belief set obtained by contracting K with

respect to α.

Again, we have six basic AGM postulates for rational contraction:

(K−̇1) K−̇
α is a belief set Closure

This first principle imposes the respect of the principle of categorial

matching, stating that the resulting epistemic state is represented by a Cn-

theory.

(K−̇2) K−̇
α ⊆ K Inclusion

Contraction simply eliminates information from K, so every sentence in

K−̇
α must already be in K.

(K−̇3) If α /∈ K, then K−̇
α = K Vacuity

This postulate treats the trivial case: if the sentence to be eliminated is

not in K, then nothing needs to be changed, and the result of the operation

is the starting belief set.
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(K−̇4) If 6` α, then α /∈ K−̇
α Success

This is the success postulate for contraction: the set resulting from a

contraction must not contain the contracted sentence. The claim ‘If 6` α’

indicates that we assume the underlying logic Cn as fixed, unchangeable by

means of the belief-contraction operation, and hence we cannot eliminate a

Cn-tautology from a Cn-closed belief set.

(K−̇5) If α ∈ K, then K ⊆ (K−̇
α )+

α Recovery

(K−̇5) relates contraction with expansion, and it states that putting back

a previously contracted sentence should not result in any loss of information.

This property is the most controversial principle of the AGM model, and

its satisfaction is not considered as necessary as the fulfillment of the other

basic postulates. Furthermore, as we shall see in the next section, its failure

does not affect the desired properties of the revision operator. A contrac-

tion operation satisfying every basic postulates apart from (K−̇5) is called

a withdrawal (see [36]).

(K−̇6) If ` α ↔ β, then K−̇
α = K−̇

β Extensionality

This last basic postulate states that contraction has to be a syntax-

independent operation, i.e. that the contraction of logically equivalent for-

mulas has to give the same result.

Besides the six basic postulates, there are two more postulates proposed

for contraction, finalized to the management of the contraction of the con-

junctions of formulae.

The management of the giving up of conjunctions represents the discrimi-

nating task for the contraction operation with respect to economical consid-

erations: if we want to eliminate α ∧ β from our belief set, it is sufficient to
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eliminate just one between α and β. If we aim at satisfying the principle of

minimum mutilation, we should eliminate just one of the two, but in that

case we would need a way to single out the ‘weakest’ of the two beliefs. Even

if we are provided with such a way, α and β could be equally ‘strong’ beliefs:

in such a case, we should abandon both of them, and it would be debatable

if we should keep or not the belief in α ∨ β, in order to minimize the loss of

information.

The postulates (K−̇7) and (K−̇8) are both of economical kind, and they

are aimed to state the minimal rationality desiderata in order to relate the

contraction of a conjunction with the contractions of its component formulas.

(K−̇7) K−̇
α ∩K−̇

β ⊆ K−̇
α∧β

(K−̇7) states that, since both the contractions of K with respect to α

and with respect to β eliminate α ∧ β from the epistemic state of the agent,

the beliefs that are both in K−̇
α and in K−̇

β are also in K−̇
α∧β, otherwise we

would have the certainty that we have eliminated too much information from

K in order to contract with respect to α ∧ β.

(K−̇8) If α /∈ K−̇
α∧β, then K−̇

α∧β ⊆ K−̇
α

If α /∈ K−̇
α∧β, then this means that every piece of information in K apt to

derive α has been eliminated from K−̇
α∧β. Hence we assume that the formulas

in K−̇
α∧β are all also in K−̇

α , otherwise we would have the certainty that our

contraction operation eliminates too much information from K in order to

contract with respect to α.

From (K−̇7), (K−̇8) and the basic postulates, we obtain the following prin-

ciple (see [1], Observation 6.5), stating that the contraction with respect to

a conjunction α∧ β corresponds to the contraction with respect to one of its

two conjuncts, or to their intersection:
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Either K−̇
α∧β = K−̇

α or K−̇
α∧β = K−̇

β or K−̇
α∧β = K−̇

α ∩K−̇
β

Such a rule is compatible with the economical considerations depicted

above: to contract K with respect to a conjunction, it is sufficient to con-

tract it with respect to one of the conjuncts, if we are able to identify the

less ‘important’, otherwise we have to eliminate both of them.

8.1.3 Revision

The revision operation is the core of the belief revision theory. By means

of such an operation, we point to the addition of a piece of information to

the epistemic state of an agent, avoiding the formation of inconsistent belief

sets. Hence, contrary to simple expansion, such an operation could involve

also the elimination of previously held beliefs for consistency sake.

We indicate by ∗ a revision function over belief sets (∗ : T × ` 7→ T ): given

a belief set K, K∗
α is the belief set obtained from the revision of K in order

to introduce α.

Again, we have six basic AGM postulates for rational revision:

(K ∗ 1) K∗
α is a belief set Closure

As for the previous operations, revision has to give back a Cn-closed the-

ory in order to respect the principle of categorical matching.

(K ∗ 2) α ∈ K∗
α Success

The success postulate for revision, analogous to that for expansion.

(K ∗ 3) K∗
α ⊆ K+

α Expansion

(K ∗ 4) If K 0 ¬α, then K+
α ⊆ K∗

α Preservation
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(K ∗ 3) and (K ∗ 4) define the relation between revision and expansion.

If the sentence α is consistent with K, revision amounts to expansion, since

there is not any necessity to eliminate any piece of information contained

in K. The only case in which the revision operation has to differ from the

expansion operation is if K and α are inconsistent, i.e. K+
α = K⊥.

(K ∗ 5) K∗
α = K⊥ if and only if ` ¬α Consistency

The preservation of consistency is always satisfied, except in the case

where α is itself a Cn-contradictory formula.

(K ∗ 6) If ` α ↔ β, then K∗
α = K∗

β Extensionality

Also revision has to be syntax-independent.

Beyond basic postulates, there are less elementary conditions apt to the

management of iterated operations of revision. In particular, (K ∗ 7) and

(K ∗ 8) are obtained generalizing (K ∗ 3) and (K ∗ 4) in order to constraint

the behaviour of iterated belief revision. Again, the regulating idea is that,

whenever possible, the revision function should behave as the expansion func-

tion.

(K ∗ 7) K∗
α∧β ⊆ (K∗

α)+
β .

(K ∗ 8) If ¬β /∈ K∗
α, then (K∗

α)+
β ⊆ K∗

α∧β.

Following the distinctions made by Rott about the coherence of a revision

operator, we can say that (K ∗1) and (K ∗5) embody the notion of inferential

coherence, stating that the epistemic states of an agent are characterized by

means of coherent, deductively closed sets of formulas; (K ∗3) and (K ∗4) are

principles of diachronic coherence, constraining the move from a belief set to
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a revised one in a way compatible with the satisfaction of the principle of

minimal change; finally, (K ∗7) and (K ∗8) formalize dispositional coherence,

constraining the behaviour of the revision operator with respect to different

potential inputs, in particular relating the addition of a conjunction to the

addition of its conjuncts.

The revision function can be modeled referring to the expansion and

contraction functions by means of the Levi identity :

K∗
α = (K−̇

¬α)+
α

The Levi identity proposes a very intuitive reduction of revision to con-

traction and expansion. Such a formulation states that to revise K with

respect to α, we have to first contract K with respect to ¬α in order to

guarantee the consistency with respect to α, and then to add α. Note that

contraction and expansion have to be performed in the order indicated above,

otherwise there is no guarantee for the preservation of as much information

of K as possible: if we state K∗
α = (K+

α )−̇¬α, and α is inconsistent with respect

to K, we obtain `−̇¬α, which is a contraction operation that has no longer a

link with the original set K.

The behaviour of the Levi identity is very intuitive, given a well-behaved con-

traction function: if α and K are consistent, i.e. K 0 ¬α, then (K−̇
¬α) = K,

and consequently K∗
α = K+

α ; otherwise, if α and K are inconsistent, the con-

traction by ¬α guarantees that we modify K in the right way in order to

introduce α consistently.

Moreover, assuming the Levi identity construction, Gärdenfors has proved

two theorems relating directly the behaviour of a revision function ∗ to that

of the underlying contraction function −̇.

Theorem 8.1.2. ([17], Theorem 3.2)

If the contraction function −̇ satisfies (K−̇1) - (K−̇4) and (K−̇6) and the

expansions satisfy (K + 1)-(K + 6), then the revision function ∗ obtained by

means of the Levi Identity satisfies (K ∗ 1) - (K ∗ 6).

199



Theorem 8.1.3. ([17], Theorem 3.3)

Suppose that the assumptions of Theorem 8.1.2 are fulfilled. Then (a) if

(K−̇7) is satisfied, (K ∗ 7) is satisfied for the defined revision function, and

(b) if (K−̇8) is satisfied, (K ∗8) is satisfied for the defined revision function.

Such results stress the appropriateness of the Levi Identity construction

in order to define a revision function. Note that the satisfaction of the pos-

tulate (K−̇5) is not necessary for the revision function to be well-behaving,

so we can also use withdrawal operations to define good revision functions.

Given the general triviality of the expansion function, the focus of the AGM

approach moves toward the characterization of satisfying contraction opera-

tions.

8.1.4 Meet contractions and entrenchment relations

There are different ways proposed in order to define a contraction operation

appropriate for a specific belief set. Two (strongly connected) methods are

the most intuitive and satisfying: meet contractions and entrenchment rela-

tions.

Meet contractions

By the principle of conservativity, a contraction operation should be mini-

mal, that is, in order to contract a belief set K with respect to a formula α,

we should look for the largest subset of K not implying α. Such subsets of

K are contained in the remainder sets of our belief set (see Definition 2.3.2):

given a set of formulae A and a formula α, the remainder set of A by α is

the set containing all the ‘biggest’ subsets of A not implying α.

As was said in Chapter 2, the link between the elements of the remainder sets

and the maxiconsistent sets of Definition 2.3.1, which are at the basis of the

default-assumption approach, is immediate: a set B is in the remainder set of
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A with respect to α if and only if it is a ¬α-maxiconsistent subset of A. The

most popular approach to the formalization of contraction works with such

remainder sets: given a belief set K and a formula α to be eliminated, we can

define a contracted belief set K ′ on the basis of the information contained in

the elements of the remainder set K⊥α. This can be done by means of differ-

ent procedures, following a distinction analogous to the one between skeptical

and choice approaches to nonmonotonic inference presented in Chapter 2.

It is easy to show that the elements of the remainder set of a deductive closed

set are themselves deductively closed. That means that the remainder set of

a belief set A contains only other belief sets, i.e. every element of A⊥α can

satisfy the principle of categorial matching, corresponding to the postulate

(K−̇1).

Proposition 8.1.4. ([21], Observation 1.48) If A is logically closed, and

B ∈ A⊥α, then B is logically closed.

It is also immediate from Definition 2.3.2 that every element of A⊥α,

if considered as the set resulting from the contraction of A with respect to

α, satisfies (K−̇2) - (K−̇4) and (K−̇6), and consequently it is a plausible

candidate for the contracted belief set.

Hence, if A⊥α contains only a single element, such a set will be the natural

candidate for the belief set resulting from the contraction of A with respect

to α. The possibility of different options in the definition of the contraction

function arise when A⊥α contains more than one element. In such a case we

have two limiting cases: full meet contraction and maxichoice contraction.

The former is a radical form of contraction: we consider every element of the

remainder set and we define the contracted belief set by intersecting all of

them.

K−̇
α =

{ ⋂
(K⊥α) when 0 α

K otherwise

At the extreme opposite case, we have the maxichoice approach, in which,

given a theory K and a formula to be eliminated α, we identify the contracted
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belief set K−̇α with a single element of the remainder set K⊥α.

K−̇
α =

{
K ′ ∈ (K⊥α) when 0 α

K otherwise

Obviously maxichoice contraction is the most faithful operation with re-

spect to the conservativity principle, since, choosing a single element of the

remainder set, we eliminate only a minimal set of formulae from our belief

set.

Both of these constructions satisfy the basic postulates (K−̇1)− (K−̇6), but

their behaviour often sounds counterintuitive (see [21], Section 2.4). In par-

ticular, if we work with closed belief sets, full meet contraction manifests a

trivial behaviour.

Lemma 8.1.5. ([17], Lemma 4.9)

Assume a belief set K. If K−̇
α is defined by a full meet contraction and α ∈ K,

then β ∈ K−̇
α iff β ∈ K and ¬α ` β.

If α ∈ K, then K−̇α = K ∩ Cn({¬α})

If we contract α from K in this way, we are left with the propositions of

K that are also logical consequences of ¬α. Every piece of information that

is consistent with ¬α, but is not implied by such formula, is automatically

eliminated from the contracted belief set. Such triviality in the contraction

function is reflected by the revision function generated by means of the Levi

Identity.

Corollary 8.1.6. ([17], Corollary 4.10)

Assume a belief set K. If a revision function ∗ is defined from a full meet

contraction −̇ by means of the Levi Identity, then, for any α s.t. ¬α ∈ K,

K∗
α will contain only α together with its logical consequences.

If ¬α ∈ K, then K ∗ α = Cn({α})

Hence, revising closed theories, the addition of a piece of information

inconsistent with the original belief set results in the complete loss of the
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information contained in the original belief state K of the agent.

Note that the full-meet approach is connected with such anomalies only in

case we are working with belief sets. If, otherwise, we are working with finite

belief bases, both full-meet and maxichoice approaches behave in a intuitive

way, simply representing respectively the strongest and the weakest form of

contraction.

Instead, working with belief sets, the most satisfying contraction operations

can be defined taking under consideration only some of the elements of the

remainder set. Partial meet contraction can be modeled by means of a se-

lection function S, in order to identify which elements of the remainder set

have to be used in the definition of the contracted belief set.

K−̇
α =

{ ⋂
S(K⊥α) when 0 α

K otherwise

Obviously, full meet and maxichoice approaches are special cases of partial

meet contraction, defining respectively S(K⊥α) = (K⊥α) and S(K⊥α) =

{K ′} for some K ′ ∈ K⊥α. The satisfaction of the basic postulates for

contraction is characterized by the generation of the contraction function by

means of the partial meet approach.

Theorem 8.1.7. ([17], Theorem 4.13)

For every belief set K, −̇ corresponds to a partial meet contraction function

iff −̇ satisfies K−̇1 - K−̇6 for contraction over K.

The characterization of the choice function S determines the behaviour

of the generated contraction function.

Entrenchment relations

An alternative, but strictly connected, way for generating satisfying contrac-

tion operations relies upon the use of entrenchment relations.

When we have to give up a belief α, we have to guarantee on one hand that

α is no more derivable from our set of beliefs, and on the other hand that we
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have eliminated just the beliefs necessary in order to avoid the derivability

of α. Such requirement implies that often we have to undertake a choice be-

tween different formulas. For example, if we have to contract a belief set K

with respect to a formula α∧ β, it is sufficient to eliminate just one between

α and β in order to avoid the derivability of α ∧ β from our belief set.

If we are in a situation such that we can choose which formula to give up

in a set, we will prefer to give up the formula that has as little explanatory

power and overall information as possible. In order to identify such a for-

mula, we can define a binary relation <e, an entrenchment relation (see [17],

Chapter 4) determining an ordering between formulas; ‘β is more entrenched

than α’ (α <e β) should be interpreted as stating that β is more useful in

enquiry or deliberation, or has more “epistemic value” than α; practically,

we are more inclined to give up α than β. Hence the notion of entrenchment

can be defined by means of the following correspondence with a contraction

function:

α <e β iff α /∈ K−̇
α∧β and β ∈ K−̇

α∧β

That is, if we have to withdrawal the formula α ∧ β, we prefer to give up α

from our belief set. As can be seen from this statement, the entrenchment

relation is relative to a belief set K, and every modification occasioned to

our belief set causes also a modification in the entrenchment relation between

the formulae of our language.

We are interested in the definition of an entrenchment relation between for-

mulas starting from an epistemic state, and, furthermore, the definition of a

contraction function from such an entrenchment relation.

Exploiting the correspondence between nonmonotonic consequence and belief

revision, Bochmann has proposed an intuitive association (ie-mapping) be-

tween entrenchment relations <e and preferential inference relations |∼ ([5],

p.143):

(IE) α |∼ β iff α → ¬β <e α → β

(EI) α <e β iff ¬(α ∧ β) |∼ β
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If our agent is defined by means of an inference relation |∼, we can use the

EI-transformation in order to define the correlated entrenchment relation.

Given an entrenchment relation as <e, there are different ways for generat-

ing a correlated contraction function. Gärdenfors has proposed a satisfying

definition of a contraction operation −̇G based on entrenchment relations:

β ∈ H−̇G
α iff β ∈ H and either α < (α ∨ β) or α ∈ Cn(∅)

Another good proposal is from Rott:

β ∈ H−̇R
α iff β ∈ H and either α < β or α ∈ Cn(∅)

In general, both of these proposals are considered as interesting limiting

cases of contraction, since Gärdenfors’ proposal usually generates a too weak

contraction operation, while Rott’s contraction is too radical. Lindström

and Rabinowicz ([35]) have proposed that an intuitive theory-contraction

function −̇ should be positioned somewhere between −̇R and −̇G. That is,

given a belief set K, we should have for every α:

K−̇R
α ⊆ K−̇

α ⊆ K−̇G
α

8.2 Base revision

If we refer to belief revision from a foundationalist perspective, we point to

the definition of the revision of a finite set of beliefs H instead of a closed

theory K, notwithstanding that consistency constraints have to be stated

with respect of the closure of the base Cn(H).

A base-revision operation can still be defined by means of the Levi identity,

referring to base-expansion and base-contraction operations. The definition

of the base expansion operation is generally trivial, since set-theoretic union

operation is intuitively satisfying. Given a belief base H, and referring by

+b to a base-expansion operation, we can simply state

H+b
α = H ∪ {α}
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Given that Cn(Cn(H)∪{α}) = Cn(H ∪{α}), this operation corresponds to

the expansion operation + defined on the theory level, that is:

Cn(H+b
α ) = (Cn(H))+

α

More effort is needed in order to model contraction on the base level, since

the methods identified at the theory level result not appropriate.

In particular, the main efforts have been made in order to define at the

base level an appropriate ordering between formulae corresponding to the

entrenchment one. Both Rott ([51]) and Bochmann ([6]) have proposed an

analogous kind of relations, called by Bochmann dependence relations.

Following Rott, in contracting a belief base H by a formula α (obtaining a

new base H ′ ⊆ H), we want to eliminate from H only the basic formulae that

are essential for the presence of α in Cn(H). Moreover, if in the contraction

we eliminate a formula β from H, we would like to eliminate also every

formula finding its own justification only in our previous belief in β. This

demand is expressed by the following filtering condition.

Definition 8.2.1 (Simple Filtering [51]). The contraction of one’s beliefs by

φ should not contain any sentences that were believed “just because” φ was

believed.

In this statement the sensible part becomes the definition we give to “just

because”, which, in a foundationalist perspective, can be characterized in the

following way.

Definition 8.2.2 (Derivative Just Because [51]). A sentence ψ is in K =

Cn(H) just because φ is in H if and only if φ is not in Cn(∅), and ψ is in

K but not in Cn(G), for all G ⊆ H such that φ is not in Cn(G).

This definition means that, starting from a belief set K, it is not possible

for the agent to believe ψ without believing also φ.

On the basis of such a notion, Rott defines a notion of entrenchment appro-

priate for a foundationalist approach.
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Definition 8.2.3 (Basic entrenchment ≤b [51]). Given a belief base H and a

(monotonic supraclassical) closure operation Cn, φ is more entrenched than

ψ (ψ ≤b φ) iff ψ is not a logical truth (ψ /∈ Cn(∅)) and for every set G ⊆ H

that does not imply φ (φ /∈ Cn(G)) there is a set G′ ⊆ H that does not imply

ψ (ψ /∈ Cn(G′)) and G ⊆ G′.

Given that the closure operation Cn satisfies monotonicity, it is easy to

see that the definition above corresponds exactly to the notion of dependence

relation suggested by Bochmann in [5] and [6].

Definition 8.2.4 (Dependence relation ≤d). Given a belief base H and a

(monotonic supraclassical) closure operation Cn, the belief in ψ depends upon

the belief in φ (ψ ≤d φ) iff ψ is not a logical truth (ψ /∈ Cn(∅)) and, for every

set G ⊆ H, if ψ ∈ Cn(G), then φ ∈ Cn(G).

Proposition 8.2.1. Given a belief base H and a (monotonic supraclassical)

closure operation Cn, ψ ≤b φ if and only if ψ ≤d φ for every ψ, φ ∈ `.

Proof.

(⇒): if ψ ≤b φ, we have that ψ /∈ Cn(∅) and for every set G ⊆ H that

does not imply φ (φ /∈ Cn(G)) there is a set G′ ⊆ H that does not imply

ψ (ψ /∈ Cn(G′)) and G ⊆ G′. By the monotonicity of Cn, we have that for

every set G ⊆ H s.t. φ /∈ Cn(G), ψ /∈ Cn(G). That is, for every set G ⊆ H,

if ψ ∈ Cn(G), then φ ∈ Cn(G). ψ ≤d φ.

(⇐): if ψ ≤d φ, we have that ψ /∈ Cn(∅) and, for every set G ⊆ H,

if ψ ∈ Cn(G), then φ ∈ Cn(G). Consequently, for every set G ⊆ H, if

φ /∈ Cn(G), then ψ /∈ Cn(G). Hence, if φ /∈ Cn(G), there is a set G′ s.t.

G ⊆ G′ ⊆ H and ψ /∈ Cn(G′). ψ ≤b φ.

¥

This dependence relation states that it is not possible to contract a belief

base H by φ without withdrawing also ψ, and it is an appropriate relation
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in order to account for the filtering condition.

Using such an ordering between formulae, Rott has proven ([51], Observation

5, Observation 6) that, working with belief bases instead that with belief sets,

the contraction operation defined by means of Rott’s definition is preferable

to the one defined by Gärdenfors’ definition; that is, given a dependence

relation ≤d, we can define a basic contraction operation −̇b by means of the

following rule.

β ∈ H−̇b
α iff β ∈ H and either α <d β or α ∈ Cn(∅).

However, it remains a very ‘rude’ form of contraction.

8.3 Default revision

Now that we have presented some classical notions and tools from belief-

revision theory, we can move toward a characterization of the revision of the

default information associated to an agent reasoning nonmonotonically.

Recall from the previous chapter that the main intuition underlying our

characterization of normality is based on the kind of “epistemic variation”

that can be tolerated by a given preferential ordering (and therefore a given

default-assumption consequence relation). It is therefore natural to compare

our normality operator with the epistemic change operations constituting

the AGM approach to theory change, namely expansion, contraction and

revision. As we have seen, the AGM model, which aims at characterizing the

epistemic behaviour of ideally rational agents, is centered around two key

constraints: Logical closure and consistency. The former imposes that, given

a set K, an agent should behave as if it accepted not only the information

contained in K but also all of its logical consequence. The latter amounts to

the requirement that no logical inconsistency should arise after the correct

instantiation of any of the three epistemic operations. However, as seen in

the previous chapter (see Theorem 7.2.1)1, if the set of default-assumptions

1It is immediate to note the strict correspondence between this theorem and Corollary

8.1.6, since they resemble the same semantical construction.
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∆ is closed under classical consequence (∆ = Cl(∆)), the behaviour of the

generated default-assumption consequence relation results trivial. In order

to avoid this, we shall weaken the requirement of logical closure to closure

under the normality operator CB which takes a set of sentences as argument

and returns its closure under B as value, that is:

CB(A) = {α|A B α}.

In what follows, it will be useful to make the following terminological

distinction. Analogously to beliefs, we shall refer to the finite set of default-

assumptions ∆ which determines a default-assumption consequence relation

as the default base, while we shall call default sets those default bases D which

are closed under the normality operator, that is to say that D = CB(D).

Since we are going to use CB as our closure operation, we will confront our

change operations with postulates obtained reinterpreting the AGM postu-

lates with respect to CB.

Dealing with default formulae, there is an important difference from the

classical case: Theorem 7.1.14 states that for every default set we have a min-

imal corresponding default base. This result, that associates every B-theory

with a distinct minimal base and that has no correspondent for classical

theories, surely softens the polarity between the coherentist and the foun-

dationalist approaches. Hence our policy will be slightly different from the

traditional approach to belief revision: we shall define the rational desiderata

with respect to B-theories, but then we shall propose some update operations

referring to minimal default bases.

8.3.1 Expansion

Expansion formalizes the epistemic operation of simply adding a sentence to

a default set D. We will use the symbol ± to represent default expansion: a

function ± s.t. ± : D× ` 7→ D, where D ⊆ ℘(`) is the set of the CB-theories

in `. Given a default set D, D±
α is the belief set obtained by the addition of
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α to D.

That is, if an agent acquires the information that α characterizes the normal

situations, then it will simply add α to D and close this set under CB:

D±
α := CB(D ∪ {α})

The normality expansion operator thus defined satisfies the relevant AGM

postulates, reformulated in order to account for the new closure operation.

(D ± 1) D±
α is a default set Closure

(D±1) forces the result of expansion to be a default set, i.e. closed under

CB.

(D ± 2) α ∈ D±
α Success

(D ± 2) corresponds to the so-called success postulate and it follows by

the reflexivity of B.

(D ± 3) D ⊆ D±
α Inclusion

(D±3) guarantees that no previous information is affected by the expan-

sion of D with α. Again, this follows by reflexivity.

(D ± 4) If α ∈ D, then D±
α = D Vacuity

(D±4) captures an aspect of informational economy for the trivial cases:

if the information to be added is already in the agent’s default set, nothing

changes. It clearly follows from the definition of B.

(D ± 5) If D ⊆ D′, then D±
α ⊆ D′±

α Monotonicity
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(D ± 5) is the monotonicity postulate. If D ⊆ D′, then the adding of

α to D does not add anything that is not included also in D′±
α . It fol-

lows from the monotonicity of B: D ⊆ D′ implies D ∪ α ⊆ D′ ∪ α, so

CB(D ∪ {α}) ⊆ CB(D′ ∪ {α}).

(D ± 6) For all belief sets D and all sentences α, D±
α is the

smallest belief set that satisfies (D ± 1)− (D ± 5) Minimality

This minimality postulate imposes that the new belief set does not contain

any extra information with respect to the addition of α to D. To see that

(D± 6) holds, let H be such that H ⊆ D±
α . Assume H satisfies (D± 2) and

(D± 3), that is D ∪ {α} ⊆ H. If H satisfies also (D± 1), then H = CB(H);

given D±
α = CB(D ∪ {α}), we have D±

α ⊆ H, by the monotonicity of B.

Contradiction.

We conclude that the default expansion operator qualifies as an AGM-

expansion operator.

8.3.2 Contraction

Let’s now turn to the problem of removing a sentence from a given default set,

that is to say to the operation of default contraction. As in the AGM case,

the problem of contraction is two-fold: on the one hand a specific sentence

needs removing from a default set; on the other hand, we need to to make

sure that its deduction is blocked in the new set. Of course there can be

many ways to achieve this latter result and the key heuristic principle to do

so is again the principle of informational economy.

For the moment we will limit ourselves to a very general definition of a

successful default contraction in order to check if such an operation is apt to

the satisfaction of the basic AGM postulates.

Given a default set D and a sentence α, we define a function contr as follows:
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contrD(α) =

{
∅ if α /∈ D or α = > or α = ⊥,

{B ⊆ D | α /∈ CB(D −B)} otherwise

Such a definition informally recalls the kernel approach to belief contrac-

tion (see [21], pp.88-92), since the function contrD is analogous to the incision

function proposed by Hansson; kernel contraction is, in fact, a generalization

of the more popular AGM approach to contraction.

Note that the clause relative to α = > and α = ⊥ accounts for the fact

that both classical tautologies and contradictions are B-valid sentences, and

thus cannot be removed from a default set. We can now define normality

contraction by letting

D−
α := CB(D − contrD(α)).

Such a definition imposes economical constraints just for the trivial cases

of the contraction of a B-valid formula or of a formula which already is not

in D. As for default expansion, default contraction is an AGM contraction

operation, as we can ascertain by checking the relevant postulates in turn.

(D − 1) D−
α is a default set Closure

This immediately follows from the closure under CB.

(D − 2) D−
α ⊆ D Inclusion

Contraction simply eliminates information from D so that every sentence

in D−
α must already be in D. It follows from D − contrD(α) ⊆ D and the

monotonicity of B.

(D − 3) If α /∈ D, then D−
α = D Vacuity
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If the sentence to be eliminated is not in D, then nothing needs changing.

It is satisfied by the clause that if α /∈ D, then contrD(α) = ∅.

(D − 4) If 6 Bα, then α /∈ D−
α Success

The set resulting from a contraction must not contain the contracted sen-

tence, unless it is a B-valid sentence (a classical tautology or contradiction),

which cannot be eliminated. This is guaranteed by the definition of contr(α).

(D − 5) If α ∈ D, then D ⊆ (D−
α )+

α Recovery

Putting back a previously contracted sentence should not result in any

loss of information. This property is not generally satisfied by the normality

contraction operator. Assume we have to withdraw a formula α ∧ β from a

default set D, and also α and β are in D. Obviously we have to eliminate

as well one between α and β. However, given the failure of the E∧-rule,

reintroducing α ∧ β we are not able to recover also α and β.

However, as in the classical case, this need not worry us too much, as the

intuitive appeal of the recovery postulate is a controversial issue.

(D − 6) If ` α ↔ β, then D−
α = D−

β Extensionality

Contraction should behave well with respect to classical equivalence. It

follows from Right Logical Equivalence that β /∈ D−
α and α /∈ D−

β , but this

alone does not guarantee that D−
α = D−

β . However, this can be ensured in

various ways depending on the particular construction at hand.

The properties (D−1)-(D−4) and (D−6) are all desirable for a contraction

of default. A word apart is needed for the translation of properties K−̇7 and

K−̇8, which, given the particular behaviour of B with respect to conjunction

and disjunction, have to be reformulated.

The direct translations would be:

213



(D − 7) D−
α ∩D−

β ⊆ D−
α∧β

(D − 8) If α /∈ D−
α∧β, then D−

α∧β ⊆ D−
α

Since we do not have that α ∧ β B α, the presence of α ∧ β in D does

not imply the presence of α and β in D. This implies that the formulation

of (D − 7) is not satisfying: if we have that α ∧ β ∈ D, α, β /∈ D, we want

D−
α = D−

β = D, while D−
α∧β ⊂ D, violating (D − 7). On the other hand, if

α, β ∈ D, the presence of α ∧ β in D is justified by its derivability from α

and β by I∧. Hence, in order to eliminate α ∧ β, we will have to eliminate

at least one between α and β, making (D − 7) a desirable property.

It is notable that, given the particular behaviour of B, the assumption of a

foundational perspective is obligated since the basic or derivative status of

a formula can be discerned also in the closed default set and influences the

mechanism of contraction.

Hence, we need a new formulation of (D− 7) in order to account for the fact

that α∧β is not an independent formula, but it is supported by the presence

in D of α and β. Hence, we have to modify our postulate as:

(D − 7a) If α, β ∈ D, then D−
α ∩D−

β ⊆ D−
α∧β

On the other hand, the direct translation of (K−̇8) in (D − 8) seems

intuitively satisfactory.

However, since in B the behaviour of the disjunction is analogous to the be-

haviour of the conjunction, we need analogous postulates for the disjunction,

given the validity of CI∨, but not of the classical I∨.

(D − 7a∨) If α, β ∈ D, then D−
α ∩D−

β ⊆ D−
α∨β

(D − 8∨) If α /∈ D−
α∨β, then D−

α∨β ⊆ D−
α
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These properties impose binds with respect to the contraction of differ-

ent sentences of a default set. They are not satisfied automatically by our

general definition of contraction, and we have to check if they are satisfied

by the particular contraction construction at hand.

8.3.3 Revision

The problem of revising a default set D consists in adding to D a sentence

which is potentially inconsistent with it, without affecting the consistency of

D. We formalize normality revision by means of a function *, which takes a

default set D and a sentence α as inputs and returns a new consistent default

set containing α. Here, as in the AGM approach, consistency means classical

consistency, since the classical consistency of our default set is an intuitive

desideratum.

First of all, then, we need to make sure that our closure operator is consistency-

preserving, that is, for any given classically consistent default base K, the

closure operator should return a consistent default set. This is not immediate

in our setting since classical contradictions are B-valid sentences and so CB

is not consistency-preserving. However, we can easily constrain the closure

operator B to ensure consistency preservation. This is done by letting

KB′φ ⇔ ∀M ∈ C, if M ° ψ∀ψ ∈ K and ∃w ∈ W s.t. Kw = K, then M ° φ and w ² φ.

We can prove the following proposition.

Proposition 8.3.1.

CB′(∆) =

{
CB(∆)−⊥ if K is consistent

` otherwise

Proof. If K is inconsistent, then there is no valuation satisfying it and vac-

uously allows everything to follow. Thus B′ is an explosive operator.

Otherwise, if ∆ is consistent, there is a valuation w such that w ² ψ for

any ψ ∈ K. Since ∆w = K, then w ≤ε∆
v holds for every v ∈ U . We have to

215



show that CB′(∆) = CB(∆)−⊥. CB′(∆) ⊆ CB(∆)−⊥ is immediate, since

CB′(∆) ⊆ CB(∆) and ⊥ /∈ CB′(∆) hold. To show that CB(∆)−⊥ ⊆ CB′(∆),

assume that there is a ψ 6= ⊥ s.t. ψ ∈ CB(∆) and ψ ∈ CB′(∆). Since ψ 6= ⊥,

there must be a valuation v ∈ U such that v ² ψ. Moreover, the fact that

ψ ∈ CB(K) forces t ² ψ for every t ≤ε∆
v. Now it follows from w ≤ε∆

v that

w ² ψ. Hence, we get ψ ∈ CB′(∆). Contradiction.

The above Proposition shows that, in the case of a consistent default

base, the constrained closure operator does preserve consistency, but it does

so at the price of eliminating only contradictions, which are irrelevant to the

construction of maximally consistent sets.

Consistency preservation and explosion make B′ an intuitively appeal-

ing operator in the characterization of normality: it would surely be coun-

terintuitive if an ideally rational agent could hold a sentence as a normal

contradiction.

Returning to the formal properties, it is immediate to note that B′ sat-

isfies exactly the same structural properties as B, apart, obviously, from

Contradiction. It is likewise easy to see that B′ behaves exactly as B insofar

as the properties of expansion and contraction are concerned.

We could use CB′ to characterize normality revision via the so-called Levi

Identity (see e.g. [17] p.69), which defines revision by means of a combination

of expansion and contraction:

D∗
α := (D−

¬α)+
α .

The Levi Identity formalizes the two-step operation of revision, where the

initial contraction guarantees the consistency of the result while the final

expansion guarantees the success of the revision.

It often happens that revision is studied as a primitive operation ∗ which

is required to satisfy the following postulates:

(* 1) D∗
α is a default set.

Closure for revision.
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(* 2) α ∈ D∗
α.

The success postulate of revision.

(* 3) D∗
α ⊆ D+

α . (* 4) If D 0 ¬α, then D+
α ⊆ D∗

α.

(* 3) and (* 4) define the relation between revision and expansion. If the

sentence α is consistent with D, revision amounts to expansion.

(* 5) D∗
α = D⊥ if and only if ` ¬α.

The preservation of consistency is always satisfied, except in the case where

α is itself a contradiction.

(* 6) If ` α ↔ β, then D∗
α = D∗

β.

Revision is syntax-independent.

Theorems 8.1.2 and 8.1.3 point out that the revision operator defined via

the Levi Identity satisfies the AGM postulates. Of course, in the AGM model

this result is obtained taking classical consequence as closure operator.

However, since we point to a revision operation apt to the consistency

preservation of the default set D, i.e. (∗5), a revision operation obtained by

the combination of ± and − by means of the Levi Identity is not satisfying,

given the failure of (RW) for B. For example, assume a singleton default set

∆ = {β}, and that ` β → ¬α and 6` ¬α → β (i.e. ¬α is a consequence of β,

but they are not CnU -equivalent). Given the failure of (RW), we have that

¬α /∈ CB′(β). Assume we want to add α to ∆. Since ¬α /∈ CB′(β), by (* 3)

and (* 4), we have that CB′(∆)∗α = CB′(∆)±α , that is, CB′(∆)∗α = CB′(β, α).

Here we have a default base ∆′ = {β, α} s.t. α∧¬α /∈ CB′(∆′), but, by (I∧),

α ∧ β ∈ CB′(∆′) that, given ` β → ¬α, is an inconsistent formula.

So, to obtain a revision operation apt to keep a default set consistent, we

have to contract it with respect to the monotonic operation Cn in order to

guarantee Cn-consistency.

Notwithstanding, the expansion operation has to be done with respect to B′,

since the success of an expansion of a default base ∆ has to be valuated with

respect to its default closure.
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The default-contraction operation maintains a value by itself. Notwithstand-

ing the uncertain status of contraction operation per se, we think that the

simple withdrawal of a default formula, not induced by the introduction of

a new conflicting default, is a plausible epistemic event, that needs to be

analyzed.

Hence, we have to model a default-contraction function apt to obtain the

Cn-consistency of the revised default-set, i.e. we need a function, which we

will call ÷, that, given a default set D and a formula α to be contracted,

gives back a default set D÷
α s.t. D÷

α 0 α, instead of D÷
α 6 B′α as above.

The desired properties of our contraction function have to be restated with

respect to B′-closure, but with respect to Cn-consistency. In particular, we

need to reformulate the third, the fourth and the fifth desiderata. However,

since we move from a contraction operation with respect to B to a contrac-

tion based on `-derivability, the postulate 7 has to be treated in its original

form:

(÷ 1) D÷
α is a default set.

(÷ 2) D÷
α ⊆ D

(÷ 3) If D 0 α, then D÷
α = D

(÷ 4) If 0 α, then α /∈ D÷
α

(÷ 5) If α ∈ D, then D ⊆ (D÷
α )+

α

(÷ 6) If ` α ↔ β, then D÷
α = D÷

β

(÷ 7) D÷
α ∩D÷

β ⊆ D÷
α∧β

(÷ 8) If α /∈ D÷
α∧β, then D÷

α∧β ⊆ D÷
α
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We can construct such a function ÷ on the basis of a classical contraction

function −̇ respect to Cn-theories, where Cn represent the monotonic core

of the default assumption system:

D÷
α := Cn(D)−̇α ∩D

Proposition 8.3.2. If the classical contraction function −̇ satisfies (K−̇1)-

(K−̇4) and (K−̇6), then the default contraction function ÷ satisfies (÷ 1)-

(÷ 4) and (÷ 6)

Proof.

(÷ 1): D÷
α is a default set.

We have to show that Cn(D)−̇α ∩D = CB′(Cn(D)−̇α ∩D). Given the reflex-

ivity of CB′ , Cn(D)−̇α ∩D ⊆ CB′(Cn(D)−̇α ∩D) is obvious. We have to prove

that CB′(Cn(D)−̇α ∩D) ⊆ Cn(D)−̇α ∩D.

If ∆ is Cn-consistent, from Theorem 7.1.11 and Proposition 8.3.1 , we have

that CB′(∆) = (∆)∧∨ − ⊥, where (∆)∧∨ is the closure of ∆ under disjunc-

tion and conjunction. Since Cn(D)−̇α is always a Cn-consistent set, so is

Cn(D)−̇α ∩D, and hence CB′(Cn(D)−̇α ∩D) = (Cn(D)−̇α ∩D)∧∨ −⊥.

It is sufficient to prove that Cn(D)−̇α ∩ D is closed under disjunction and

conjunction:

Assume α, β ∈ Cn(D)−̇α ∩D, then α, β ∈ Cn(D)−̇α and α, β ∈ D.

If −̇ satisfies (K−̇1), then Cn(D)−̇α is a Cn-theory. By Cn-closure, α, β ∈
Cn(D)−̇α implies α ∨ β ∈ Cn(D)−̇α and α ∧ β ∈ Cn(D)−̇α .

By CB′-closure, α, β ∈ D implies α ∨ β ∈ D and α ∧ β ∈ D.

Then, if α, β ∈ Cn(D)−̇α ∩ D, we have α ∨ β ∈ Cn(D)−̇α ∩ D and α ∧ β ∈
Cn(D)−̇α ∩D.

Hence D÷
α is a default set and (÷ 1) is satisfied.

(÷ 2): D÷
α ⊆ D.

It is obviously satisfied by the definition.
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(÷ 3): if D 0 α, then D÷
α = D.

Since −̇ satisfies (K−̇3), if D 0 α, then Cn(D)−̇α = Cn(D). So, D÷
α =

Cn(D) ∩D, which is D.

(÷ 4): if 0 α, then α /∈ D÷
α .

Since −̇ satisfies (K−̇4), if 0 α, then α /∈ Cn(D)−̇α , i.e. α /∈ D÷
α .

(÷ 6): if ` α ↔ β, then D÷
α = D÷

β

Given that −̇ satisfies (K−̇6), if ` α ↔ β, then Cn(D)−̇α = Cn(D)−̇β , that is,

D÷
α = D÷

β .

¥

The same cannot be proved about (÷ 5): if α ∈ D, then D ⊆ (D÷
α )±α

It is easy to show that the fact that the classical contraction function −̇
satisfies the postulate (K−̇5) does not guarantee that the corresponding

default contraction satisfies the correspondent postulate (÷ 5).

Assume we have a default assumption system defined by an empty knowledge

set (i.e. its monotonic core is Cl) and its default set is

D = {>, α, β, α ∧ β, α ∨ β}

It is easy to see that, modulo logical equivalence, D is closed under CB′ .

Assume a classical AGM contraction function −̇ satisfying (K−̇5): Cl(D) ⊆
Cl(Cl(D)−̇α ∪ {α}).
We define ÷ with respect to −̇:

D÷
φ = Cl(D)−̇φ ∩D

Suppose we want to contract D with respect to α ∧ β. The operator −̇,

and consequently also the operator ÷, will eliminate α ∧ β and at least one

between α and β, or both of them. Assume the −̇ eliminates only β (the

other two cases are analogous). It is easy to check the validity of (K−̇5) in
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this case, i.e. Cl(D) ⊆ Cl(Cl(D)−̇α∧β ∪ {α ∧ β}).
However, we have that

D÷
α∧β = Cl(D)−̇α∧β ∩D = {>, α, α ∨ β}

Hence we have that

(D÷
α∧β)±α∧β = CB′({>, α, α ∨ β} ∪ {α ∧ β})

which implies that β /∈ (D÷
α∧β)±α∧β, i.e. (÷ 5) fails.

Again, we recall that the status of the recovery postulate as a desiderate

rational constraint is debatable, and that the failure of such a property does

not damage the properties of the resulting revision operation.

On the other hand, the postulates (÷ 7) and (÷ 8) are implied by the satis-

faction of K−̇7 and K−̇8 by the classical operator −̇.

Proposition 8.3.3. Assume the preconditions in the above proposition are

satisfied. Then,

- if the classical contraction function −̇ satisfies (K−̇7), then the default con-

traction function ÷ satisfies (÷ 7).

- if the classical contraction function −̇ satisfies (K−̇8), then the default con-

traction function ÷ satisfies (÷ 8).

Proof.

(÷ 7): D÷
α ∩D÷

β ⊆ D÷
α∧β.

Assume that we have a classical contraction operator satisfying (K−̇7),

that is

Cn(D)−̇α ∩ Cn(D)−̇β ⊆ Cn(D)−̇α∧β

This implies that

(Cn(D)−̇α ∩ Cn(D)−̇β ) ∩D ⊆ Cn(D)−̇α∧β ∩D

that is equivalent to

(Cn(D)−̇α ∩D) ∩ (Cn(D)−̇β ∩D) ⊆ Cn(D)−̇α∧β ∩D
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which is

D÷
α ∩D÷

β ⊆ D÷
α∧β

(÷ 8): if α /∈ D÷
α∧β, then D÷

α∧β ⊆ D÷
α .

÷ is defined over an operation −̇ satisfying (K−̇8) and ÷ satisfies (÷ 3),

(÷ 2) by the previous proposition.

Hence, by (K−̇8) we have that

α /∈ Cn(D)−̇α∧β implies Cn(D)−̇α∧β ⊆ Cn(D)−̇α

Assume α /∈ D÷
α∧β, which is α /∈ Cn(D)−̇α∧β ∩D.

That means that α /∈ Cn(D)−̇α∧β or α /∈ D.

Assume that α /∈ D, which by (÷ 3) implies that D÷
α = D. Since by (÷ 2)

we have that D÷
α∧β ⊆ D, we also have that D÷

α∧β ⊆ D÷
α .

Assume that α /∈ Cn(D)−̇α∧β. Then, by (K−̇8), we have that Cn(D)−̇α∧β ⊆
Cn(D)−̇α , which implies Cn(D)−̇α∧β ∩D ⊆ Cn(D)−̇α ∩D, i.e. D÷

α∧β ⊆ D÷
α .

¥

Hence, we assume a default contraction function ÷, built over a Cn-

contraction operation −̇, and again we define the default-revision by means

of the Levy-identity:

D∗
α := (D÷

¬α)±α

We can check that, given a well-behaving contraction operation ÷, the

new revision operation satisfies the AGM logical postulates.

Theorem 8.3.1. If the default contraction function ÷ satisfies (÷ 1)-(÷ 4)

and (÷ 6), and the normality expansion function ± satisfies (± 1)-(± 6),

then the normality revision function ∗, defined via the Levi identity, satisfies

(* 1)-(* 6).
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Proof.

It is sufficient to restate the proof of Theorem 3.2 in [17].

(* 1) and (* 2) are obviously satisfied by postulates (± 1) and (± 2) of default

expansion.

Postulate (* 3) follows from the fact that ÷ satisfies (÷ 2), i.e. D÷
¬α ⊆ D.

Assume D 0 ¬α; hence, by (÷ 3), D÷
α = D, and (D)±α = (D÷

¬α)±α , i.e. (* 4).

(* 5) follows from (÷ 4).

(* 6) follows directly from (÷ 6).

¥

8.4 Default-base revision

Now we shall move to the definition of plausible default-revision operators

at the level of default bases, and we will see if such operators satisfy the

rationality constraints defined above.

8.4.1 Default-base expansion

Assume we have a finite set ∆ of default formulae and we want to add to it

a formula φ. Base expansion can be modeled simply by adding φ to the set

∆.

We address to base-expansion by means of the symbol ±b:

∆±b
α = ∆ ∪ {α}

We can immediately see that the operation of expansion ± defined for de-

fault theories corresponds exactly to the closure of the operation of expansion

±b defined for bases.

Proposition 8.4.1. The theory-expansion operation ± corresponds exactly

to the closure under CB of the base-expansion operation ±b, i.e., for every ∆
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and every α:

CB(∆)±α = CB(∆±b
α )

Proof.

By definition, CB(∆)±α corresponds to CB(CB(∆) ∪ {α}). Since B is a

tarskian relation, we have that CB(CB(∆) ∪ {α}) = CB(∆ ∪ {α}), i.e.

CB(∆)±α = CB(∆±b
α ).

¥

On the semantical side, expansion corresponds to a simple operation of

intersection between orderings: the preorder generated by the expanded base

corresponds to the intersection of the preorder generated by the original base

with the preorder generated by the added proposition.

Proposition 8.4.2. For every ∆ and every α:

ε
∆
±b
α

= ε∆ ∩ εα

Proof.

Since ∆±b
α = ∆ ∪ {α}, ε

∆
±b
α

= ε∆∪{α}:

ε
∆
±b
α

= {(w, v) ∈ U × U | v ² ψ ⇒ w ² ψ for every ψ ∈ ∆±b
α }}

that is

ε
∆
±b
α

= {(w, v) ∈ U×U | v ² ψ ⇒ w ² ψ for every ψ ∈ ∆ and v ² α ⇒ w ² α}.

Since

ε∆ = {(w, v) ∈ U × U | v ² ψ ⇒ w ² ψ for every ψ ∈ ∆}

and

εα = {(w, v) ∈ U × U | v ² α ⇒ w ² α}
it is immediate that the pairs of worlds in ε∆+

α
are exactly the pairs of worlds

that are both in ε∆ and in εα:

ε
∆
±b
α

= ε∆ ∩ εα
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¥

In general, we can see that the preorder generated by a default base ∆

corresponds to the intersection of the preorders generated by every formula

in ∆.

Proposition 8.4.3. For every default base ∆,

ε∆ =
⋂
{εφ|φ ∈ ∆}

Since the operation of intersection between sets is commutative, we have

that the expansion operation ±b is commutative too.

Note that the relation between the default base and the generated default-

assumption inference relations is not monotonic, that is,

∆ ⊆ ∆′ 6⇒ |∼∆⊆|∼∆′

For example, assume a default base ∆ = {p} (and an empty knowledge

set K) and take as premise the formula ¬(p ∧ q). We have that ¬(p ∧ q) is

consistent with p and so C∆(¬(p∧ q)) = Cl(¬(p∧ q), p), which, for example,

validates ¬(p∧q) |∼∆ p∧¬q. If we expand ∆ in ∆′ = {p, q}, now we have two

¬(p∧q)-maxiconsistent subsets of ∆′, i.e. {p} and {q}, and we can easily see

that now ¬(p ∧ q) 6|∼∆′ p ∧ ¬q. Hence, augmenting our default information

we do not necessarily augment our inferential power.

8.4.2 Default-base contraction

As we have seen , we can conceive two kinds of default contraction.

First we have a pure contraction operation −, that, aiming at the simple

elimination of a formula φ from the default set, is modeled referring to CB

as closure operation.

Alternatively, we can define a contraction operation ÷, proposed in order to

generate a proficient revision function by means of the Levi Identity. Since
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revision is finalized to allow a consistent update of the default set, we need

a stronger contraction operation, s.t. the contracted formula φ not only is

withdrawn from the agent’s default set CB(H), but it is also no longer present

in its classical (or supraclassical) closure Cn(H).

Hence we are going to describe two different basic contraction operation, that

we will distinguish as pure default-base contraction −b and derived default-

base contraction ÷b.

Pure default-base contraction

To define an operator for pure default-base contraction we have to refer to

B-derivability.

Hence, we shall define a notion of remainder set (∆ ./ α) for default formulae,

that is,

∆ ./ α = {∆′ ⊆ ∆|∆′ 7 α and ∆′′ B α for every ∆′′ s.t. ∆′ ⊂ ∆′′ ⊆ ∆}

We can define default-base contraction by means of a full-meet approach

(recall that working with finite bases the full-meet approach does not return

trivial results):

∆−b
α =

{ ⋂
(∆ ./ α) when 7 α

∆ otherwise

We can check if the closure of this operation satisfies the rationality postu-

lates defined above. That is, if setting D = CB(∆) and D−
α = CB(∆−b

α ) we

satisfy the rationality postulates defined for default contraction −.

Proposition 8.4.4. The default contraction operation −, defined from the

B-closure of a full-meet default-base contraction operation −b, satisfies the

postulates (D − 1) − (D − 4), (D − 6), (D − 7a), (D − 7a∨), (D − 8), and

(D − 8∨).

Proof.

(D − 1) is obviously satisfied because D−
α is defined as closed under B.
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(D − 2) is satisfied because ∆−b
α ⊆ ∆ and B is monotone.

(D − 3) is satisfied as well, since α /∈ CB(∆) implies ∆ ./ α = ∆.

(D − 4) is implied by the construction of the set ∆ ./ α.

The satisfaction of the extensionality property (D − 6) is guaranteed by the

fact that CB is closed under logical equivalence, and consequently the con-

tractions of logically equivalent formulas generate the same remainder set.

For (D − 7a), note that, if α, β ∈ D, then every set in ∆ ./ (α ∧ β) is also

in ∆ ./ α or in ∆ ./ β. Consequently, we have that ∆ ./ (α ∧ β) ⊆ ∆ ./

α∪∆ ./ β. This implies that
⋂

(∆ ./ α)∩⋂
(∆ ./ β) ⊆ ⋂

(∆ ./ (α∧β)). By

the monotonicity of B, D−
α ∩D−

β ⊆ D−
α∧β.

The same argument holds for (D − 7a∨).

For (D − 8), assume α /∈ D−
α∧β, that is, α /∈ CB(∆−b

α∧β). If α /∈ D−
α∧β, we

have two possibilities: that is, α /∈ D or α ∈ D. In the first case, we have

∆ ./ (α ∧ β) = ∆ ./ α = ∆, and, consequently, D−
α∧β = D−

α = D. In

the other case, the elimination of α from ∆ has been necessary in order to

eliminate α∧ β, that is, we have both α and β in D. This implies that every

set in ∆ ./ α is also in ∆ ./ α ∧ β. Hence,
⋂

(∆ ./ (α ∧ β)) ⊆ ⋂
(∆ ./ α),

and D−
α∧β ⊆ D−

α .

Analogously for D − 8∨.

¥

In order to refine full-meet base contraction into partial-meet contrac-

tion, we would need to define a choice function or an entrenchment relation

appropriate for this situation, but we do not see any way to build them: the

formulae in a default base H are all independent with respect to the operator

B, given the B-minimality of the base, and they all play the same role in the

definition of the epistemic state of the agent.
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Derived default-base contraction

In Section 8.3.3, we have defined the derived contraction operation ÷ assum-

ing a classical theory-contraction operator −̇ and restricting its action to a

B-closed set D (i.e., D÷
α := Cn(D)−̇α ∩ D). We can use the same approach

for the definition of a derived contraction operation ÷b over default bases.

One possibility is to use classical full-meet contraction, referring to classical

remainder sets ∆⊥α. This possibility works well, but it is a strong form of

contraction. We could try to refine the operation.

Recall the dependence relation ≤d presented in Section 8.2. Bochmann ([5],

p.145) has defined an easy mapping (id-mapping) that makes explicit the

relation between preferential inference relations and the corresponding de-

pendence relations:

ID α |∼ β iff ¬(α ∧ β) ≤d ¬α

DI α ≤d β iff ¬(α ∧ β) |∼ ¬α

However, we can show that, if we are working with default formulae, such

dependence relation manifests quite a trivial behaviour, since it is completely

determined by the property of Dominance, that is, it corresponds with the

monotonic core `|∼ of the inference relation |∼: the presence of a formula α

between our defaults depends upon the presence of a formula β just if β is a

consequence of α.

To show this, we need also to recall a known property of remainder sets,

the Upper Bound property, stating that, given a set A and a formula α, if a

subset of A is consistent with ¬α, then it is the subset of an element of the

remainder set A⊥α.

Lemma 8.4.5. (Upper Bound Property)([21], Postulate 1.37)

If B ⊆ A and B 0 α, then there is some B′ s.t. B ⊆ B′ ∈ A⊥α.

Lemma 8.4.6. Assume a preferential inference relation |∼ determined by a

set of defaults ∆ and a knowledge set K. Let ρ, σ ∈ ∆.

Then σ `K ρ if and only if σ ≤d ρ.
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Proof.

(⇐): If σ ≤d ρ, then σ `K ρ.

If σ ≤d ρ, then we have ¬(σ ∧ ρ) |∼ ¬σ by id-mapping. This implies that

for every ∆′ ⊆ ∆ s.t. ∆′ is ¬(σ ∧ ρ)-maxiconsistent, then σ /∈ ∆′.

Assume σ 0K ρ. Then σ is consistent with ¬ρ, i.e. is consistent with ¬(σ∧ρ),

and, by the upper bound property, there is a ∆′ ⊆ ∆ s.t. ∆′ is maximally

¬(σ ∧ ρ)-consistent and σ ∈ ∆′. Contradiction. Hence, σ `|∼ ρ.

(⇒): If σ `K ρ, then σ ≤d ρ.

Assume σ `K ρ. By reflexivity and AND, we have σ `K σ ∧ ρ. By con-

traposition, ¬(σ∧ρ) `K ¬σ. Since `K is the monotonic core of |∼, we obtain

¬(σ ∧ ρ) |∼ ¬σ, that, by id-mapping, implies σ ≤d ρ.

¥

Also if we move to the entrenchment relation <e defined by means of

ie-mapping in Section 8.1.4, we obtain the same result, respect to the strict

part of the dependence relation.

Lemma 8.4.7. Assume a preferential inference relation |∼ determined by a

set of defaults ∆ and a knowledge set K. Let ρ, σ ∈ ∆.

Then σ <e ρ if and only if σ `K ρ and ρ 0K σ.

Proof.

(⇒): If σ <e ρ, then σ `K ρ and ρ 0K σ.

If σ <e ρ, then ¬(σ ∧ ρ) |∼ ρ by ie-mapping.

Assume σ 0K ρ. This implies that σ is consistent with ¬ρ, and consequently

with ¬(σ ∧ ρ). Hence, by the upper bound property, there is a ∆′ ⊆ ∆ s.t.

∆′ is maximally ¬(σ ∧ ρ)-consistent, σ ∈ ∆′ and, obviously, ρ /∈ ∆′.

Hence we have that ¬(ρ ∧ σ) 6|∼ ρ. Contradiction.
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Assume ρ `K σ. Then, by REF and AND, ρ `K ρ ∧ σ, and , by the mono-

tonicity of `K , ¬(ρ∧σ)∧ ρ `K ρ∧σ. This implies ¬(ρ∧σ)∧ ρ |∼ ρ∧σ, and,

by CT, ¬(ρ ∧ σ) |∼ ρ ∧ σ. Contradiction.

(⇐): If σ `K ρ and ρ 0K σ, then σ <e′ ρ.

Since σ `K ρ and ρ 0K σ we have that ρ is consistent with ¬(σ ∧ ρ), while σ

is not. Hence, we have that ρ is in every ¬(σ∧ρ)-maxconsistent subset of ∆,

while σ is not. Consequently, we have that ¬(σ∧ρ) |∼ ρ and, by ie-mapping,

σ <e ρ.

¥

Then we have that, working with a preferential inference relation |∼, as

long as we are dealing with default formulae the strict part of the dependence

relation ≤d and the entrenchment relation <e correspond each other, and,

moreover, they are completely determined by the monotonic core `|∼.

Theorem 8.4.8. Assume we have a default-assumption system S = 〈∆, K〉,
where `K is its monotonic core, ≤d is its dependence relation (determined

by means of id-mapping), and <e is its entrenchment relation (determined

by means of ie-mapping). Then, if σ, ρ ∈ ∆, we have that

σ <d ρ iff σ <e ρ iff [σ `K ρ and ρ 0K σ].

Hence, we can use the relation ≤d to model derived default-base contrac-

tion for defaults, but it is not a very elaborated relation. Moreover, using

the definition of contraction presented by Rott (see Section 8.2),

β ∈ ∆÷b
α iff β ∈ ∆ and either α <d β or α ∈ Cn(∅),

we obtain a contraction operation resulting really too strong, since we would

mantain in ∆÷b
α only those formulae implied by α but not implying α.

We feel the need of a more efficient default-base contraction operation.
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8.5 Conclusion

Since we have taken note of the incompatibility between default formulae and

classical closure, in this chapter we have proposed a new interpretation of the

classical theory of belief revision, in order to deal with the update of default

assumptions. Such a change of perspective has given good results in the

reinterpretation of the classical rationality postulates, but it must be further

elaborated in order to deal efficiently with the revision of finite default-bases.
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Chapter 9

Conclusions

The subject of this thesis, the logical characterization of defeasible reason-

ing, falls within the relatively recent (but, anyhow, unstable) reconciliation

between epistemology and logics, which have met each other again in the

field of Artificial Intelligence.

In particular, we have focused on how effective is the use of background for-

mulae for modeling the unexpressed information that an agent uses in its

everyday reasoning.

The use of maxiconsistent sets of default formulae can be seen as a simple

but expressive and powerful tool. Such an approach has revealed itself as

efficient and pervasive, since it has been used as a basis for incisive logical

models of different epistemic phenomena.

Poole, in [45], has utilized default-assumption sets to model abductive pro-

cesses: starting from a set A of known facts, an observation β, and a set

∆ of default information representing possible hypothesis, we identify the

possible explanations of β with the A-maxiconsistent subsets of ∆ implying

β. That is, given A and ∆, β is explicable iff it is derivable from A and ∆ in

a credulous way (see Section 2.2).

Datteri, Hosni and Tamburrini, in [9], have emphasized a possible role of

default-assumption inference relations in modeling machine learning pro-

cesses. In particular, it is possible to use the default-assumption approach
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as a good logical model of a classical proposal in machine learning, i.e. the

decision tree algorithm ID3 (see [48]).

Finally, we have seen in the previous chapter that a most classical approach

to belief revision is based on meet contraction, that means that it is based on

the identification of maxiconsistent sets of formulae and has an immediate

connection with the structure of default-assumption inference relations (see

[39], pp.44-45).

In this thesis we have tried to analyze more deeply the role of back-

ground information in modeling defeasible reasoning. We have identified a

strong connection between the default-assumption approach and the most

rigorous characterization of defeasible reasoning, that is, the consequential-

ist perspective delineated by Gabbay and Makinson ([15, 38]).

Referring to the strict connection with the class of preferential models, that

have turned out to be an extremely proficient tool for the characterization

of nonmonotonic inference relations, we have seen that the class of default-

assumption inference relations comprehends the greatest part of the interest-

ing nonmonotonic inference relations, since we exclude only those relations

representable exclusively by means of non-injective preferential models.

Hence, the use of default-formulas turns out to be a very comprehensive log-

ical tool, that, moreover, has a very simple formal structure.

The strict connection between default-assumption and preferential approaches

results fruitful for both the perspective: on one hand, in Chapter 6, we have

defined how to use the tools supplied by the default-assumption formaliza-

tion in order to generate interesting preferential models; on the other hand,

in Chapter 7, we have used the connection with preferential models in order

to delineate in a precise way the behaviour of default-assumption sets.

Many of the results presented here would deserve further deepening.

The construction of interesting preferential models, given a conditional base

of sequents (Chapter 6), is still an open field, since, as we have seen, R-
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closure and W-closure have a clear problem in property-heritage that yet has

not been solved, and the use of default assumptions could be a promising

way to face it.

The problem of default-revision would need further work as well, not only in

the definition of alternative characterizations of revision, but, in particular,

we should look for some regularities connecting the variation of a default set

∆ with the variation of the corresponding inference relation |∼∆, and further

on, how the combined variation of the knowledge set K and of the default

set ∆ of an agent influence the generated inference relation.

The default revision presented in the last chapter enlightens what is prob-

ably a new problem in the definition of appropriate rational constraints in

logical epistemic models. Up to now, logicians have modeled the manage-

ment of epistemic information referring to its most natural form, beliefs, i.e.

formulae that the agent maintains as true. Consequently, the rational con-

straints for the management of epistemic information, in our particular case

for revision, have been formulated referring only to the idealizations tradi-

tionally linked to beliefs, that is, classical consistency and closure. Instead,

actual models often distinguish between the different epistemic attitudes the

agent can entertain toward information, that is, the agent treats each piece

of information according to the role it plays in reasoning and deliberation

processes; for example, the same formula can be treated as a belief, a desire,

a goal, a commitment, and so on, and such different attitudes determine

radically different roles the formula plays in the reasoning and deliberation

‘machinery’ of the agent. In the last two chapters we have shown that, since

such different roles determine a different treatment of the information, it is

possible that the idealizations traditionally connected to beliefs (as classical

closure) result inappropriate for other epistemic attitudes, as in the case of

default information. Such departures from classical constraints can deter-

mine the need for a rearrangement of the logical tools developed on the basis

of such idealizations. This is exactly what we have done in the case of de-

fault formulae: analyzing the default-assumption approach, which is judged

235



as a satisfying formalization, we can see that classical closure is not appro-

priate for the treatment of default formulae, and that such a behaviour is

not counter-intuitive; consequently, there is the necessity of modifying ap-

propriately every rational constraint defined on the basis of classical closure,

as those of belief-revision theory, in order to apply them in the management

of default information.

Lastly, the model of stereotypical reasoning presented at the end of Chapter

7 sounds promising, and further elaboration of the proposed notion of se-

mantical distance, or of alternative notions, seems worth more study. More-

over, we conjecture that the model presented here for the characterization of

stereotypical reasoning could also result proficient in other fields, for exam-

ple in the logical analysis of deliberation processes: it seems plausible that

a typical problem of deliberative and deontic logics, that is, the distinction

between goals, desires and duties on one hand, and collateral effects on the

other, could be formalized analogously to the distinction between stereotyp-

ical properties and simple expectations, modeled by means of the normality

operator B; moreover, a notion of semantical distance, not necessarily strictly

similar to the one presented here, could be useful in a valuation of the ‘near-

ness’ of alternative goals or desires to the actual situation, that is, which of

them should presumptively be easier to be satisfied.
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