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Introduction

The present thesis explores the connections between Hadwiger’s Characteriza-
tion Theorem for valuations, vector lattices, and MV-algebras.

The study of valuations can be seen as a precursor to the measure theory
of modern probability. For this reason, valuations are one of the most impor-
tant topics of geometric probability. From a general point of view, geometric
probability studies sets of geometric objects bearing a common feature, and
invariant measures over them. This is motivated by the belief that the mathe-
matically natural probability models are those that are invariant under certain
transformation groups, representable in a geometric way (cf. [17]).

In such a context, one of the topics that turns out to be central is the study
of measures on polyconvex sets (i.e., finite unions of compact convex sets) in
Euclidean spaces of arbitrary finite dimension, that are invariant under the
group of Euclidean motions. One may conjecture that there is only one such
measure, namely, the volume. This, however, is actually disproved by one of the
most important results in the field: Hadwiger’s Characterization Theorem. This
fundamental theorem states that the linear space of such invariant measures is
of dimension n+ 1, if the ambient has dimension n. Moreover, its proof shows
that another basic invariant measure besides the volume is the Euler-Poincaré
characteristic. The Euler-Poincaré characteristic, indeed, is the unique such
measure that assigns value one to each compact and convex set.

There is a tight connection between the number of vertices v, the number of
edges e, and the number of faces f of a compact and convex polyhedron in the
Euclidean space of dimension 3. As proved by Euler, v−e+f = 2. This equality,
called the Euler formula, is a well-known result of elementary geometry (Lakatos,
for example, chose it as the topic of his imaginary dialogues in [18]). The left-
hand side v − e + f of the Euler formula can be extended to any polyhedron
in any arbitrary Euclidean space, considering the alternate sum of the numbers
of faces of dimension, respectively, 0, 1, 2, and so on. The resulting value is
the Euler-Poincaré characteristic of the polyhedron itself. Moreover, the Euler-
Poincaré characteristic can be further extended to any topological space, by a
homological definition. One of the topics of the present work is to investigate
the Euler-Poincaré characteristic, in Hadwiger’s style, in the algebraic context
of vector lattices.

A partially ordered real vector space L is a vector space which is at the same
time a partially ordered set such that its vector space structure and its order
structure are compatible. More precisely, for any two elements x and y in L, if
x ≤ y, then x + t ≤ y + t, for all t ∈ L. Vector lattices (also known as Riesz
spaces) are partially ordered real vector spaces such that their order structure

v



vi INTRODUCTION

is, in addition, a lattice structure. The theory of vector lattices was founded,
independently, by Riesz, Freudenthal, and Kantorovitch, in the Thirties of the
last century.

Vector lattices are important in the study of measure theory, where some
fundamental results are special cases of results for Riesz spaces. For example, the
well-known Radon-Nikodym Theorem and the Spectral Theorem for Hermitian
operators in Hilbert spaces are both corollaries of the Freudenthal Spectral
Theorem for vector lattices (cf. [19]).

Moreover, in the special case of finitely presented unital vector lattices, the
Baker-Beynon duality provides a very useful representation of the elements of a
vector lattice in terms of piecewise linear and continuous real-valued functions
on a suitable polyhedron in some Euclidean space. This powerful tool, that
acts as a bridge between the algebra of vector lattices and the geometry of
polyhedra, inspires the present thesis in its entirety. On one hand, we use the
Baker-Beynon duality to associate vector lattices to polyhedra, and then to
define our own notion of the Euler-Poincaré characteristic for vector lattices,
using the standard geometric one. On the other hand, we explore two different
ways to associate continuous and piecewise linear functions (and hence, by the
Baker-Beynon duality, elements of vector lattices) to geometric objects. The
first one involves the notion of support function. The second one makes use of
gauge functions. Both support functions and gauge functions are well-studied
in the literature, within the theory of convex bodies (cf. [13, 30, 35, 34]).

We use here the notion of support function to import into the algebraic
context of vector lattices some extension results about additive valuations, typ-
ically used in convex geometry. First we establish a correspondence between
additive valuations on a suitable set of the free vector lattice FVLn and addi-
tive valuation on the set of polytopes in Rn. Then we apply to our context
the Volland-Groemer Extension Theorem (see [17] and [35]) to extend additive
valuations on polytopes to additive valuations on polyconvex sets. This allows
us to prove a one-to-one correspondence between additive valuations on FVLn
and additive valuations on polyconvex sets of Rn.

In the association via gauge functions, instead, we define and study a new
class of subsets of the Euclidean space, that we call star-shaped objects. Our
aim, in this case, is to import into the geometric setting some well-known results
obtained in the algebraic context. In particular, we translate in the language of
star-shaped objects a fundamental result proved by Mundici for MV-algebras.

MV-algebras are algebraic structures introduced by Chang in [8] to prove
the completeness theorem for the  Lukasiewicz calculus. They turn out to be the
equivalent algebraic semantics for  Lukasiewicz infinite-valued logic.

An MV-algebra is a commutative monoid (A,⊕, 0) equipped with an invo-
lutive negation ¬, such that a ⊕ ¬0 = ¬0 and ¬(¬a ⊕ b) ⊕ b = ¬(¬b ⊕ a) ⊕ a,
for all a, b ∈ A. MV-algebras form a variety that contains all Boolean al-
gebras. They can also be equivalently defined (cf. [15]) as residuated lat-
tices (A,∧,∨,⊗,→, 0, 1) which satisfy the conditions a ∧ b = a ⊗ (a → b),
(a→ b) ∨ (b→ a) = 1, and a = ((a→ 0)→ 0), for all a, b ∈ A.

MV-algebras are tightly related to lattice-ordered abelian groups, that are
abelian groups equipped with a lattice structure compatible with the group op-
erations. Specifically, Mundici’s Γ-functor Theorem states that the category of
MV-algebras is equivalent to the category of lattice-ordered abelian groups with
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distinguished unit (see [28] and [11]). The proof of this fundamental theorem
uses the notion of good sequence, introduced by Mundici himself in [28]. Good
sequences are special sequences of elements of MV-algebras, and it can be shown
that each x ≥ 0 element of a lattice-ordered group with distinguished unit can
be associated to a good sequence of elements of the corresponding MV-algebra,
in a unique way. This is precisely the main lemma that we will import in our
geometric context of star-shaped objects.

Let us now summarize the contents of the thesis.
In Chapter 1 we give the necessary geometric and algebraic background. In

particular, we define the notions of polyhedron, triangulation, vector lattice,
lattice-ordered group, MV-algebra, good sequence, and valuation. Moreover,
we collect some basic results about them, that will be in the following chapters.

The main topic of Chapter 2 is the characterization of the Euler-Poincaré
characteristic as a valuation on finitely presented unital vector lattices. By
the Baker-Baynon duality, we represent each finitely presented unital vector
lattice as the lattice of continuous and piecewise linear real-valued functions on
a suitable polyhedron in the Euclidean space. Then we define vl-Schauder hats,
that are special elements of the vector lattice with a “pyramidal shape”, and
that can be used to generate the vector lattice, via addition and products by
real scalars. On the positive cone V + of every finitely presented vector lattice
V we define a pc-valuation as a valuation (in the usual classical sense) that
is insensitive to addition. The (Euler-Poincaré) number χ(f) of any function
f ∈ V + is next defined as the Euler-Poincaré characteristic of the support
f−1(R>0) of f . We then prove that pc-valuations uniquely extend to a suitable
kind of valuations over V , called vl-valuations. In Theorem 2.3.6 we prove a
Hadwiger-like theorem, to the effect that our χ is the only vl-valuation assigning
1 to each vl-Shauder hat of V .

In Chapter 3 we use the notion of support function to establish a correspon-
dence between a suitable subset of the free vector lattice on n generators and
the set of polytopes of Rn (see Theorem 3.3.4). This special set of algebraic
objects generates the whole free vector lattice via finite meets. We call it the
set of support elements. Then we consider valuations on the free vector lattice
that are also additive on the set of support elements. By the Volland-Groemer
Extension Theorem, we prove that such valuations are in a one-to-one corre-
spondence with the valuations on the lattice of polyconvex sets that are additive
on the subset of convex objects (see Theorems 3.4.8 and 3.4.10).

In Chapter 4 we proceed in a similar way, using gauge functions. In this case,
the first correspondence that we prove is between the positive cone of the vector
lattice of continuous and positively homogeneous real-valued functions of Rn
and a lattice, equipped with appropriate vector space operations, of a new kind
of geometric objects (see Theorem 4.2.5). We call these sets in Rn star-shaped
objects. Then we define a geometric notion of good sequence, and we prove
an analogue of Mundici’s main lemma for MV-algebras (see Theorem 4.3.14).
Imposing a polyhedral condition on our star-shaped objects, we obtain a cor-
respondence between them and the elements of the positive cone of the free
vector lattice on n generators. Finally, we specialize the result obtained for
good sequences to these polyhedral star-shaped objects (see Theorem 4.4.10).

The final Chapter 5 contains remarks on further research.
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Chapter 1

Background

The aim of this thesis is to study the connections between a special class of al-
gebraic structures, named vector lattices, and some suitable geometrical objects
in the Euclidean space (quite often, polyhedra). Some of these connections are
new, even if they use concepts and techniques already known in the literature.
This applies, for example, to the identification between support functions and
support elements of the free vector lattice on n generators given in Chapter 3,
or to the one involving gauge functions and star-shaped objects presented in
Chapter 4. Other such connections, notably the Baker-Beynon duality pre-
sented later in this chapter, are well-known, and are used as a dictionary to
translate concepts and ideas from algebra to geometry, and vice versa. This
translations are fundamental to investigate the behaviour of the third main in-
gredient of the present thesis: valuations. The idea is to use the properties of
the geometric counterparts of vector lattices to define and characterize some
suitable subclasses of algebraic valuations, such as the vl-valuations in Chap-
ter 2, or to import results about geometric valuations in the algebraic context,
as in Chapter 3.

For these reasons, the concepts of polyhedra, vector lattices and valuations
are the kernel of the next chapters. Hence, in the following we will collect the
principal algebraic and geometric definitions, concerning the three aforemen-
tioned topics.

1.1 Polyhedra

Throughout the thesis, we write R for the set of real numbers, Q for the set of
rational numbers, Z for the set of integers, and N = {0, 1, 2, . . . } for the set of
natural numbers.

In the following, we present the main definitions and results concerning poly-
hedra that form the common geometrical background of our work. Polyhedra
are central to geometry, and especially to the study of piecewise linear topology.
They can be defined in many different ways. The one we have chosen here is
taken from [25]. For more details and proofs, see [16] and [25].

1



2 CHAPTER 1. BACKGROUND

1.1.1 Simplicial complexes and polyhedra

In the Euclidean space Rn, the m + 1 points x0, . . . , xm are called affinely in-
dependent if the vectors x1 − x0, x2 − x0, . . . , xm − x0 are linearly independent.
It can be proved that this definition does not depend on the order of the points
x0, . . . , xm. Hence, also the following definitions depend only on the points
themselves, and not on their order.

Given m+ 1 affinely independent points x0, . . . , xm in some Rn, we say that
the m-simplex σm = (x0, . . . , xm) is the set of all the convex combinations of
x0, . . . , xm, that is, the set of points

∑m
i=0 λixi, where the λi are real numbers

such that λi ≥ 0 for all i and
∑m
i=0 λi = 1. (Note that the set of convex

combinations of ∅ is ∅). The points x0, . . . , xm are called the vertices of σm,
and the number m is the dimension of σm. (The dimension of ∅ is −1). The
(relative) interior of σm is the subset of σm of those points

∑m
i=0 λixi such that

λi > 0 for all i.

Remark 1.1.1. Throughout the thesis we write iterior to mean relative interior
(of a simplex). To avoid possible confusion, we always write topological interior
when we mean interior in the topological sense.

The barycentre of σm is the point

σ̂m =

(
1

m+ 1

)
(x0 + · · ·+ xm).

A face of σn is the collection of all the convex combinations of a subset of
its vertices. (Hence ∅ is a face of any simplex). The boundary σ̇m of σn is the
set of all faces of σm other than σm itself.

A simplicial complex K is a finite set of simplices such that

1. if σm ∈ K and τp is a face of σm, then τp ∈ K,

2. if σm, τp ∈ K, then σn ∩ τp is a (possibly empty) common face of σm and
τp.

Figure 1.1: The picture on the left is a simplicial complex. The picture on
the right is not, for three different reasons: 1) the square (x0, x1, x2, x3) is
not a simplex; 2) the vertex x1 is not in the complex, whence the property of
closure under faces is not satisfied; 3) the intersection between (x0, x1, x2, x3)
and (x3, x4) is (x3, x4), that is not a face of (x0, x1, x2, x3).
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The dimension of a simplicial complex K is the maximum of the dimensions
of its simplices. A subcomplex L of K is a subset of simplices of K that is itself
a simplicial complex. For each r ≥ 0, the r-skeleton Kr of K is the subset
of its simplices of dimension at most r: clearly, it is a subcomplex of K. The
(underlying) polyhedron |K| of K is the set of points of Rn that lie in at least
one of the simplices of K, topologized as a subspace of Rn.

Definition 1.1.2 (Polyhedron). A polyhedron is a subset P of Rn such that
there exists a simplicial complex K with |K| = P .

Each simplicial complex K with polyhedron P is called a triangulation of
P . It can be proved that any two finite triangulations of P have the same
dimension. Hence the dimension of P is defined to be the dimension of any one
of its triangulations.

Given a triangulation K of the polyhedron P , a refinement of K is a trian-
gulation K∗ of P such that for all simplices σ of K∗ there is a simplex τ of K
such that |σ| ⊆ |τ |. Moreover, given any two triangulations K1 and K2 of the
same polyhedron P , there always exists a common refinement K∗ of K1 and
K2.

Figure 1.2: Two different triangulations K1 and K2 of the same polyhedron,
and a common refinement K3.

Proposition 1.1.3 ([25, Proposition 2.3.6]). Let K be a simplicial complex.
Then each point x of |K| is in the interior of exactly one simplex σx of K.

The simplex σx of Proposition 1.1.3 is the inclusion-smallest simplex con-
taining x, and it is called the carrier of x.

Remark 1.1.4. We recall that a closed half-space in Rn is a subset H ⊆ Rn of
the form

H = {x = (x1, . . . , xn) ∈ Rn | a · x+ b = a1x1 + · · ·+ anxn + b ≥ 0}, (1.1)

where 0 6= a = (a1, . . . , an) ∈ Rn and b is a fixed real number. It is a standard
result that we can use the concept of closed half-space to give a characterization
of polyhedra. A subset P of Rn is a polyhedron if and only if it is compact and
if it can be written as a finite union of finite intersections of closed half-spaces of
Rn. Convex polyhedra turn out to be precisely the compact finite intersections
of closed half-spaces; they are called polytopes. Equivalently, polytopes are the
convex hulls of finite (possibly empty) sets of points of Rn. Here, the convex hull
of a set of points J in Rn is defined as the set of all finite convex combinations
of them:

conv(J) =

{
l∑
i=1

λixi | l <∞, xi ∈ J,
l∑
i=1

λi = 1, 0 ≤ λi ≤ 1

}
.
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We will use the fact that, if K and H are two convex subsets of Rn, the convex
hull of their union is the set

conv(K ∪H) = {λk + (1− λh) | k ∈ K, h ∈ H, 0 ≤ λ ≤ 1}.

See [35, Section 2.4] for more details about the equivalence between the given
definitions of polytopes and polyhedra.

Definition 1.1.5. We denote by Pn the set of all the polytopes of Rn, and
with Pn? the set of non-empty polytopes in Rn. The set of all polyhedra of Rn
is denoted Kn.

Note that Kn is the closure of Pn under the set-theoretic operation of union.
Moreover, it can be shown that Pn is an intersectional family of sets, that is, a
collection of sets closed under finite intersections.

1.1.2 The supplement

The concept of supplement is introduced in [25, Definition 2.5.18], in the treat-
ment of simplicial approximations of continuous functions between polyhedra.
We will use supplements in Chapter 2, as inner approximations of the supports
of piecewise linear and continuous real-valued functions.

The following technical definition is needed, although it is not transparent.

Definition 1.1.6 (Supplement). Let L be a subcomplex of a simplicial complex
K and let n be the dimension of K. Let Mm = Km ∪ L for all m ≤ n and
define (M0, L)′ = M0. Inductively, we define

(Mm, L)′ = (Mm−1, L)′ ∪ {σ̂τ} ∪ {(σ̂)},

where σ runs through all m-simplices of K−L and τ through all simplices in each
(σ̇)′, that is a subcomplex (it always exists) of (Mm−1, L)′ such that |σ̇| = |(σ̇)′|.
In this notation, σ̂τ is the simplex (σ̂, y0, . . . , yr), where (y0, . . . , yr) = τ and σ̂ is
the barycentre of σ. The derived complex of K relative to L is (K,L)′ = (Mn, L)′

and we have |(K,L)′| = |K|. The derived complex of K is K ′ = (K, ∅)′.
The supplement of L in K is the set L̄ of simplices of (K,L)′ that have no vertex
in L.

As suggested in [25], we can give an equivalent characterization of the sup-
plement that is more expensive in terms of calculation, but also much more
understandable. The derived complex K ′ of the complex K is nothing else but
the first barycentric subdivision of K, obtained introducing a new vertex at the
barycentre of each simplex of K, and then joining up the vertices. Hence the
supplement L̄ of L in K is precisely the subcomplex of K ′ consisting of those
simplices having no vertex in L′.

1.2 Vector lattices

Vector lattices are algebraic structures also known as Riesz spaces; standard
references are [7] and [19].

Definition 1.2.1 (Vector lattice). A (real) vector lattice is an algebra V =
(V,+,∧,∨, {λ}λ∈R,0) such that
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Figure 1.3: An example of supplement: K is a simplicial complex, L is a sub-
complex of K. K ′ and L′ are the derived complexes of K and L, and L̄ is the
supplement of L in K.

VL1) (V,+, {λ}λ∈R,0) is a (real) vector space;

VL2) (V,∧,∨) is a lattice;

VL3) t+ (v ∧ w) = (t+ v) ∧ (t+ w), for all t, v, w ∈ V ;

VL4) if λ ≥ 0 then λ(v ∧ w) = λv ∧ λw for all v, w ∈ V and for all λ ∈ R.

The lattice structure given in VL2) induces on V a partial order ≤ defined as
usual:

for all v, w ∈ V v ≤ w if and only if v ∧ w = v.

Vector lattices form a variety of algebras (with continuum-many operations)
by their very definition. It is well known that the underlying lattice of V
is necessarily distributive (cf. Proposition 1.2.2 below). Morphisms of vector
lattices are homomorphisms in the variety, that is, linear maps that also preserve
the lattice structure. From now on we shall follow common practice and blur
the distinction between V and its underlying set V . Moreover, we will denote
both the element 0 of V and the real number zero by the same symbol 0: the
meaning will be clear from the context.

The following properties are standard results in vector lattice theory (see [7]
for more details).

Proposition 1.2.2 (Some properties of vector lattices). In any vector lattice
V , the following properties are satisfied.

1. t+ (v ∨ w) = (t+ v) ∨ (t+ w), for all t, v, w ∈ V ;

2. if λ ≥ 0 then λ(v ∨ w) = λv ∨ λw, for all v, w ∈ V ;

3. if λ < 0 then λ(v ∧ w) = λv ∨ λw, for all v, w ∈ V ;

4. if λ < 0 then λ(v ∨ w) = λv ∧ λw, for all v, w ∈ V ;

5. t ∧ (v ∨ w) = (t ∧ v) ∨ (t ∧ w), for all t, v, w ∈ V ;
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6. t ∨ (v ∧ w) = (t ∨ v) ∧ (t ∨ w), for all t, v, w ∈ V ;

7. (v ∨ w) + (v ∧ w) = v + w, for all v, w ∈ V .

We say that a subset L of V is generating if the intersection of all linear
subspaces that are also sublattices of V containing L is V itself. When L
generates V , then each element v ∈ V can be written as a finite combination of
elements of L, using the vector-lattice operations of V .

The next theorem contains two parts. The first part is a standard result on
vector lattices which provides a weak normal form for elements. The second
part provides a different such normal form, which to the best of our knowledge
is new here.

Theorem 1.2.3. Let L be a generating subset of the vector lattice V . Let S(L)
be the vector subspace of V generated by L. Let J(L) be the closure of S(L)
under the join operation of V .

1. Let M(L) be the closure of J(L) under the meet operation of V . Then
V = M(L).

2. Let D(L) be the vector subspace of V generated by J(L). Then V = D(L).

Proof. By definition, S(L) is the set of all the finite linear combinations of
elements of L, and, by Proposition 1.2.2, J(L) is closed under the operations of
addition and products by scalars 0 ≤ λ ∈ R.
1. This is an immediate consequence of the distributivity properties in Propo-
sition 1.2.2.

2. We will show that the closure of J(L) under the vector space operations of V
coincides with the set of all the possible differences between any two elements
of J(L):

D(L) = {a− b | a, b ∈ J(L)}.
To check this, we can proceed by induction. Obviously, each element of J(L) is
a difference of elements of J(L) itself. If f ∈ D(L) is of the form g + h, with
g, h ∈ D(L), then, by the induction hypothesis, g = a1−b1 and h = a2−b2, with
a1, a2, b1, b2 ∈ J(L). Then f = (a1 +a2)− (b1 +b2), with a1 +a2, b1 +b2 ∈ J(L).
If f = λg, with λ ≥ 0, g = a − b and a, b ∈ J(L), then f = λa − λb, with
λa, λb ∈ J(L). If f = λg, with λ < 0, g = a − b and a, b ∈ J(L), then
f = (−λ)b− (−λ)a, with (−λb), (−λ)a ∈ J(L). Then D(L) is contained in the
set of all the differences between two elements of J(L). The other inclusion is
trivial.

Now we prove that D(L) is closed under the vector lattice operations of V .
Since L ⊆ D(L), and since L generates V , this will show D(L) = V . The closure
under addition and products by real scalars is trivial, and the closure under the
meet operation is a consequence of the closure under the join operation, because
of the last equality of Proposition 1.2.2. To show that D(L) is closed under the
join operation we proceed as in [1, Proposition I.1.1]. Let f, g ∈ D(L). Then
f = a1 − b1 and g = a2 − b2, with a1 + a2, b1 + b2 ∈ J(L). Then the three
elements

f ′ = f + (b1 + b2) = a1 + b2,

g′ = g + (b1 + b2) = a2 + b1

f ′ ∨ g′
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are elements of J(L). Then, by Proposition 1.2.2,

f ∨ g = (f ′ − (b1 + b2)) ∨ (g′ − (b1 + b2)) = (f ′ ∨ g′)− (b1 + b2).

This completes the proof.

Corollary 1.2.4. Under the hypotheses of Theorem 1.2.3, each element of V
can be written as the difference of two elements in J(L).

Definition 1.2.5 (Piecewise linear function). Given a set S in Rn, a function
f : S → R is said to be piecewise linear if there is a finite set f1, . . . , fm of affine
linear functions Rn → R such that for all s ∈ S there exists an index i ≤ m for
which f(s) = fi(s).

Example 1.2.6 (The vector lattice ∇(P )). We consider a polyhedron P in
Rn and the set of all functions f : P → R that are continuous with respect
to the Euclidean metric and piecewise linear, equipped with pointwise defined
addition, supremum, infimum, products by real scalars and the zero function. It
is easy to show that this set is a vector lattice under the mentioned operations;
we will denote it ∇(P ).

Definition 1.2.7 (Positively homogeneous function). A function f : Rn → R
is positively homogeneous if for each x ∈ Rn and for all 0 ≤ λ, f(λx) = λf(x).

Example 1.2.8. The set of all functions f : Rn → R that are continuous,
positively homogeneous and piecewise linear, equipped with pointwise defined
addition, supremum, infimum, products by real scalars and the zero function,
is a vector lattice under the mentioned operations.

Definition 1.2.9 (Unital vector lattice). Given a vector lattice V , an element
u ∈ V is a strong order unit, or just a unit for short, if for all 0 ≤ v ∈ V there
exists a 0 ≤ λ ∈ R such that v ≤ λu. A unital vector lattice is a pair (V, u),
where V is a vector lattice and u is a unit of V .

It turns out that every finitely generated vector lattice admits a unit. For
if v1, . . . , vu is a finite set of generators for V , then it is easily checked that
|v1| + · · · + |vu| is a unit of V , where |vi| = vi ∨ (−vi) is the absolute value of
vi. Morphisms of unital vector lattices are the vector-lattice homomorphisms
that carry units to units. Such homomorphisms are called unital. Note that
unital vector lattices do not form a variety of algebras, because the Archimedean
property of the unit is not even definable by first-order formulæ, as is shown via
a standard compactness argument.

In Example 1.2.6, we can consider the function 1 : P → R, identically equal
to 1 on P . It is a unit of ∇(P ), and hence the pair (∇(P ),1) is a unital vector
lattice.

1.2.1 Baker-Beynon duality

The unital vector lattices of the form (∇(P ),1) presented above play a central
role in the characterization of a special class of vector lattices.

We denote the free vector lattice on n generators by FVLn. We also notice
that free vector lattices actually exist, because vector lattices form a variety of
algebras. From universal algebra and the fact that R generates the variety of
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vector lattices (see [7]), we can describe FVLn in the following way (see [3]).
Consider the set of all real-valued functions on Rn, equipped with the same
pointwise defined operations of∇(P ). This set is a vector lattice, and FVLn may
be identified with the Riesz subspace (sublattice and linear subspace) generated
by the coordinate projections π1, . . . , πn : Rn → R, πi : (x1, . . . , xn) 7→ xi. It
can be proved that, under this identification, the elements of FVLn are precisely
the continuous positively homogeneous piecewise linear functions from Rn to R:
FVLn can be represented as the vector lattice of Example 1.2.8.

We say that a cone of Rn is a subset C ⊆ Rn which is invariant under
multiplication scalars 0 < λ ∈ R. A (closed) polyhedral cone is a cone which is
actually obtainable as a finite union of finite intersections of closed half-spaces
having the origin in their topological boundary. A closed half-space containing
0 in its topological boundary is of the form (1.1) with b = 0.

A subset I of a vector lattice V is an ideal if it is a Riesz subspace that is
(order-)convex : x ∈ I, z ∈ V and x ≤ z imply z ∈ I. Ideals are precisely kernels
of homomorphisms between vector lattices, and the quotient vector lattice V/I
is defined in the obvious manner. Arbitrary intersections of ideals are again
ideals. The ideal generated by a subset S ⊆ V is the intersection of all ideals
containing S; it is finitely generated if S can be chosen finite.

Let I ⊆ FVLn be an ideal, and consider the set

Z(I) = {x ∈ Rn | f(x) = 0 for all f ∈ I}.

We say that a vector lattice V is finitely presented if there exists a finitely
generated ideal I such that V is isomorphic to the quotient FVLn/I. In this
case, as shown in [3] and [4], Z(I) is a polyhedral cone, and V is isomorphic to
the vector lattice of all continuous, positively homogeneous and piecewise linear
functions on Z(I). The well-known Baker-Beynon duality (see [5]) states that
the category of finitely presented vector lattices with vector lattice morphisms is
dually equivalent to (that is, equivalent to the opposite category of) the category
of polyhedral cones in some Euclidean space, with piecewise homogeneous linear
continuous maps as morphisms. Moreover, there is an induced duality between
the category of finitely presented vector lattices with a distinguished unit and
unital morphisms and the category of polyhedra and piecewise linear continuous
maps. This duality entails that finitely presented unital vector lattices are
exactly the ones representable as (∇(P ),1) to within a unital isomorphism, for
some polyhedron P in some Euclidean space Rn. The polyhedron P is called
the support of the vector lattice itself, and (∇(P ),1) is its coordinate vector
lattice.

In light of the foregoing, we will identify finitely presented unital vector
lattices with their functional representation. The elements of a finitely presented
unital vector lattice will be treated as continuous piecewise linear real-valued
functions on some suitable polyhedron P . On the other hand, the elements of
FVLn will be represented as continuous, positively homogeneous and piecewise
linear real-valued functions on Rn.

1.2.2 Positive cone and triangulations

Here we present some standard results that will be useful in the following chap-
ters, in order to investigate the behaviour of the elements of vector lattices,
considered as real-valued functions.
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The positive cone of a vector lattice V is the set

V + = {v ∈ V | v ≥ 0}.

Remark 1.2.10. Given a vector lattice V , each element x ∈ V can be written
in a unique way as the difference between two disjoint elements of the positive
cone V +. This means that there exists exactly two elements x+, x− ∈ V + such
that x+∧x− = 0 and x = x+−x−. It turns out that these two elements are the
positive part x+ = x ∨ 0 and the negative part x− = (−x) ∨ 0 of x. Moreover,
the absolute value of x satisfies |x| = x+ + x−.

If we consider a vector lattice of functions (either on Rn or on some polyhe-
dron P ⊆ Rn), we obtain that the positive and the negative part of a function
f ∈ V are precisely the functions

f+(x) =

{
f(x) if f(x) ≥ 0
0 otherwise

and f−(x) =

{
−f(x) if f(x) ≤ 0
0 otherwise,

for each x in the domain of f .

For the rest of this section, P ⊆ Rn denotes an element of Pn, that is a
polyhedron.

Definition 1.2.11 (Linearizing triangulation). Given a function f ∈ ∇(P ), a
linearizing triangulation for f is a triangulation Kf of P such that f is linear
on each simplex of Kf .

Remark 1.2.12. Because f ∈ ∇(P ) is piecewise linear, a standard argument
(c.f. [11, p. 183], [31, Corollary 2.3]) shows that there always exists a lineariz-
ing triangulation Kf of P . For any two functions f, g ∈ ∇(P ) there exists a
triangulation of P that is linearizing for both f and g. Moreover, if K∗ is a
refinement of a linearizing triangulation K for f , then K∗ is linearizing for f .
Henceforth, Kf will denote a linearizing triangulation of P for f .

We observe the following.

Claim 1.2.13. Let f ∈ ∇(P )+ and let ZKf ,f be the subcomplex of Kf of those
simplices where f is identically zero. Then |ZKf ,f | is the zero-set f−1(0) of
f , and does not depend on the particular choice of the triangulation Kf that
linearizes f .

Proof. We have to prove that, given a linearizing triangulation Kf , |ZKf ,f | is
the zero-set of f , that is, the set {y ∈ P | f(x) = 0}. The inclusion of |ZKf ,f |
in the zero-set of f is trivial: if y ∈ |ZKf ,f |, then y is a point of P that lies in
at least one simplex of ZKf ,f whence f(y) = 0. For the inverse inclusion, if y
is a point of P = |Kf | such that f(y) = 0, whence, by Proposition 1.1.3, there
is a simplex σ of Kf such that y is a point of the interior of σ. Recalling that
f ≥ 0, the linearity of f on the simplices of Kf , and in particular on σ, ensures
that f is identically zero on the whole simplex σ. So σ is a simplex of ZKf ,f
and y ∈ |ZKf ,f |.
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1.3 `-groups and MV-algebras

In 1986, Mundici introduced the notion of good sequences (cf. [28]) to prove his
Γ-functor Theorem. This fundamental result asserts the equivalence between
two types of algebraic structures, namely, MV-algebras and unital `-groups. In
Chapter 4, we will translate the concept of good sequence in a suitable geometric
language, and then we will give an analogue, in our context, of one of the main
lemmas that Mundici used to prove his theorem.

Introduced by Chang in [8], MV-algebras are the algebras of  Lukasiewicz
logic, just as Boolean algebras are the algebras of Boolean logic. The following
definition, essentially due to Mangani (see [21], and [11] for more details), is
equivalent to Chang’s original one.

Definition 1.3.1 (MV-algebra). An MV-algebra is an algebra A = (A,⊕,¬,0)
such that

MV1) (A,⊕,0) is an abelian monoid;

MV2) ¬¬x = x, for all x ∈ A;

MV3) x⊕ ¬0 = ¬0, for all x ∈ A;

MV4) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x, for all x, y ∈ A.

Example 1.3.2. The algebra [0,1] = ([0, 1],⊕,¬, 0), where [0, 1] = {x ∈ R |
0 ≤ x ≤ 1} is the real unit interval equipped with the operations

x⊕ y = min(1, x+ y) and ¬x = 1− x,

is an MV-algebra.
For all integers n > 1, the sets

Ln =

{
0,

1

n− 1
, . . . ,

n− 2

n− 1
, 1

}
equipped with the restrictions of the operations defined above are MV-algebras,
too. Each Ln is a subalgebra of [0,1].

The algebra [0,1] plays a central role in the theory of MV-algebras. As stated
by Chang’s Completeness Theorem an equation holds in [0,1] if and only if it
holds in every MV-algebra. This, intuitively, means that [0,1] is the analogue
of the two-element Boolean algebra {0, 1}. A proof of Chang’s Completeness
Theorem that makes use of good sequences can be found in [11].

Example 1.3.3. We say that f : [0, 1]n → R is a McNaughton function if it is
continuous and there exist finitely many polynomials p1, . . . , pk,

pi(x) = pi(x1, . . . , xn) = ai0 + ai1x1 + · · ·+ ainxn,

with integer coefficients aij ∈ Z, such that for each point y ∈ [0, 1]n there exists
an index j ∈ {1, . . . , k} such that f(y) = pi(y). The set of all McNaughton
functions f : [0, 1]n → [0, 1], equipped with the operations

(f ⊕ g)(x) = min(1, f(x) + g(x)) and (¬f)(x) = 1− f(x)

and with the function identically equal to 0, is an MV-algebra. As stated by
McNaughton Theorem, it can be shown that, up to isomorphisms, this MV-
algebra is the free MV-algebra over n generators (cf. [11]).
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In the following we just give the definition of lattice-ordered abelian group,
along with a couple of examples. Standard references on the subject are [6]
and [12].

Definition 1.3.4 (`-group). A lattice-ordered abelian group (or `-group, for
short) is an algebra G = (G,+,−,∧,∨,0) such that

VL1) (G,+,−,0) is an abelian group;

VL2) (G,∧,∨) is a lattice;

VL3) t+ (v ∧ w) = (t+ v) ∧ (t+ w), for all t, v, w ∈ V .

In a way very similar to the one used for vector lattice (see Definition 1.2.9),
we can define the concept of unit for an `-group.

Definition 1.3.5 (Unit (for `-groups)). Given an `-group G, an element u ∈ G
is a strong order unit, or just a unit for short, if for all 0 ≤ v ∈ G there exists
n ∈ N such that v ≤ nu. A unital `-group is a pair (G, u), where G is an `-group
and u is a unit of G.

Example 1.3.6. The additive groups R, Q, and Z, equipped with their natural
order, are examples of `-groups. In this examples, each element x > 0 is a
unit.

Example 1.3.7. The set of all McNaughton functions f : [0, 1]n → R, equipped
with the pointwise defined operations of addition, difference, minimum, max-
imum and with the function identically zero, is an `-group. An example of a
unit in this case is the function identically equal to 1 on [0, 1]n.

As we have done for vector lattices, in the following we will blur the dis-
tinction between an MV-algebra A (or an `-group G) and its underlying set A
(G, respectively). Moreover, we will denote both the element 0 of A (or G) and
the real number zero by the same symbol 0: the meaning will be clear from the
context.

The importance of a categorical equivalence between MV-algebras and unital
`-groups lies, for example, in the fact that the definition of a unit for an `-
group cannot be expressed in an equational way. Actually, the notion of unit
is not even elementary (i.e., definable by first-order formulæ), by a standard
compactness argument. However, up to categorical equivalence, unital `-groups
can be defined by equations: we can use the equations of MV-algebras.

1.3.1 The Γ-functor Theorem

In the following we will consider the two categories of MV-algebras and unital
`-groups. The objects of these categories are clear. For the morphisms, we
consider the maps that preserve the MV-algebraic operations (homomorphisms
of MV-algebras), and the maps that preserve both the `-group operations and
the fixed units (unital `-homomorphisms).

Theorem 1.3.8 (Γ-functor Theorem,[28, Theorem 3.9]). There is a natural
equivalence between the category of unital `-groups, and the category of MV-
algebras.
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The name “Γ-functor Theorem” is due to the fact that Mundici denoted by
Γ the functor that gives the equivalence in the previous theorem.

If we consider a unital `-group (G, u), we can “truncate G to u” and obtain
an MV-algebra. More precisely, we consider the unit interval of G

Γ(G, u) = [0, u] = {x ∈ G | 0 ≤ x ≤ u},

equipped with the operations

x⊕u y = (x+ y) ∧ u and ¬ux = u− x.

It can be shown that, proceeding in this way, Γ(G, u) is an MV-algebra. Then we
define Γ as the functor that maps each unital `-group (G, u) into the MV-algebra
Γ(G, u), and each unital `-homomorphism with domain G into its restriction to
the unit interval [0, u].

To obtain a categorical equivalence, we have to invert the Γ functor. Roughly
speaking, we need to rebuild the `-group G from its associated MV-algebra
Γ(G, u). The details of this construction, together with the complete proof of
the Γ-functor Theorem, can be found in [28] and [11]. Here we will just report
one of the crucial lemmas. The idea is that each element of G can be split into
a uniquely determined sequence of elements of Γ(G, u). Such a sequence enjoys
special properties, and is defined as follows.

Definition 1.3.9 (Good sequence). Given an MV-algebra (A,⊕,¬, 0), a good
sequence is a sequence (ai)i∈N of elements ai ∈ A such that

GS1) there exists an index j ∈ N such that, for all i ≥ j, ai = 0;

GS2) ai ⊕ ai+1 = ai, for all i ∈ N.

We observe that the previous definition is purely MV-algebraic. This fact,
together with the uniqueness of the representation of the elements of G stated
in the following lemma, assures the possibility of recovering G from Γ(G, u).

Lemma 1.3.10 ([11, Lemma 7.1.3]). Le (G, u) be a unital `-group, and let
A = Γ(G, u). Then, for each 0 ≤ a ∈ G, there exists a unique good sequence
(ai)i∈N in A such that a =

∑
i∈N ai.

(Note that the sum in Lemma 1.3.10 is finite because of condition 1 in
Definition 1.3.9.)

The lemma thus states that when we cut G to the unit u we do not lose
information. We will try to mimic this fundamental Lemma 1.3.10 in geometric
terms in Chapter 4.

1.4 Valuations

Valuations are a central topic of geometric probability. They are functionals
over lattices that can be seen as generalizations of measures.

Definition 1.4.1 (Valuation). Given a lattice L, a valuation on L is a function
ν : L→ R such that, for all x, y ∈ L, the following valuation property is satisfied:

ν(x ∨ y) + ν(x ∧ y) = ν(x) + ν(y).
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Example 1.4.2. If we consider the Boolean algebra of Borel subsets of Rn,
equipped with the operations of intersection and union, the function vol, that
assigns to each element of the Boolean algebra its n-dimensional Lebesgue mea-
sure, is a valuation that assigns to the bottom ∅ of the algebra the value 0.

Example 1.4.3. Using the same Boolean algebra as in the previous example,
we can find infinitely many valuations that assign the value 0 to the set ∅, in
the following way. We fix a point x ∈ Rn and then define, for each Borel subset
A of Rn,

δx(A) =

{
1 if x ∈ A
0 if x 6∈ A.

The functional δx is called a Dirac valuation.

As presented in [17], the study of valuations on lattices can be motivated
by the main method used to solve one of the best-known problems in geometric
probability, the Buffon needle problem. Consider a needle of fixed length l,
and drop it at random on the plane R2, where parallel straight lines at a fixed
distance d from each other are drawn. We would like to find the probability
that the needle shall meet at least one of the lines.

The standard solution of the Buffon needle problem is given via the charac-
terization of an additive functional on a suitable collection of sets in the plane.
In this special case, the functional is also required to be monotonically increasing
and invariant under the group of Euclidean motions of sets in the plane.

One of the most important results of geometric probability, Hadwiger’s Char-
acterization Theorem, is actually a characterization of all continuous and in-
variant valuations on the lattice generated by compact convex subsets in the
Euclidean space.
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Chapter 2

The Euler-Poincaré
characteristic

A polyconvex set is a finite union of compact convex subsets of Rn. In particular,
every polyhedron is a polyconvex set. Moreover, the family of polyconvex sets
of Rn forms a distributive lattice, with respect to the set-theoretic operations of
intersection and union. In Hadwiger’s terminology, this lattice is known as the
Konvexring. The term “polyconvex” was introduced in [17] after a suggestion
by Ennio De Giorgi.

Hadwiger’s Theorem states that we can characterize the valuations on the
Konvexring that are continuous, with respect to a suitable metric, and invariant
with respect to the rigid motions in Rn. (Rigid motions are the elements of the
group of Euclidean transformations generated by translations and rotations.)
Specifically, such valuations form a linear space under pointwise operations.
Moreover, there exists a finite basis µ0, . . . , µn of these valuations on polycon-
vex sets of Rn, and the elements of the basis are precisely identified: they are
the so-called intrinsic volumes. The first element µ0 is the Euler-Poincaré char-
acteristic (that will be treated in detail later in this chapter), and the last one,
µn, is the volume (n-dimensional Lebesgue measure) in Rn. Further, Hadwiger
proved that the Euler-Poincaré characteristic is the unique continuous invariant
valuation on the Konvexring, that takes the value 1 on each non-empty compact
convex set, and 0 on the empty one. For a proof, see [9] or [17, Theorem 5.2.1].

In this chapter we will obtain an analogue of this last part of Hadwiger’s
characterization. We will define a suitable class of valuations on unital vector
lattices, and then we will give an appropriate notion of Euler-Poincaré charac-
teristic of the elements of a fixed finitely presented unital vector lattice. Then
we will prove that our Euler-Poincaré characteristic is the unique such valuation
that assigns the value 1 to each vl-Schauder hat of the vector lattice. Here, the
vl-Schauder hats, to be defined below, can be seen as building blocks of the
vector lattice itself, just as the compact convex sets are the building blocks for
Hadwiger’s Konvexring.

15
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2.1 The Euler-Poincaré characteristic

The Euler-Poincaré characteristic is a topological invariant, studied in algebraic
topology and in polyhedral combinatorics. It was originally defined for poly-
hedra, and it was used to prove many different theorems about them, as, for
example, the classification of Platonic solids. Classically, it was defined just for
the surfaces of polytopes in R3 by the formula

χ = v − e+ f,

where v is the number of “vertices” (0-simplices), e the number of “edges” (1-
simplices), and f the number of “faces” (2-simplices) of a polytope. Euler’s
polyhedron formula states that the characteristic of the surface of a polytope in
R3 is equal to 2.

In modern mathematics, the concept of Euler-Poincaré characteristic has
been extended to polyhedra in any dimension, and then to topological spaces.

Definition 2.1.1. Given a polyhedron P triangulated by the simplicial complex
K with dimension n, the Euler-Poincaré characteristic of P is the number

χ(P ) =

n∑
m=0

(−1)mαm, (2.1)

where αm is the number of faces of K that have dimension m.

More generally, we have the following definition.

Definition 2.1.2. Given a topological space T and an integer m ≥ 0, write
βm for its mth Betti number, that is, the rank of its mth singular homology
group. Assume that T is such that βm = 0 for each sufficiently large m. Then
its Euler-Poincaré characteristic is the number

χ(T ) =

∞∑
m=0

(−1)mβm. (2.2)

Note that if a space T embeds into Rn, then its Euler-Poincaré characteristic is
well-defined, because T cannot have a nontrivial homology in dimension > n.

One of the most important results in homotopy theory about the Euler-
Poincaré characteristic is that it is a homotopy-type invariant (see [25, Lemma
4.5.17] and the remarks following it). Moreover, it can be shown that, for
polyhedra, the two definitions given above coincide. Hence the Euler-Poincaré
characteristic of a polyhedron P given in Definition 2.1.1 does not depend on
the choice of the triangulation K. For more details, see e.g. [25].

The aim of this chapter is to find a way to define the Euler-Poincaré char-
acteristic for the elements of a fixed finitely presented unital vector lattice,
represented as (∇(P ),1) for some polyhedron P , and then to characterize it in
terms of valuations on vector lattices.

From now on, we fix a polyhedron P in some Euclidean space Rn, and we
consider the unital finitely presented vector lattice (∇(P ),1).
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2.2 Hats

Here, we isolate a special class of elements of (∇(P ),1) that we call vl-Schauder
hats (or just hats, for short). Hats form a generating set of the underlying
vector space of the vector lattice: each element of ∇(P ) is a linear combination
of a suitable finite set of hats. Schauder hats originate in Banach space theory
(see [33], and references therein). In the present context, vl-Schauder hats play
the same role as Schauder hats in MV-algebras (see [27], [11, 9.2.1]) and lattice-
ordered Abelian groups ([20, and references therein]). Pursuing the analogy
with above-mentioned Hadwiger’s theorem, we will see in due course that our
version of the Euler-Poincaré characteristic assigns value one to each hat.

Formally, we define hats as follows.

Definition 2.2.1 (vl-Schauder hats). A vl-Schauder hat is an element h ∈ ∇(P )
for which there are a triangulation Kh of P linearizing h and a vertex x̄ of Kh

such that h(x̄) = 1 and h(x) = 0 for any other vertex x of Kh.

We remark that it is possible to characterize vl-Schauder hats abstractly in
the language of vector lattices, transposing to our context the results obtained
for MV-algebras and `-groups (see [22]). Abstract Schauder hats are today
known as elements of a basis. Bases of MV-algebras and unital `-groups appear,
e.g., in [24]. The existence of a basis is a necessary and sufficient condition for
an MV-algebra or an `-group to be finitely presented (see [26]). Therefore, the
results of this chapter, stated below, may be regarded as theorems about unital
vector lattices that do not depend on any geometric representation.

Defining vl-Schauder hats as in Definition 2.2.1, given a triangulation K of
P with vertices {x0, . . . , xm}, the vl-Schauder hats of K are those vl-Schauder
hats {hi} such that, for all i, j ∈ {0, . . . ,m}, hi(xi) = 1 and hi(xj) = 0. The
uniquely determined xi such that hi(xi) = 1 is called the vertex of hi. Each
f ∈ ∇(P ) can be written as a sum

∑m
i=0 aihi (where ai ∈ R) of distinct vl-

Schauder hats h0, . . . , hm of a common linearizing triangulation Kf for f . If
f ∈ ∇(P )+, then necessarily 0 ≤ ai for all i = 0, . . . ,m.

Figure 2.1: The function h is an example of vl-Schauder hat. Consider the
polyhedron P given in the picture on the left, and the triangulation K of P
shown in the central picture. The function h (in the picture on the right) is the
vl-Shauder hat of K with vertex x.
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Remark 2.2.2. Given any two vl-Schauder hats hi and hj of a triangulation H,
with vertices xi and xj , respectively, the element hij = 2(hi∧hj) is either zero or

a vl-Schauder hat with vertex xij = ̂(xi, xj). (Recall that ̂(xi, xj) = 1
2 (xi + xj)

is the barycentre of the symplex (xi, xj).) Hence hij is a vl-Schauder hat of the
triangulation H∗ obtained from H by performing the barycentric subdivision
of the simplex (xi, xj). Explicitly, by adding the 0-simplex (xij) to H, and
replacing each n-simplex σ = (xk0 , . . . , xi, . . . , xj , . . . , xkn) with the n-simplices
τ = (xk0 , . . . , xi, . . . , xij , . . . , xkn) and ρ = (xk0 , . . . , xij , . . . , xj , . . . , xkn). The
vl-Schauder hats associated with xi and xj in the new triangulation H∗ are,
respectively, h′i = hi − (hi ∧ hj) and h′j = hj − (hi ∧ hj).

Remark 2.2.3. The construction in Remark 2.2.2 provides an algebraic encod-
ing of Alexander’s stellar subdivision in the language of `-groups. See [26] for
further background and references.

2.3 A characterization theorem

2.3.1 Vl-valuations and pc-valuations

As Hadwiger’s Theorem involves just continuous and invariant valuations on
the Konvexring, our characterization result considers only a subclass of all the
valuations that we can define on a fixed vector lattice. We will call these special
valuations vl-valuations. We define them in the following way.

Definition 2.3.1 (Vl-valuations). Let V be a vector lattice, and let V + be its
positive cone. A vl-valuation on V is a function ν : V → R such that:

V1) ν(0) = 0,

V2) for all x, y ∈ V , ν(x) + ν(y) = ν(x ∨ y) + ν(x ∧ y),

V3) for all x, y ∈ V +, ν(x+ y) = ν(x ∨ y),

V4) for all x, y ∈ V +, if x ∧ y = 0 then ν(x− y) = ν(x)− ν(y).

We presently show that a vl-valuation is uniquely determined by its values
at the positive cone. To do that we define a new kind of valuations that are
actually restrictions of vl-valuations to V +.

Definition 2.3.2 (Pc-valuation). Let V by a vector lattice. A pc-valuation on
the positive cone is a function ν+ : V + → R such that:

P1) ν+(0) = 0,

P2) for all x, y ∈ V +, ν+(x) + ν+(y) = ν+(x ∨ y) + ν+(x ∧ y),

P3) for all x, y ∈ V +, ν+(x+ y) = ν+(x ∨ y).

Lemma 2.3.3. The operation of restriction of a vl-valuation to the positive
cone is a bijection between the set of all vl-valuations on V and the set of all
pc-valuations on V +. The inverse bijection is the operation that extends a pc-
valuation ν+ to the vl-valuation

ν± : x 7→ ν+(x+)− ν+(x−), (2.3)

where x+ and x− are, respectively, the positive and the negative part of x.
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Proof. Trivially, if ν is a vl-valuation on V , then its restriction ν|V + is a pc-
valuation. On the other hand, if we consider a pc-valuation ν+ defined on V +,
then its extension ν± given in (2.3) is a vl-valuation:

V1) ν±(0) = ν+(0+)− ν+(0−) = ν+(0)− ν+(0) = 0;

V2) for all x, y ∈ V , we have (x ∨ y)+ = (x+ ∨ y+), (x ∧ y)+ = (x+ ∧ y+),
(x ∨ y)− = (x− ∧ y−), (x ∧ y)− = (x− ∨ y−), and hence

ν±(x ∨ y) = ν+((x ∨ y)+)− ν+((x ∨ y)−) =

= ν+(x+ ∨ y+)− ν+(x− ∧ y−) =

= ν+(x+) + ν+(y+)− ν+(x+ ∧ y+)

+ ν+(x− ∨ y−)− ν+(x−)− ν+(y−) =

= ν+(x+)− ν+(x−) + ν+(y+)− ν+(y−)

− (ν+((x ∧ y)+)− ν+((x ∧ y)−)) =

= ν±(x) + ν±(y)− ν±(x ∧ y);

V3) for all x, y ∈ V +, we have x+y ∈ V +, (x+y)+ = x+y and (x+y)− = 0,
and so

ν±(x+ y) = ν+((x+ y)+)− ν+((x+ y)−) = ν+(x+ y)− ν+(0) =

= ν+(x ∨ y)− 0 = ν+(x+ ∨ y+) = ν+((x ∨ y)+)− 0 =

= ν+((x ∨ y)+)− ν+((x ∨ y)−) = ν±(x ∨ y);

V4) for all x, y ∈ V +, if x∧y = 0, then we have x− = y− = 0, (x−y)+ = x+

and (x− y)− = y+, and so

ν±(x− y) = ν+((x− y)+)− ν+((x− y)−) =

= ν+(x+)− ν+(y+) =

= ν+(x+)− ν+(x−)− (ν+(y+)− ν+(y−)) =

= ν±(x)− ν±(y).

Moreover, if ν is a vl-valuation, then, for all x ∈ V ,

(ν|V +)±(x) = ν|V +(x+)− ν|V +(x−) = ν(x+)− ν(x−) = ν(x+ − x−) = ν(x).

On the other hand, if ν+ is a pc-valuation with extension ν±, then, for all
x ∈ V +,

ν±|V +(x) = ν±(x) = ν+(x+)− ν+(x−) = ν+(x+) = ν+(x).

So, from now on, without loss of generality, we can consider only pc-valua-
tions and positive cones.

Lemma 2.3.4. Let ν+ be a pc-valuation, and x, y be elements of V +. Then for
all 0 < a ∈ R

ν+(x+ ay) = ν+(x+ y).
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Proof. Let 0 < b ∈ R. Then for all
b

2
≤ c ≤ b the inequality 0 ≤ b−c ≤ b

2
holds.

It follows that both x + cy and (b − c)y are in V +, and x + (b − c)y ≤ x + cy.
Therefore,

ν+(x+ by) = ν+((x+ cy) + (b− c)y) = ν+((x+ cy) ∨ (b− c)y) =

= ν+(x+ cy) + ν+((b− c)y)− ν+((x+ cy) ∧ (b− c)y) =

= ν+(x+ cy) + ν+((b− c)y)− ν+((b− c)y) = ν+(x+ cy).

By induction, ν+(x+ by) = ν+(x+ cy) for all b ≥ c ≥ b

2n
(for all n ∈ N \ {0}),

whence for all b ≥ c > 0. Then we can choose b = max{a, 1} to have

ν+(x+ ay) = ν+(x+ y).

More generally:

Corollary 2.3.5. Let ν+ be a pc-valuation on V +, and let x =
∑m
i=0 aixi be

such that 0 < ai ∈ R and x0, . . . xm ∈ V +. Then

ν+(x) = ν+

(
m∑
i=0

xi

)
.

2.3.2 The main result

Our characterization theorem is the following.

Theorem 2.3.6. Let P be a polyhedron in Rn, for some integer n ≥ 1, and let
(∇(P ),1) be the finitely presented unital vector lattice of real-valued piecewise
linear functions on P . Then there is a unique vl-valuation

α : ∇(P )→ R

assigning value 1 to each vl-Schauder hat of ∇(P ). Further, for each 0 < f ∈
∇(P ), α(f) coincides with the Euler-Poincaré characteristic χ(f−1(R>0)), given
in (2.2) . In particular, α(1) = χ(P ).

In the preceding statement, f−1(R>0) is the support of f , that is, the com-
plement of the zero-set f−1(0). Since the support is an open set, it is not in
general compact and therefore cannot be triangulated by a finite simplicial com-
plex. Thus the classical combinatorial formula (2.1) cannot be used to define
the characteristic of the support of f . Nonetheless, we can use the supplement
of the support of f . As we said in Chapter 1, the supplement is a standard con-
struction in algebraic topology: it is a simplicial complex L̄ that approximates
the set-theoretic difference between the underlying polyhedra |K| and |L| of a
simplicial complex K and its subcomplex L. It can be shown (see [25, Propo-
sition 5.3.9]) that |L̄| is homotopically equivalent to the set-theoretic difference
|K| \ |L|. So the Euler-Poincaré characteristic of |L̄| given by (2.1) is exactly
the Euler-Poincaré characteristic of |K| \ |L|, defined by (2.2).
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To prove Theorem 2.3.6, we will characterize exactly the vl-valuation that
assigns value one to each vl-Schauder hat. In light of Lemma 2.3.3, we can
restrict attention to pc-valuations on the positive cone.

First of all we observe that, as suggested by Lemma 2.3.4, a pc-valuation
forgets the height of functions, so the only information it retains is concerned
with supports and zero-sets. We therefore try to use the Euler-Poincaré char-
acteristic of the support supp(f) of the functions in ∇(P )+ to construct our
pc-valuation. To this aim, we use the supplement. For each f ∈ ∇(P )+, we
choose a linearizing triangulation Kf and isolate the zero-set ZKf ,f of f . Then

we build its supplement ZKf ,f in Kf . Now we have a simplicial complex (and
so an associated polyhedron) which approximates the support of f , and we can
compute its Euler-Poincaré characteristic. Recalling that |ZKf ,f | is the zer-set
of f , and that by [25, Proposition 5.3.9] there is a homotopy equivalence be-
tween |ZKf ,f | and supp(f) = P \ f−1(0) = |Kf | \ |ZKf ,f |, the Euler-Poincaré

characteristic of |ZKf ,f | does not depend on the choice of the linearizing tri-

angulation Kf , but just on the homotopy type of |ZKf ,f |, and so only on the
homotopy type of supp(f).

Because of this, the following is well defined.

Definition 2.3.7. We define α+ : ∇(P )+ → R as

α+(f) = χ(supp(f)) = χ(|ZKf ,f |),

where Kf is a linearizing triangulation for f ∈ ∇(P )+, and χ is the Euler-
Poincaré characteristic defined in (2.1), and in (2.2).

Lemma 2.3.8. Let f ∈ ∇(P )+ and Kf be a triangulation of P linearizing f .
Then

ZKf ,f = {σ ∈ K ′f | σ ⊆ supp(f)}.

Proof. First, we observe that, by the linearity of f on Kf , on the barycentres of
the simplices of ZKf ,f the function f takes value 0. Hence f is identically 0 on
each vertex of Z ′Kf ,f . Furthermore, again by linearity, the vertices of Z ′Kf ,f are

exactly all vertices of K ′f where f is 0. Therefore, if we compute ZKf ,f as the
set of simplices of K ′f with no vertices in Z ′Kf ,f , we have that it is the subset of

K ′f of all those simplices whose vertices are in the support of f . The linearity
of f on K ′f completes the proof.

We now prove that α+ is a pc-valuation that assigns 1 to each vl-Schauder
hat.

Lemma 2.3.9. The following hold.

1. α+(0) = 0;

2. if h ∈ ∇(P )+ is a vl-Schauder hat, then α+(h) = 1;

3. for all f, g ∈ ∇(P )+,

α+(f + g) = α+(f ∨ g) = α+(f) + α+(g)− α+(f ∧ g).
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Proof. (1) α+(0) = χ(supp(0)) = χ(∅) = 0.

(2) We can choose a triangulation Kh that linearizes h and such that the
vertex x̃ is the only one on which h > 0. Then we observe that ZKh,h is the
simplicial neighbourhood of x̃ in K ′h (K ′h being the first barycentric subdivision
of Kh): ZKh,h is the smallest subcomplex of K ′h containing each simplex of K ′h
which contains x̃. It can be shown (using, for example, [25, Proposition 2.4.4])
that |ZKh,h| is contractible (homotopically equivalent to the point x̃). It follows
that the Euler-Poincaré characteristic of |ZKh,h| is the same as the one of the
single point x̃. This proves that α+(h) = 1.

(3) By Remark 1.2.12, we can always choose a triangulation K of P that
simultaneously linearizes f + g, f ∨ g, f , g and f ∧ g. Let us compute the
Euler-Poincaré characteristic using this common linearizing triangulation.

Applying Lemma 2.3.8 to f , g, f ∧ g, f ∨ g and f + g, and observing that
supp(f ∧ g) = supp(f) ∩ supp(g) and supp(f + g) = supp(f ∨ g) = supp(f) ∪
supp(g), we have:

ZK,f∧g = {σ ∈ K ′ | σ ⊆ supp(f) ∩ supp(g)},

ZK,f∨g = {σ ∈ K ′ | σ ⊆ supp(f) ∪ supp(g)},

ZK,f+g = {σ ∈ K ′ | σ ⊆ supp(f) ∪ supp(g)}.

Since ZK,f∨g = ZK,f+g, the first equality α+(f + g) = α+(f ∨ g) is trivial. For
the second one, the m-simplex σm is in ZK,f∧g if, and only if, it is in both ZK,f
and ZK,g, and, in this case, it also lies in ZK,f∨g. Therefore, if αm,? is the
number of m-simplices in ZK,?, then αm,f∨g = αm,f +αm,g−αm,f∧g. Summing
over m completes the proof.

Remark 2.3.10. Observe that α(1) = χ(P ). In fact, each triangulation K of
P is a linearizing triangulation for 1 and ZK,1 = ∅; then ZK,1 = K ′ and so
|ZK,1| = |K ′| = P .

The following technical result is crucial. It allows us to reduce the meet
between vl-Shauder hats on the left-hand side of (2.4) to its right-hand side,
where only sums occur.

Lemma 2.3.11. Let h0, . . . , hn be distinct vl-Schauder hats of the same trian-
gulation H of P . Let h0n = hn, k0 = h0 ∧ hn, and, for all i = 1, . . . , n, consider
the elements ki and hin, recursively defined in the following way:

ki = hi ∧ hin,
hin = hi−1n − (hi−1 ∧ hi−1n ) = hi−1n − ki−1.

Then (
n−1∑
i=0

hi

)
∧ hn =

n−1∑
i=0

ki. (2.4)

Moreover, there is a unique triangulation K of P such that the non-zero elements
of the set {2k0, . . . , 2kn−1} are distinct vl-Schauder hats of K.

Proof. First we notice that:

1. hin ≤ hn,
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2. ki ≤ hi and ki ≤ hn,

3. if hin = 0, then ∀j ≥ i hjn = 0 and kj = 0,

4. if 2ki 6= 0 and 2kj 6= 0 (with i 6= j), then they are distinct: in fact,
recalling Remark 2.2.2, hln is always a vl-Schauder hat associated with the
point xn, whence 2ki attains its maximum at xin, but the maximum of
2kj is attained at xjn, and xin 6= xjn because hi 6= hj .

The proof proceeds by induction on n. If n = 1, there is nothing to prove.
The only thing we need to observe is that 2k0 = 2(h0 ∧ h1) is either zero or a
vl-Schauder hat of the triangulation H∗ = K given in Remark 2.2.2.

Assume the thesis to be true for all m < n. In particular,(
n−2∑
i=0

hi

)
∧ hn =

n−2∑
i=0

ki,

where 2k0, . . . , 2kn−2 are either the zero function or vl-Schauder hats of the
single triangulation K̃, together with the hats h′i = hi−ki for i = 0, . . . , n−2 and
hn−1n . By Remark 1.2.12, we can now take a new triangulation L that linearizes
all the functions involved in the proof and then consider the restrictions of these
functions on each single simplex of L. There are three cases:

Case 1. hn ≤
∑n−2
i=0 hi ≤

∑n−1
i=0 hi. In this case(

n−1∑
i=0

hi

)
∧ hn = hn =

(
n−2∑
i=0

hi

)
∧ hn =

n−2∑
i=0

ki.

Therefore, the only thing to prove is kn−1 = 0. If ∃j ∈ {0, . . . , n− 2} such that
hjn ≤ hj , then kj = hjn and ∀i > j hin = ki = 0; in particular kn−1 = 0. Else, if

∀i ∈ {0, . . . , n− 2} hi < hin ≤ hn, then ki = hi and hin = hn −
∑i−1
j=1 hi. Then

hn−1n = hn −
n−2∑
i=0

hi ≤
n−2∑
i=0

hi −
n−2∑
i=0

hi = 0,

whence kn−1 = 0.

Case 2.
∑n−2
i=0 hi ≤

∑n−1
i=0 hi < hn. In this case ∀i ∈ {0, . . . , n−1} we have hi <

hn and ∀j ∈ {0, . . . , n−1} we have
∑j
i=0 hi < hn. Moreover, ∀i ∈ {0, . . . , n−1}

we have hi < hin. To prove the latter inequality, suppose (absurdum hypothesis)
that there is a first index j (necessarily strictly greater than 0) such that hjn 6> hj .
Then hjn ≤ hj , because the triangulation H is supposed to be fine enough to
linearize kj = hjn ∧ hj , and also hi < hin for all i < j. Therefore, ki = hi,

hi+1
n = hn −

∑i
l=0 hl. It follows that hjn = hn −

∑j−1
i=0 hi, and hence 0 ≤

hjn − hj = hn −
∑j
i=0 hi. As a consequence, the contradiction hn ≤

∑j
i=0 hi. It

follows that kn−1 = hn−1 ∧ hn−1n = hn−1, whence(
n−1∑
i=0

hi

)
∧ hn =

n−1∑
i=0

hi =

n−2∑
i=0

hi + hn−1 =

=

((
n−2∑
i=0

hi

)
∧ hn

)
+ hn−1 =

n−2∑
i=0

ki + kn−1 =

n−1∑
i=0

ki.
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Case 3.
∑n−2
i=0 hi < hn ≤

∑n−1
i=0 hi. As in the previous case, ∀i ∈ {0, . . . , n− 2}

we have hi < hin, whence hin = hn −
∑i−1
j=0 hj and ki = hi. Further, hn−1n =

hn −
∑n−2
i=0 hi and

kn−1 = hn−1 ∧

(
hn −

n−2∑
i=0

hi

)
.

Therefore:(
n−1∑
i=0

hi

)
∧ hn =

(
n−1∑
i=0

hi

)
∧

(
n−2∑
i=0

hi + hn −
n−2∑
i=0

hi

)
=

=

(
n−2∑
i=0

hi + hn−1

)
∧

(
n−2∑
i=0

hi +

(
hn −

n−2∑
i=0

hi

))
=

=

n−2∑
i=0

hi +

(
hn−1 ∧

(
hn −

n−2∑
i=0

hi

))
=

n−2∑
i=0

ki + kn−1 =

n−1∑
i=0

ki.

This proves (2.4). Finally, we show that {2k0, . . . , 2kn−1} (when non-zero)
are distinct vl-Schauder hats of the same triangulation. Take K̃, and construct
the triangulation K = (K̃)∗ as in Remark 2.2.2. Adopting the notation in that
remark, if kn−1 = 0, then K = K̃; else, we add the 0-simplex (x(n−1)n) and
replace each m-simplex of the form σ = (xu0

, . . . , xn−1, xn) with the m-simplices
τ = (xu0 , . . . , xn−1, x(n−1)n) and ρ = (xu0 , . . . , x(n−1)n, xn). The vl-Schauder
hats of this new triangulation K are 2k0, . . . , 2kn−1, together with the hats
h′i = hi − ki for i = 0, . . . , n− 1 and hnn. Clearly, for all i 6= j, 2ki 6= 2kj unless
ki = kj = 0: trivially, 2ki attains its maximum at xin, 2kj attains its maximum
at xjn, and these two points are distinct because xi 6= xj .

Lemma 2.3.12. Let ν+ be a pc-valuation on ∇(P )+ that assigns 1 to each
vl-Schauder hat. Then ν+(f) = α+(f) for all f ∈ ∇(P )+.

Proof. We can write each 0 6= f ∈ ∇(P )+ as a sum
∑m
i=0 aihi (where 0 < ai ∈

R) of distinct vl-Schauder hats h0, . . . , hm of a common triangulation K that
linearizes f . By Corollary 2.3.5, we also have

ν+(f) = ν+(

m∑
i=0

hi) and α+(f) = α+(

m∑
i=0

hi).

We proceed by induction on m. If m = 0, then, by Lemma 2.3.9,

ν+(f) = ν+(h1) = 1 = α+(h1) = α+(f).

If m > 0, by the induction hypothesis, for all n < m, ν+
(∑n

j=0 lj

)
=

α+
(∑n

j=0 lj

)
for distinct vl-Schauder hats l0, . . . , ln of the same triangulation
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Hn of P . Then, by Lemma 2.3.11 and Corollary 2.3.5,

ν+(f) = ν+

(
m−1∑
i=0

hi + hm

)
=

= ν+

(
m−1∑
i=0

hi

)
+ ν+(hm)− ν+

((
m−1∑
i=0

hi

)
∧ hm

)
=

= ν+

(
m−1∑
i=0

hi

)
+ ν+(hm)− ν+

(
m−1∑
i=0

ki

)
=

= ν+

(
m−1∑
i=0

hi

)
+ ν+(hm)− ν+

(
m−1∑
i=0

2ki

)
=

= α+

(
m−1∑
i=0

hi

)
+ α+(hm)− α+

(
m−1∑
i=0

2ki

)
=

= α+

(
m−1∑
i=0

hi

)
+ α+(hm)− α+

(
m−1∑
i=0

ki

)
=

= α+

(
m−1∑
i=0

hi

)
+ α+(hm)− α+

((
m−1∑
i=0

hi

)
∧ hm

)
=

= α+

(
m−1∑
i=0

hi + hm

)
= α+(f).

Now we can extend the pc-valuation α+ to a vl-valuation α. To complete
the proof, we define α : ∇(P )→ R as the map such that, for all f ∈ ∇(P ),

α(f) = α+(f+)− α+(f−).

By the uniqueness of the extension of a pc-valuation granted by Lemma 2.3.3,
α is the unique vl-valuation that assigns 1 to each vl-Schauder hat of ∇(P ), and
Theorem 2.3.6 is proved.

Example 2.3.13. Consider the function f ∈ ∇([0, 1]) of Figure 2.2. Using the
linearizing triangulation in the picture, one easily computes α(f) = 2− 1 = 1.

Figure 2.2: The function α.
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Chapter 3

Support functions

In Chapter 2, we have seen how dualities between algebra and geometry can
be useful to investigate the behaviour of valuations on vector lattices. Specifi-
cally, the Baker-Beynon duality allows us to represent the elements of a finitely
presented unital vector lattice as continuous and piecewise linear functions on
some suitable polyhedron in some Euclidean space. Hence, we can use the
properties of these functions, polyhedra and triangulations to define and char-
acterize the Euler-Poincaré characteristic among the algebraically defined class
of vl-valuations.

In this chapter we explore another way to connect vector lattices and geo-
metric objects. We fix our attention only on the free vector lattice on n gener-
ators FVLn. Then we set up a correspondence between some special elements
of FVLn, that we call support elements, and polytopes in Rn. This allows us
to prove the main results of this chapter (Theorem 3.4.8 and Theorem 3.4.10):
they state a relationship between valuations on FVLn and valuations on the lat-
tice of polyhedra Kn, under appropriate conditions of additivity. Geometrically,
additivity is ensured by equipping Kn with Minkowski addition.

The main tool used here to make the correspondence between elements of
FVLn and polytopes is the so-called support function. This is a tool of fun-
damental importance in Brunn-Minkowski theory (see [35] for a detailed treat-
ment), in convex analysis, in functional analysis, etc.

3.1 Minkowski addition

We recall that we denote by Pn the set of all polytopes in the Euclidean space
Rn, and by Pn? the set Pn \ {∅}.

We equip the lattice Kn of polyhedra in Rn with a sum operation, that will
be used as a geometric counterpart of the addition operation of FVLn.

Definition 3.1.1 (Minkowski addition). Given any two subsets A and B of Rn,
their Minkowski addition is the set

A+B = {a+ b | a ∈ A, b ∈ B}. (3.1)

Definition 3.1.2 (Product by real scalars). Given a subset A of Rn and a real
number λ we define the product of A by λ the set

λA = {λa | a ∈ A}.

27
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The meaning of Minkowski addition is quite intuitive. The set A + B is
nothing else than the union of all the possible translations of A by the vectors
of B. Equation (3.1) can actually be rewritten in the following form:

A+B =
⋃
b∈B

(A+ b).

On the other hand, the result of the product of A by λ is the image of A
under the homothety with center at the origin of Rn and ratio λ.

It is a standard result that the Minkowski addition of two convex sets, com-
pact sets, polytopes or polyhedra is, respectively, a convex set, a compact set,
a polytope or a polyhedron. Further, the Minkowski addition of two convex
polytopes is the convex hull of the sum if their vertices, as Figure 3.1 suggests.
The same results hold for the product by real scalars. Therefore, the sets Kn
and Pn are closed under both Minkowski addition and products by real scalars.

Figure 3.1: Examples of Minkowski addition (on the left) and product by scalars
(on the right).

Moreover, we have the following properties:

Proposition 3.1.3 ([35, p. 127]). For any A,B,C ⊆ Rn and for all 0 ≤ λ, µ ∈
R, the following hold:

1. (A ∪B) + C = (A+ C) ∪ (B + C);

2. (A ∩B) + C ⊆ (A+ C) ∩ (B + C);

3. λA+ λB = λ(A+B);

4. (λ+ µ)A ⊆ λA+ µA.

3.2 Support functions

Generally speaking, the definition of support function can be given for any
nonempty convex set of Rn. Here we only consider compact convex sets. Then,
the support function, defined as in (3.2), turns out to take on real values every-
where.

Definition 3.2.1 (Support function). For any compact convex set ∅ 6= K ⊆ Rn
the support function fK : Rn → R is defined by stipulating that, for any x ∈ Rn,

fK(x) = sup{x · k | k ∈ K}, (3.2)
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where · denotes the scalar product in Rn.

The intuitive meaning of the support function is closely related to the concept
of support plane. The support plane (or support hyperplane) of a subset A of
Rn is a hyperplane H of Rn such that A ∩H is nonempty, and A is contained
in one of the two closed half-spaces bounded by H. Focusing our attention on
a nonempty compact convex set K, we can describe its support planes via its
support function. As is well known, the support planes of K have the form

HK(x) = {y ∈ Rn | x · y = fK(x)},

letting x range over Rn. If we now consider a point u in the unit sphere Sn−1 of
Rn, then the value fK(u) is the signed distance from the origin of the support
plane of K with exterior normal vector u. The distance is negative if, and only

if, u points into the half-space containing the origin. Then the value fK(x)
|x| is

the (signed) distance between the origin and the support plane HK(x).

Figure 3.2: The meaning of the support function of K at the point x.

The aim of the next section will be to find a characterization of those el-
ements of the free vector lattice FVLn that can satisfactorily represent the
support functions of polytopes, the convex objects in the lattice of polyhedra of
Rn. To figure out the right way to proceed with this task, we study here some
basic properties of support functions.

Recalling Definition 1.2.7, a positively homogeneous function f satisfies the
identity f(λx) = λf(x), for all 0 ≤ λ ∈ R and x ∈ Rn.

Definition 3.2.2 (Subadditive function). A function f : Rn → R is subadditive
if, for each x, y ∈ Rn, f(x+ y) ≤ f(x) + f(y).

Definition 3.2.3 (Sublinear function). A function f : Rn → R is sublinear if
it is both positively homogeneous and subadditive.

The following two propositions state the existence of a bijection between the
sublinear real-valued functions on Rn and the convex compact sets of Rn.

Proposition 3.2.4. The support function fK of a convex compact set K ⊆ Rn
is sublinear.
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Proof. We first notice that, for K compact, the supremum in (3.2) is not only
finite, but actually a maximum. For each real λ ≥ 0 and for each x ∈ Rn

fK(λx) = max{λx · k | k ∈ K} = λmax{x · k | k ∈ K} = λfK(x).

Since scalar product is bilinear, for each x, y ∈ Rn, we have

fK(x) + fK(y) = max{x · k | k ∈ K}+ max{y · h | h ∈ K} ≥
≥ max{x · k + y · h | k, h ∈ K} ≥
≥ max{x · l + y · l | l ∈ K} =

= max{(x+ y) · l | l ∈ K} = fK(x+ y).

Proposition 3.2.5 ([35, Theorem 1.7.1]). Let f : Rn → R be a sublinear
function. Then there is a unique convex compact subset K in Rn with support
function f .

Moreover, we can prove that each support function of a convex compact
set is convex and continuous. We recall here the definition of convexity for a
real-valued function.

Definition 3.2.6 (Convex function). A function f : Rn → R is convex if, for
each x, y ∈ Rn and for all 0 ≤ λ ≤ 1,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Proposition 3.2.7. The support function fK of a convex set K ⊆ Rn is both
convex and continuous.

Proof. Convexity is a direct consequence of sublinearity: for any x, y ∈ R and
λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ f(λx) + f((1− λ)y) = λf(x) + (1− λ)f(y).

Continuity is a consequence of convexity, as proved in [35, Theorem 1.5.1].

Example 3.2.8. Let a = (a1, . . . , an) be a point in the space Rn. Obviously,
{a} is a polytope of Rn, and its support function is

f{a}(x) = a · x. (3.3)

By definition of scalar product, we can rewrite (3.3) in terms of the projection
functions π1, . . . , πn : Rn : R:

f{a}(x) =

n∑
i=1

aiπi(x).

Proposition 3.2.9. For any two compact convex sets K,H ⊆ Rn and for each
x ∈ Rn,

fconv(K∪H)(x) = fK(x) ∨ fH(x),

where ∨ denotes pointwise maximum.
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Proof. Without loss of generality, let fK(x) ∨ fH(x) = fK(x).
Then:

fconv(K∪H)(x) = sup{x · l | l ∈ conv(K ∪H)} =

= sup{x · (tk + (1− t)h) | k ∈ K, h ∈ H, t ∈ [0, 1]} =

= sup
t∈[0,1]

sup{x · tk + x · (1− t)h) | k ∈ K, h ∈ H} ≤

≤ sup
t∈[0,1]

(t sup{x · k | k ∈ K}+ (1− t) sup{x · h | h ∈ H}) =

= sup
t∈[0,1]

(tfK(x) + (1− t)fH(x)) ≤

≤ sup
t∈[0,1]

(tfK(x) + (1− t)fK(x)) = fK(x) = fK(x) ∨ fH(f).

On the other hand, K ⊆ conv(K ∪H), whence

fconv(K∪H)(x) ≥ fK(x) = fK(x) ∨ fH(f).

We are now ready to give an explicit representation of support functions
(of polytopes), which involves projection functions and the join operation of
maximum between real-valued functions. In the next section we will use this
representation to identify the elements of FVLn which are the best candidates
to correspond to the support functions of polytopes.

Lemma 3.2.10. The support function of a polytope P of Rn can always be
written in the form

fK =
∨
j∈J

n∑
i=1

λijπi,

with J a finite set of indices.

Proof. Let {t1, . . . , tm} be a set of points of Rn whose convex hull is P . By
Example 3.2.8, their support functions are of the form

f{tl} =

n∑
i=1

λliπi, for each l = 1, . . . ,m.

Therefore, Proposition 3.2.9 yields the representation

fK = fconv({t1,...,tm}) =

m∨
j=1

n∑
i=1

λijπi.

The following proposition will be useful in the next section to establish a
correspondence between the operation of FVLn and the operations of Kn.

Proposition 3.2.11. For any two compact convex subsets K,H ⊆ Rn and for
each x ∈ Rn,

fK+H(x) = fK(x) + fH(f).

Further, for any K ⊆ H we have fK(x) ≤ fH(x), for all x ∈ Rn.
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Proof.

fK+H(x) = sup{x · l | l ∈ K +H} = sup{x · (k + h) | k ∈ K, h ∈ H} =

= sup{x · k + x · h | k ∈ K, h ∈ H} =

= sup{x · k | k ∈ K}+ sup{x · h | h ∈ H} = fK(x) + fH(f).

The second part of the statement follows immediately from the definition of
support function.

3.3 Support elements

We recall that the free vector lattice over n generators FVLn, in its functional
representation, is generated by the projection functions π1, . . . , πn of Rn. More-
over, we have the following property.

Proposition 3.3.1. Each element f ∈ FVLn can be written in a normal form
as

f =
∧
k∈K

∨
j∈J

n∑
i=1

λijkπi,

where K and J are finite sets of indices and the λijk’s are real coefficients.

Proof. FVLn is generated by the projections, using the vector lattice operations.
Thus, the result follows immediately from the first statement in Theorem 1.2.3.

The representation given in Proposition 3.3.1 and the result about support
functions of Lemma 3.2.10, suggest the following definition.

Definition 3.3.2 (Support element). A linear word is an element of FVLn
that can be represented as a sum

∑n
i=1 λiπi. A support element is an element

of FVLn that can be written in the form:
∨
j∈J

∑n
i=1 λijπi. We let S denote the

set of support elements of FVLn. Note that S is closed under the join operation
of FVLn; by Proposition 1.2.2 it is also closed by addition.

Theorem 3.3.3. A function f : Rn → R is the support function of some
nonempty polytope P in Pn? if and only if f ∈ S.

Proof. We have already proved one direction of the correspondence in Lemma
3.2.10. For the other direction, we consider a function f ∈ S, and its normal
form ∨

j∈J

n∑
i=1

λijπi,

with J finite. As observed in Example 3.2.8, each linear word
∑n
i=1 λijπi is the

support function f{xj} of the point xj = (λ1j , . . . , λnj) ∈ Rn. Then we can use
Proposition 3.2.9 to obtain the equality

f =
∨
j∈J

f{xj} = fconv({xj}j∈J ).

The fact that the convex hull of a finite set of points in Rn is always a polytope
completes the proof.
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As promised, Theorem 3.3.3 gives a one-to-one correspondence between the
support elements of FVLn and the support functions of polytopes of Rn. More-
over, we can extend this correspondence to the operations induced by those of
FVLn and Kn on, respectively, S and Pn. Let us consider the two structures
(S, ∧̃,∨,+) and (Pn,∩, ∪̃,+), where ∧̃ is the meet operation on S induced by
the order of FVLn, and ∪̃ is the join operation induced on Pn by the order of
Kn. The last one turns out to be the “convexification of the union”: for each
K,H ∈ Pn

K ∪̃H = conv(K ∪H).

Then, by Proposition 3.2.9 and Proposition 3.2.11, we have the following result.

Theorem 3.3.4. The map ι : Pn → S defined as ι(P ) = fP is an isomorphism
between (Pn,∩, ∪̃,+) and (S, ∧̃,∨,+). More precisely, for any two polytopes
P,Q ∈ Pn we have the following equalities:

ι(P ∩Q) = fP ∧̃ fQ, ι(P ∪̃Q) = fP ∨ fQ and ι(P +Q) = fP + fQ.

We conclude this section with a result about support elements, which will
be useful in the reminder of this chapter.

Lemma 3.3.5. Each element f ∈ FVLn is the difference s1 − s2 of some
elements s1, s2 ∈ S.

Proof. If we set V = FVLn, L = {πi | i = 1, . . . , n}, then, using the notation of
Theorem 1.2.3, we have J(L) = S. Thus, we can apply Corollary 1.2.4.

3.4 Geometric and algebraic valuations

In this section we use Theorem 3.3.4 to give a correspondence between valuations
on FVLn and valuations on Kn, under suitable conditions of additivity.

We specialize the notion of lattice-theoretic valuation given in Definition
1.4.1 to the two structures considered in this chapter.

Definition 3.4.1 (Valuations on FVLn and Kn). A valuation on FVLn is a map
ν : FVLn → R such that, for each f, g ∈ FVLn, ν(f ∧g)+ν(f ∨g) = ν(f)+ν(g).
A valuation on Kn is a map ν : Kn → R such that, for each H,K ∈ Kn,
ν(H ∩K) + ν(H ∪K) = ν(H) + ν(K).

We remark that the vl-valuations used in Chapter 2 to axiomatize the Euler-
Poincaré characteristic are a special case of the notion of valuation used in
Definition 3.4.1.

We now turn to additive valuations. The interest of additive maps in convex
geometry is due to the fact that Minkowski addition is a basic operation on the
lattice of convex objects in the Euclidean space. Thus, maps defined on convex
bodies that are compatible with this addition play a central role in the study of
the properties of Hadwiger’s Konvexring.

Definition 3.4.2 (Additivity). A valuation ν : FVLn → R is additive if, for each
f, g ∈ FVLn, ν(f + g) = ν(f) + ν(g). We say that a valuation ν : FVLn → R
is additive on S if, for each f, g ∈ S, ν(f + g) = ν(f) + ν(g). A valuation
ν : Kn → R is M-additive if, for each H,K ∈ Kn, ν(H + K) = ν(H) + ν(K).
We say that a valuation ν : Kn → R isM-additive on Pn? if, for each H,K ∈ Pn? ,
ν(H +K) = ν(H) + ν(K).
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Definition 3.4.3 (Linearity). A valuation ν : FVLn → R is linear if it is addi-
tive and, for each f ∈ FVLn and for each 0 < λ ∈ R, ν(λf) = λν(f).
A valuation ν : Kn → R is M-linear if it is M-additive and, for each H ∈ Kn
and 0 < λ ∈ R, we have the identity ν(λH) = λν(H).

The following property, known as the inclusion-exclusion principle, has a
crucial role in the proof that every valuation on polytopes has an M-additive
extension to Kn.

Definition 3.4.4 (Full additivity). A map ν : S → R is fully additive if, when-
ever f1, . . . , fn and

∧n
i=1 fi are in S, the following equation holds:

ν

(
n∧
i=1

fi

)
=

∑
∅6=V⊆{1,...,n}

(−1)|V |−1ν

∨
j∈V

fj

 .

A map ν : Pn → R is fully additive if, whenever K1, . . . ,Kn and
⋃n
i=1Ki are in

Pn, the following equation holds:

ν

(
n⋃
i=1

Ki

)
=

∑
∅6=V⊆{1,...,n}

(−1)|V |−1ν

⋂
j∈V

Kj

 .

We recall that an intersectional family of sets F is a collection of sets closed
by finite intersections. We denote by U(F) its closure under finite unions. Pn
is an intersectional family of sets in Kn, and Kn = U(Pn).

The next result is known as the Volland-Groemer Extension Theorem:

Theorem 3.4.5 ([35, Theorem 3.4.11]). Let ν be a valuation with ν(∅) = 0
on an intersectional family F of sets. Then ν has an additive extension to the
lattice U(F) if and only if ν is fully additive. The extension is unique.

Idea of proof. The general idea is to write an elementK ∈ U(F) asK1∪· · ·∪Km,
for Ki ∈ F . Using full additivity, one then obtains ν(K) from the ν(Ki) along
with the values ν(J) where J ranges over arbitrary intersections of the Ki: note
that any such J belongs to F .

Corollary 3.4.6. Let ν be a valuation with ν(∅) = 0 on Pn. Then ν has anM-
additive extension to Kn if and only if ν is fully additive on Pn. The extension
is unique.

The following Theorem yields a useful condition for a valuation to be fully
additive.

Theorem 3.4.7 ([35, Theorem 3.4.13]). Every valuation ν on Pn that is M-
additive on Pn? and such that ν(∅) = 0 is fully additive on Pn.

The next results (Theorems 3.4.8 and 3.4.10) yield a correspondence between
valuations on Kn and valuations on FVLn. To this purpose we will use the
isomorphism between Pn and S, and then we extend every additive valuation
to Kn and FVLn, using the inclusion-exclusion principle and together with full
additivity.
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Theorem 3.4.8. Let ν : Kn → R be an M-additive valuation on Pn? such
that ν(∅) = 0. Then there exists a unique valuation ν? : FVLn → R such that
ν?(fP ) = ν(P ), for each fP ∈ S. Moreover ν? is additive.

Proof. We can use Lemma 3.3.5 to rewrite f as the sum g − h, with g, h ∈ S.
By Theorem 3.3.3, there are uniquely determined polytopes G,H ∈ Rn such
that fG = g and fH = h. Then we define ν? : FVLn → R as

ν?(f) = ν(G)− ν(H).

First of all we observe that ν? is well defined. To show this, consider two
different decompositions g1 − h1 and g2 − h2 of f . Writing G1, G2, H1, H2 for
the polytopes whose support functions are g1, g2, h1, h2, respectively, we obtain

g1 + h2 = g2 + h1

G1 +H2 = G2 +H1

ν(G1 +H2) = ν(G2 +H1)

ν(G1) + ν(H2) = ν(G2) + ν(H1),

whence ν(G1)− ν(H1) = ν(G2)− ν(H2).
Further, ν? is additive:

ν?(f1 + f2) = ν?((g1 − h1) + (g2 − h2)) =

= ν?((g1 + g2)− (h1 + h2)) =

= ν(G1 +G2)− ν(H1 +H2) =

= ν(G1) + ν(G2)− ν(H1)− ν(H2) =

= ν?(g1 − h1) + ν?(g2 − h2) = ν?(f1) + ν?(f2).

Finally, ν? is a valuation:

ν?(f1 + f2) = ν?((f1 ∧ f2) + (f1 ∨ f2)) = ν?(f1 ∧ f2) + ν?(f1 ∨ f2).

Corollary 3.4.9. Let the valuation ν in Theorem 3.4.8 be M-linear on Pn? .
Then ν? is also linear.

Proof. Let 0 < λ ∈ R and let f be an element of FVLn. Write f = g − h,
with g, h ∈ S, using Lemma 3.3.5. Then λg and λh are elements of S and their
associated polytopes are λG and λH. Therefore,

ν?(λf) = ν?(λg − λh) = ν(λG)− ν(λH) =

= λ(ν(G)− ν(H)) = λν?(g − h) = λν?(f).

Theorem 3.4.10. Let ν? : FVLn → R be an additive valuation on S such that
ν?(0) = 0. Then there exists a unique valuation ν : Kn → R such that ν(∅) = 0
and ν(P ) = ν?(fP ) for each P ∈ Pn? . Moreover, ν is M-additive .

Proof. The additivity of ν? ensures that the valuation νPn : Pn? → R defined as
νPn(P ) = ν?(fP ) for all P ∈ Pn? is M-additive. Defining νPn(∅) = 0, we can
use Theorem 3.4.7 to get the full additivity of νPn . Thus, by Corollary 3.4.6,
there exists a unique extension ν of νPn to the whole Kn.
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Chapter 4

Gauge functions

In Chapter 3, we used support functions to establish a correspondence between
polytopes in Rn and the set of support elements of FVLn. In this chapter,
each element of the positive cone of FVLn will be associated with a star-shaped
polyhedral set containing the origin of the Euclidean space in its topological
interior. The association is set up via the so-called gauge functions. These
were introduced by Minkowski, in his study of convex bodies. For convex bod-
ies, indeed, gauge functions are tightly related to support functions, via the
construction of the polar body. In the following, we will give a more general
definition of gauge function, considering all the subsets of Rn. Then we will
prove a correspondence between our star-shaped objects and an enlargement of
FVL+

n consisting of certain gauge functions, namely, the set of continuous posi-
tively homogeneous functions on f : Rn → R such that f(x) ≥ 0, for all x ∈ Rn.
Finally, we recover the piecewise linearity condition, forcing the polyhedrality
of the geometric objects under consideration.

Our main results of this chapter (Theorem 4.2.5) will be used to give a ge-
ometric counterpart of good sequences (see Definition 4.3.6). The latter have a
pivotal role in Mundici’s construction of the categorical equivalence Γ between
MV-algebras and unital `-groups, [28]. As a consequence of our geometrization
of good sequences, we obtain the following generalization of the fact that the
structure of any unital `-groups is unambiguously recovered from its unit inter-
val, via the adjoint of the Γ-functor: the information contained in the totality
of star-shaped objects is already contained in the much smaller subset given by
[U,Rn], the unit interval of Definition 4.3.2.

4.1 Gauge functions and star-shaped objects

Let g belong to the positive cone of FVLn, the latter being canonically identified
with a set of real valued function as in Chapter 1 (see Section 1.2.1). The g
determines the set of points Cg = {x ∈ Rn | g(x ≤ 1)}. Cg inherits various
properties from the continuity and positive homogeneity of g. For instance,
Cg is closed with polyhedral boundary ∂Cg, and the origin 0 belongs to the
topological interior of Cg. Further, every ray ρ having 0 as a vertex intersects
∂Cg in at most one point xρ, and the segment conv(0, xρ) is contained in Cg.

In the literature there are several inequivalent notions of star-shaped sets.

37
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The one we provide in Definition 4.1.1 is essentially the same of [10, Definition
19.13]. Then we define star-shaped objects: they are star-shaped sets with two
more closure properties (see Definition 4.1.5). This latter notion seems to be
new here.

For x 6= 0 ∈ Rn, we will henceforth denote by σx the ray (i.e., the half-line)
with vertex 0 passing through x, in symbols,:

σx = {λx | 0 ≤ λ ∈ R}.

Moreover, for x ∈ Rn, we denote by [0, x] the closed line segment with
extremes 0 and x:

[0, x] = {λx | 0 ≤ λ ≤ 1}.

We say that [0, x] is nondegenerate if x 6= 0.

Definition 4.1.1 (Star-shaped sets). A set A ⊆ Rn is star-shaped if for each
a ∈ A, the line segment [0, a] is contained in A. We denote the set of all star-
shaped subsets of Rn by Sn. The set of all star-shaped subsets of Rn which
contain 0 in their topological interior is Sn0 .

Lemma 4.1.2. Let A be a closed set of Sn0 . Then each ray σx, with x 6= 0, is
either contained in A, or its intersection with A is a closed nondegenerate line
segment [0, w].

Proof. If σx \ A 6= ∅, there exists a unique point w ∈ σx with |w| = inf{|y| |
y ∈ σx \ A}. Since 0 is in the topological interior of A, we have |w| > 0, and,
by definition of w, each y ∈ σx with |y| < |w| is in A. Since A is closed, then
w ∈ A. Since A is star-shaped, then there is no point y ∈ σx with |y| > |w|
lying in A. Therefore, σx ∩A = [0, w].

Lemma 4.1.2 motivates the following definition.

Definition 4.1.3 (Formal boundary). If A is in Sn0 , then its formal boundary
bd(A) is the set of all points w such that there exists a ray σx departing from
0 with σx ∩A=[0,w].

We recall that the topological boundary of a set A ⊆ Rn is the set ∂A of
points x ∈ Rn such that each neighborhood of x contains at least one point of
A and at least one point that is not in A.

Proposition 4.1.4. Let A ∈ Sn0 be closed with closed formal boundary. Then
its formal boundary bd(A) and its topological boundary ∂A coincide.

Proof. If x ∈ bd(A), then, by definition of formal boundary, σx ∩ A = [0, x].
Hence, the sequence ((1+1/(n+1))x)n∈N ⊆ σx converges to x and it is contained
in Rn \ A. Then x ∈ ∂A. On the other hand, if x ∈ ∂A, then we can find a
sequence (xn)n∈N ⊆ Rn \ A that converges to x. Since A is closed, ∂A ⊆ A,
and, therefore, x ∈ A. Since A is star-shaped, we have [0, x] ⊆ σx∩A. Consider
now the sequence (bn | σxn ∩ A = [0, bn])n∈N. The bn’s always exist, because
0 is in the topological interior of A and the xn’s are not in A. Since xn → x
and bn ∈ σxn , the angles αn between σx and σbn converge to 0. If there is just
a finite number of distinct bn’s, then they are eventually equal to some point
b ∈ σx (because αn → 0). If the distinct bn’s are infinitely many, then, since
|bn| < |xn| and |xn| → |x| < +∞, they form an infinite set of some compact
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subset of Rn. It follows that they have an accumulation point. This, together
with αn → 0, ensures that they admit a subsequence converging to some point
b ∈ σx. Writing without loss of generality (bn))n ∈ N for such a subsequence, in
both cases we have |bn| → |b|, |bn| < |xn| and |xn| → |x|. Then b ∈ [0, x]. Since
bd(A) is closed, b ∈ bd(A), whence x = b. This completes the proof.

The converse of Proposition 4.1.4 does not hold in general: the formal bound-
ary of a closed star-shaped subset of Rn (whence having a closed topological
boundary) need not be closed. See Figure 4.1 for an example.

Figure 4.1: The star-shaped set A is closed, but its formal boundary (the thick
line) is not closed. Therefore, the formal boundary bd(A) does not coincide
with the topological boundary ∂A. In this example, A is a star-shaped set, but
it is not a star-shaped object (in the sense of Definition 4.1.5).

Definition 4.1.5 (Star-shaped object). We say that A ⊆ Rn is a star-shaped
object if A is star-shaped and closed, with closed formal boundary. We denote
by Σn0 the subset of Sn0 of star-shaped objects.

Definition 4.1.6. We let Gn denote the set of continuous positively homoge-
neous functions f : Rn → R such that f(x) ≥ 0 for all x ∈ Rn.

In Theorem 4.1.10 below we will establish a one-one correspondence between
Gn and the set Σn0 of star-shaped objects. To this purpose we prepare:

Definition 4.1.7 (1-cut). The 1-cut of a function f : Rn → R ∪ {+∞} is the
set

Cf = {x ∈ Rn | f(x) ≤ 1},

where we always assume r ≤ +∞, for each r ∈ R.

Definition 4.1.8 (Gauge function). The gauge function of a subset A of Rn is
the function gA : Rn → R ∪ {+∞} such that, for all x ∈ Rn

gA(x) = inf{λ ≥ 0 | x ∈ λA},

where λA is as in Definition 3.1.2.



40 CHAPTER 4. GAUGE FUNCTIONS

In the previous definitions we allow the functions involved to take also the
value +∞. This is because we do not want, in general, to impose any special
condition on the associated sets A or Cf . The gauge function of a subset
A ⊆ Rn that does not contain 0 in its topological interior can take on +∞
as value. This happens when there exists some x ∈ Rn such that the ray σx is
disjoint from A. In this case, the set of 0 ≤ λ ∈ R such that x ∈ λA is empty,
and gA(x) = +∞. We will meet an example of this situation in the proof of
Theorem 4.4.4. However, if A contains the origin in its topological interior, its
gauge function can only take finite real values.

Figure 4.2: The star-shaped object A is the 1-cut of its gauge function gA.

Lemma 4.1.9. Let A ∈ Σn0 . Then

i) gA(0) = 0;

ii) gA(x) = 0 for each x such that σx ⊆ A;

iii) for all x ∈ Rn, gA(x) = 1 if and only if x ∈ bd(A).

Proof. Since 0 ∈ A, for each λ ≥ 0, we have 0 ∈ λA, whence gA(0) = 0. Further,
if x is a point of the ray σx ⊆ A, then, for each λ > 0, xλ ∈ A, whence gA(x) = 0.
Lastly, if gA(x) = 1, then x 6= 0 and the ray σx is not contained in A. For every
0 < λ < 1 we have x 6∈ λA, and hence 1

λx 6∈ A: each y ∈ σx with |y| > |x| is
not in A. Moreover, we can find a sequence of numbers λi > 0 that converges
to 1 and such that x ∈ λiA, whence x

λi
∈ A with x

λi
→ x. Since A is closed,

x ∈ A. Since A is star-shaped, the segment [0, x] is contained in A, whence
x ∈ bd(A). Conversely, if x ∈ bd(A) then x ∈ A, while for each 0 < λ < 1 the
point λ−1x does not belong to A. We conclude that 1 is the smallest λ ≥ 0 such
that x ∈ λA, whence gA(x) = 1.

We are now ready to prove a first correspondence theorem.
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Theorem 4.1.10. The maps

ω : Gn → Σn0 and γ : Σn0 → Gn

f 7→ Cf A 7→ gA

are inverses to each other, whence define a bijection between Gn and Σn0 .

Proof. First of all we show ω(f) = Cf ∈ Σn0 , for all f ∈ Gn, and γ(A) = gA ∈ Gn,
for all A ∈ Σn0 . Let f ∈ Gn. Then f(0) = 0 and, by continuity, there exists a
neighbourhood of 0 where f < 1, whence 0 is in the topological interior of Cf .
The continuity of f also ensures that both Cf and bd(Cf ) are closed. Lastly,
the positive homogeneity of f makes Cf star-shaped: if a ∈ Cf , then f(a) ≤ 1
and hence, for all λ ∈ [0, 1], f(λa) = λf(a) ≤ 1. Thus, [0, a] ⊆ Cf . On the
other hand, if A ∈ Σn0 , 0 is in the topological interior of A. It follows that, for
all x ∈ Rn, the set Λx = {λ ≥ 0 | x ∈ λA} is nonempty; hence gA(x) ≥ 0, and
gA(0) = 0. If gA(x) = l ≥ 0, then, for each t > 0, if tx ∈ λA, there exists y ∈ A
such that tx = λy, whence x = λ

t y and x ∈ λ
tA. By definition of infimum, we

have l ≤ λ
t , and hence tl ≤ λ. Moreover, if r ≥ 0 is such that r ≤ λ for all

λ ∈ Λtx, then r
t ≤ µ for all µ ∈ Λx = 1

tΛtx (tx = λy if and only if x = 1
tλy,

with y ∈ A). As a consequence r
t ≤ l and r ≤ tl. Therefore, infλ≥0 Λtx = tl and

gA is positively homogeneous.
To prove the continuity of gA, we proceed by way of contradiction. If x is

a point of discontinuity of gA, then there exists a sequence (xi)i∈N of points
in Rn which converges to x but such that gA(xi) 6→ gA(x). The idea is that
we can always shift this discontinuity to the (formal) boundary of A. First of
all we notice that x 6= 0. The point 0, actually, is in the topological interior
of A, whence there exists ε > 0 such that Bε(0) = {x ∈ Rn | |x| ≤ ε} ⊆ A
and, by Lemma 4.1.9, gA(0) = 0. Since gA(xi) 6→ 0, there exists δ > 0 such
that the sequence (gA(xi))i∈N is eventually > δ. Therefore, we can extract a
subsequence (whose elements, for simplicity, will be denoted xi, too) such that
xi → 0, gA(xi) > δ and xi ∈ Bε(0). Thus δ < gA(xi) ≤ 1 for each i ∈ N, and
hence xi

δ > xi
gA(xi)

≥ xi. It follows that xi
gA(xi)

→ 0 and, by positive homogeneity,
xi

gA(xi)
∈ bd(A). The fact that bd(A) is closed entails the absurdum 0 ∈ bd(A).

Thus, we may assume x 6= 0. Consider the ray σx for 0 and through x. If
σx is contained in A, then, by Lemma 4.1.9, gA(x) = 0 and σx ∩ bd(A) = ∅.
Therefore, we can consider a subsequence (xi)i∈N that converges to x and such
that gA(xi) > ε, for some ε > 0 and for all i ∈ N. Now we shift this sequence
to the (formal) boundary of A, defining bi = xi

gA(xi)
. Since gA is positively

homogeneous, for each i ∈ N, we have bi ∈ bd(A), and |bi| < |xi|
ε , with |xi| → |x|.

Thus the bi’s (that are infinitely many) eventually lie in a compact set, whence
they have an accumulation point that must be on the ray σx: calling αi the
angles between the ray σx and the rays σxi the convergence xi → x ensures the
convergence αi → 0. As a consequence, the bi’s converge to a point b ∈ σx and
this is a contradiction: since bd(A) is closed, bmust be on the (formal) boundary,
but, because no point of σx is in bd(A), it cannot be. On the other hand, if σx
is not contained in A then σx ∩A = [0, w], with gA(w) = 1, gA(x) > 0 and w =
x

gA(x) . Moreover, the sequence (gA(xi))i∈N cannot be eventually 0: if it were,

by positive homogeneity, the whole rays σxi would eventually be contained in
A, whence the sequence (2wi)i∈N with wi ∈ σxi and |wi| = |w| would eventually
be in A and would converge to 2w 6∈ A (|2wi| = |2w| and αi → 0), contradicting
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the fact that A is closed. Thus, we can consider a subsequence (xi)i∈N such
that xi → x, 0 < gA(xi) 6→ gA(x), and bi = xi

gA(xi)
∈ bd(A) for all i ∈ N. If

the sequence (|bi|)i∈N diverges, we get a contradiction, using again the sequence
(2wi)i∈N, with wi ∈ σxi and |wi| = |w|. The elements of (2wi)i∈N eventually lie
in A, but the sequence converges to the point 2w 6∈ A, contradicting the fact
that A is closed. If, instead, the sequence does not diverge, then it is bounded.
It follows that the infinitely many bi’s are contained in a compact set of Rn.
Thus they have an accumulation point b that must be on the ray σx. We finally

show b 6= w. If b = w then xi
gA(xi)

→ w = x
gA(x) , whence |xi|

gA(xi)
→ |x|

gA(x) , with

|x| 6= 0, |xi| 6= 0, |xi| → |x|, gA(xi) 6= 0 and gA(x) 6= 0. Thus

1

gA(xi)
=

|xi|
gA(xi)

|xi|
→

|x|
gA(x)

|x|
=

1

gA(x)
,

and hence gA(xi)→ gA(x), contradicting the hypothesis of discontinuity.
Now, we have to prove that ω and γ are mutual inverses. It follows that, for

all f ∈ Gn and for all A ∈ Σn0 , γ(ω(f)) = f and ω(γ(A)) = A. Let f ∈ Gn, then
ω(f) = {x ∈ Rn | f(x) ≤ 1}, whence, for all y ∈ Rn,

γ(ω(f))(y) = inf{λ ≥ 0 | y ∈ λ{x ∈ Rn | f(x) ≤ 1}} =

= inf{λ ≥ 0 | y ∈ {λx ∈ Rn | f(x) ≤ 1}} =

= inf{λ ≥ 0 | y ∈ {x ∈ Rn | f(x) ≤ λ}} =

= inf{λ ≥ 0 | f(y) ≤ λ} = f(y).

On the other hand, if A ∈ Σn0 , then γ(A)(x) = inf{λ ≥ 0 | x ∈ λA}, for all
x ∈ Rn, and hence

ω(γ(A)) = {x ∈ Rn | inf{λ ≥ 0 | x ∈ λA} ≤ 1}}.

If x ∈ A, then inf{λ ≥ 0 | x ∈ λA} ≤ 1, whence A ⊆ ω(γ(A)). If x ∈ ω(γ(A)),
then the star-shaped property ensures that if x ∈ λA, then x ∈ µA for all µ ≥ λ.
Thus, x ∈ λA for all λ > 1. It follows that x

λ ∈ A, for all 0 < λ < 1. Hence,
the half-open segment [0, x) is contained in A. The closure of A entails x ∈ A,
whence ω(γ(A)) ⊆ A. This completes the proof.

Next we show that ω and γ preserve the vector lattice operations. We recall
that the main goal of our discussion is to establish a correspondence between
the positive cone of the vector lattice FVLn and the set of polyhedral star-
shaped object, equipped with appropriate operations. Hence we equip Gn with
the same operations of FVLn (in its canonical functional representation). We
also equip Σn0 with the lattice operations of intersection and union. The zero
element of Gn is the constant function 0 on Rn. The zero element of Σn0 will be
given by Rn. In the next section we will introduce the remaining vector lattice
operations on Σn0 .

Proposition 4.1.11. Σn0 is closed under set-theoretic union and intersection.

Proof. If A,B ∈ Σn0 , then 0 is contained in both their topological interiors,
whence there exist a > 0 and b > 0 such that Ba(0) ⊆ A and Bb(0) ⊆ B. Then
Bmin(a,b) ⊆ A∩B and Bmax(a,b) ⊆ A∪B: 0 is in the topological interior of both
A ∩ B and A ∪ B. Moreover, for every x ∈ Rn, if x ∈ A ∩ B, then [0, x] ⊆ A
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and [0, x] ⊆ B, and hence [0, x] ⊆ A ∩ B. If x ∈ A ∪ B, then x ∈ A or x ∈ B;
it follows that [0, x] ⊆ A or [0, x] ⊆ B, whence [0, x] ⊆ A ∪B. This proves that
A∩B and A∪B are in Sn0 . Furthermore, A∩B and A∪B are trivially closed.
There remains to be proved that the formal boundaries of A∩B and A∪B are
closed.

By way of contradiction, suppose bd(A ∩B) is not closed. Then bd(A ∩B)
contains a sequence (xi)i∈N converging to some point x 6∈ bd(A ∩ B). Since A
and B are star-shaped, by definition of (formal) boundary, for each i ∈ N we
have [0, xi] = σxi ∩ A ⊆ σxi ∩ B or [0, xi] = σxi ∩ B ⊆ σxi ∩ A. It follows
that either xi ∈ bd(A) or xi ∈ bd(B), for each i ∈ N. There is a subsequence
of (xi)i∈N converging to x and included either in bd(A) ∩ B or in bd(B) ∩ A.
In the first case, from bd(A) and B both being closed we get x ∈ bd(A) ∩ B,
and hence [0, x] = (σx ∩ A) ∩ B = σx ∩ (A ∩ B). Similarly, in the second
case, from bd(B) and A both being closed we get x ∈ bd(B) ∩ A, whence
[0, x] = (σx ∩ B) ∩ A = σx ∩ (B ∩ A). We have thus reached the contradiction
x ∈ bd(A ∩B) in both cases.

Passing now to consider A ∪ B, if bd(A ∪ B) is not closed (absurdum hy-
pothesis) then there is a sequence (xi)i∈N of points in bd(A ∪ B) converg-
ing to a point x 6∈ bd(A ∪ B). Therefore, for each i ∈ N, we either have
σxi ∩A ⊆ σxi ∩B = [0, xi] or else σxi ∩B ⊆ σxi ∩A = [0, xi]. Arguing as in the
first case, we obtain either σx ∩A ⊆ σx ∩B = [0, x] or σx ∩B ⊆ σx ∩A = [0, x].
Whence x ∈ bd(A ∪B), which is a contradiction.

Proposition 4.1.12. The maps ω and γ of Theorem 4.1.10 are order reversing,
and they satisfy the identities:

ω(f ∧ g) = ω(f) ∪ ω(g), γ(A ∪B) = γ(A) ∧ γ(B),

ω(f ∨ g) = ω(f) ∩ ω(g), γ(A ∩B) = γ(A) ∨ γ(B),

ω(0) = Rn, γ(Rn) = 0.

Proof. It suffices to prove the second statement, because ω and γ are obviously
order-reversing. We have

ω(f) ∪ ω(g) = {x ∈ Rn | f(x) ≤ 1} ∪ {x ∈ Rn | g(x) ≤ 1} =

= {x ∈ Rn | min(f(x), g(x)) ≤ 1} = ω(f ∧ g),

and

ω(f) ∩ ω(g) = {x ∈ Rn | f(x) ≤ 1} ∩ {x ∈ Rn | g(x) ≤ 1} =

= {x ∈ Rn | max(f(x), g(x)) ≤ 1} = ω(f ∨ g).

On the other hand, if A,B ∈ Σn0 then for each x ∈ Rn

(γ(A) ∧ γ(B))(x) = min(inf{λ ≥ 0 | x ∈ λA}, inf{λ ≥ 0 | x ∈ λB}) =

= inf{λ ≥ 0 | x ∈ λA ∪ λB = λ(A ∪B)} = γ(A ∪B)(x),

and

(γ(A) ∨ γ(B))(x) = max(inf{λ ≥ 0 | x ∈ λA}, inf{λ ≥ 0 | x ∈ λB}) =

= inf{λ ≥ 0 | x ∈ λA ∩ λB = λ(A ∩B)} = γ(A ∩B)(x).

The correspondence between 0 and Rn follows immediately from the definitions
of 1-cut and gauge function.
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4.2 Vector space operations

The isomorphism between the lattice structures of Gn and Σn0 is the first step
in the proof of the existence of a correspondence between them, as structures
equipped with vector lattice operations. We now equip Σn0 with suitable oper-
ations of addition and multiplication by scalars, making it a vector lattice.

4.2.1 Gauge sum

As we have seen in Chapter 3, Minkowski addition corresponds to the addition
of the support functions of convex bodies in Rn. In the same spirit, we want
here to define a sum operation that translates the pointwise addition of gauge
functions into the geometric context of star-shaped objects. Then we will give
a geometric description of the addition between star-shaped objects, specifying
its behaviour on each single ray of the Euclidean space.

Definition 4.2.1 (Gauge sum). Given two star-shaped objects A,B ∈ Σn0 ,
their gauge sum A+gB is the element C ∈ Σn0 such that

gC(x) = gA(x) + gB(x),

for all x ∈ Rn.

We notice that the gauge sum is well-defined. The set Gn is closed under
addition, whence, by Theorem 4.1.10, there exists exactly one element C ∈ Σn0
with gauge function gA + gB , for any two star-shaped objects A and B.

Lemma 4.2.2. Each A ∈ Σn0 is completely described by its intersections with
the rays σx in Rn. Specifically, we have the identity

A =
⊔
|x|=1

σx ∩A,

where
⊔

denotes disjoint union.

Proof. The proof immediately follows from the fact that the disjoint union of
the rays from 0 and through the points of the unit sphere Sn−1 completely
covers the entire space Rn.

Then we can give a geometric representation of the gauge sum and the other
operations on Σn0 , simply describing their behaviour on the rays σx. We can
easily check that, given any two elements A,B ∈ Σn0 and for each x ∈ Rn with
|x| = 1,

σx ∩ (A+gB) =


σx ∩A if σx ∩B = σx,

σx ∩B if σx ∩A = σx,[
0,

ab

a+ b

]
if σx ∩A = [0, a], σx ∩B = [0, b].
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4.2.2 Products by scalars

In this section we endow Σn0 with an operation of multiplication by scalars ≥ 0,
in such a way that the bijection between Gn and Σn0 given by Theorem 4.1.10
preserves all operations. The definition of multiplication by scalars for star-
shaped objects will be crucial for the definition of units in Σn0 .

The correctness of the following definition is ensured by Theorem 4.1.10.

Definition 4.2.3 (Gauge products by real scalars). Given a star-shaped object
A ∈ Σn0 and a scalar 0 ≤ λ ∈ R, the gauge product of A by λ is the set λ.A ∈ Σn0
such that gλ.A(x) = λgA(x), for all x ∈ Rn.

Also in this case, by Lemma 4.2.2, we can provide a geometric description
of the set λ.A just defined. We have that for λ > 0 and for each x ∈ Rn with
|x| = 1,

σx ∩ (λ.A) =


σx if σx ∩A = σx,[
0,

1

λ
a

]
if σx ∩A = [0, a].

(4.1)

Moreover, by Proposition 4.1.12, 0.A = Rn.

Remark 4.2.4. The above definition does not coincide with the usual definition
of multiplication by scalars as given, e.g., in Definition 3.1.2. Hence, in this latter
case, the representation by rays differs from the one in (4.1):

σx ∩ (λA) =

{
σx if σx ∩A = σx,

[0, λa] if σx ∩A = [0, a].

Accordingly, we have introduced the new notation “λ.” to denote gauge prod-
ucts. Nevertheless, there is a simple relation between these two multiplications:
as a matter of fact, for each A ∈ Σn0 and 0 < λ ∈ R we have λ.A = 1

λA. Further,
note that limλ→0+ λ.A = limλ→+∞ λA.

The set Σn0 is now equipped with the gauge sum and the gauge product
operations, beyond the set-theoretic lattice operations of union and intersection.
Then we can finally state the correspondence between Gn and Σn0 , equipped with
their vector lattice operations.

Theorem 4.2.5. There is an isomorphism between the structures

(Gn,min,max,+, {λ}λ∈R+ , 0) and (Σn0 ,∪,∩,+g, {λ.}λ∈R+ ,Rn).

The isomorphism is provided by the maps ω and γ of Theorem 4.1.10.

Proof. From Theorem 4.1.10, Proposition 4.1.12, and from the definitions of
gauge sum and gauge products.

4.3 Unit interval and good sequences

In this section we develop a geometric counterpart of good sequences. The
latter were introduced by Mundici as a key ingredient for his construction of
the categorical equivalence between MV-algebras and unital `-groups, [28]. We
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will preliminarily introduce geometric counterparts of unit, unit interval, and
truncated sum. In Theorem 4.3.14 we will associate to each element of Σn0 a
unique “good sequence” of star-shaped objects.

To this purpose, we prepare:

Definition 4.3.1 (Unit). A (strong order) unit of Σn0 is any element U ∈ Σn0
such that for any element A ∈ Σn0 there is 0 < λ ∈ R such that λ.U ⊆ A.

Definition 4.3.2 (Unit interval). Given a unit U ∈ Σn0 , its associated unit
interval is the set

[U,Rn] = {A ∈ Σn0 | U ⊆ A}.

An element g ∈ Gn is a unit if for any f ∈ Gn there is 0 < λ ∈ R such that
f ≤ λg. As an immediate consequence of Theorem 4.2.5, a star-shaped object
A is a unit of Σn0 if, and only if, its gauge function gA is a unit in Gn. The
maps ω and γ of Theorems 4.1.10 and 4.2.5 are unit-preserving. Further, these
maps also preserve unit intervals, in the sense that the image under ω of a unit
interval on Gn is a unit interval of Σn0 , and the image under γ of a unit interval
of Σn0 is a unit interval of Gn.

Units of Σn0 can be given the following purely geometric characterization:

Proposition 4.3.3. The units of Σn0 coincide with its compact elements.

Proof. Trivially, an element g of Gn is a unit if and only if g vanishes only at
the origin. An element U ∈ Σn0 is a unit if and only if its gauge function gU is a
unit for Gn. In particular, gU is continuous and such that gU (x) > 0 on the unit
(compact) sphere Sn−1. Hence, on Sn−1, gU attains its minimum value r, with
r > 0. Let g : Rn → R be the unique continuous and positively homogeneous
function that is identically equal to r on the sphere Sn−1. Then its 1-cut is the
closed ball B 1

r
(0). Because g ≤ gU , then U ⊆ B 1

r
(0). Hence, U is bounded.

Moreover, U is closed. Hence U is compact. Conversely, if U is compact then
it does not contain any ray σx of Rn. Then, gU is zero only at 0. Hence, gU is
a unit of Gn, whence U is a unit of Σn0 .

4.3.1 Truncated gauge sum and good sequences of star-
shaped objects

Upon fixing a unit u of Gn we equip Gn with a “truncated addition” operation
⊕, where

f ⊕ g = (f + g) ∧ u.

Given a unit U of Σn0 , we can also truncate the +g operation and define a
new sum operation ⊕g, in such a way that the corresponding operation in Gn
via the map γ is precisely the truncated sum ⊕:

Definition 4.3.4 (Truncated gauge sum). Given two star-shaped objects A,B
in Σn0 , their truncated gauge sum A⊕gB is the star-shaped object

C = (A+gB) ∪ U.

The gauge function gC trivially satisfies the identity gC(x) = gA(x)⊕gB(x), for
all x ∈ Rn.
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By Lemma 4.2.2, we can describe the truncated gauge sum operation as
follows: for any two elements A,B ∈ Σn0 and for each x ∈ Rn with |x| = 1,

σx ∩ (A⊕gB) =



σx ∩A if σx ∩B = σx, σx ∩ U ⊆ σx ∩A,
σx ∩B if σx ∩A = σx, σx ∩ U ⊆ σx ∩B,
σx ∩ U if σx ∩B = σx, σx ∩A ⊆ σx ∩ U,
σx ∩ U if σx ∩A = σx, σx ∩B ⊆ σx ∩ U,

(σx ∩ U) ∪
[
0,

ab

a+ b

]
if σx ∩A = [0, a], σx ∪B = [0, b].

Corollary 4.3.5. The isomorphisms ω and γ defined in Theorem 4.1.10 pre-
serve both units and truncated sums.

We have thus prepared all necessary ingredients for our geometric good se-
quences:

Definition 4.3.6 (Good sequences of star-shaped objects). Given a fixed unit
U ∈ Σn0 , a good sequence of star-shaped objects is a sequence (Ai)i∈N of elements
Ai ∈ Σn0 such that

SS1) there exists an index j ∈ N such that, for all i ≥ j, Ai = Rn;

SS2) U ⊆ Ai, for all i ∈ N;

SS3) Ai⊕g Ai+1 = Ai, for all i ∈ N.

4.3.2 Good sequences of real intervals

Lemma 4.2.2 allows us to give a representation by rays also for good sequences.
Any good sequence of star-shaped objects (Ai)i∈N restricted to a fixed ray σx is a
sequence of real intervals of the form ([0, ai])i∈N, with 0 < ai ∈ Ai. This suggests
the idea of working first on rays, defining a suitable concept of good sequence
for real intervals. Then, given a star-shaped object A, we will obtain the good
sequence of star-shaped objects that represents it just by gluing together the
good sequences of real intervals that represent each σx ∩A, with |x| = 1.

In the following, we will consider only real intervals of the form [0, a] with
0 < a ∈ R together with the set R+. To simplify the treatment, we will refer to
this latter set also with the notation [0,∞] (instead of the more precise [0,∞)).

Definition 4.3.7 (Gauge sum of real intervals). The gauge sum of any two real
intervals [0, a] and [0, b] with 0 < a, b ∈ R is the real interval

[0, a] +g[0, b] =


[0, a] if [0, b] = [0,∞],

[0, b] if [0, a] = [0,∞],[
0,

ab

a+ b

]
if a, b <∞.

Trivially, the gauge sum of any two real intervals is commutative, and satis-
fies the inclusion [0, a] +g[0, b] ⊆ [0, a], [0, b], which immediately follows from the
inequality ab

a+b < a, b, for all 0 < a, b <∞. Further, we notice that the previous
definition is not a special case of Definition 4.2.1: real intervals are not in Σn0 .
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Nevertheless, the gauge sum of real intervals agrees with a gauge sum on Gn
restricted to a single ray. The same happens for the truncated gauge sum of
real intervals:

Definition 4.3.8 (Truncated gauge sum of real intervals). For any 0 < u ∈ R,
the truncated gauge sum with respect to u of any two real intervals [0, a] and
[0, b] with 0 < a, b ∈ R is the real interval

[0, a]⊕ug [0, b] = [0, u] ∪ ([0, a] +g[0, b]).

With these preliminary definitions we are ready to introduce:

Definition 4.3.9 (Good sequences of real intervals). For any real number u > 0,
a good sequence of real intervals with respect to u is a sequence ([0, ai])i∈N of
intervals [0, ai] ⊆ R such that

RI1) there exists an index j ∈ N such that, for all i ≥ j, [0, ai] = [0,∞];

RI2) u ≤ ai, for all i ∈ N;

RI3) [0, ai]⊕ug [0, ai+1] = [0, ai], for all i ∈ N.

Conditions SS3 and RI3 above can be given more amenable equivalent re-
formulations as follows:

SS3’) for all i ∈ N and for each |x| = 1, σx ∩Ai = σx ∩ U or σx ∩Ai+1 = σx;

RI3’) ai = u or ai+1 =∞.

Both equivalences can be checked by an easy computation.
Given a fixed unit U ∈ Σn0 and an element A ∈ Σn0 , we consider separately

each ray σx with |x| = 1, restricting U and A to it. Since both U and A are star-
shaped, we obtain σx∩U = [0, u(x)] and σx∩A = [0, a(x)], where 0 < u(x) <∞
and 0 < a(x). Now we look for good sequences (ai(x))i∈N such that, for each
|x| = 1, [0, a(x)] = [0, a1(x)] +g[0, a2(x)] +g · · · , and then glue them together
to obtain the good sequence (Ai =

⊔
|x|=1[0, ai(x)])i∈N. To ensure that the

sequence (Ai)i∈N is good some additional assumptions must be made about the
good sequences ([0, ai(x)])i∈N. Indeed, some properties of good sequences of
star-shaped objects, such as SS2 or SS3 or the star-shaped property, are local
to each ray: they are equivalent to a property required to hold at each ray of a
star-shaped set that only depend on the ray itself. For example SS3 is equivalent
to SS3’, and the latter is explicitly a property on each ray of the star-shaped
set. Other properties, such as SS1 or the closure property of the Ai’s and their
formal boundaries, are not local in this sense.

In order to present Theorem 4.3.11, we prepare:

Definition 4.3.10. The sequence of real intervals ([0, ai])i∈N converges to the
real interval [0, a] if the following conditions hold:

1. if a =∞, then the sequence of real numbers (ai)i∈N either diverges or else
there is an index j ∈ N such that ai =∞ for all i ≥ j;

2. if ai(x) <∞, then the sequence of real numbers (ai)i∈N converges to a.
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Theorem 4.3.11. Let (Ai)i∈N be a good sequence of star-shaped objects with
respect to a fixed unit U ∈ Σn0 . Then, for each x ∈ Rn with |x| = 1, the sequences
([0, ai] = σx ∩Ai)i=N are good sequences of real intervals with respect to the real
numbers u(x) > 0 such that σx ∩ U = [0, u(x)]. Further:

RI4) there exists an index j ∈ N such that ai(x) = ∞, for each x ∈ Rn
with |x| = 1 and for all i ≥ j;

RI5) let (xl)l∈N be a sequence converging to the point x, where |xl| =
1, whence automatically |x| = 1. Then for all i ∈ N the sequence
([0, ai(xl)])l∈N converges to the interval [0, ai(x)].

Conversely: let, for each x ∈ Rn with |x| = 1, ([0, ai(x)])i∈N be good
sequences of real intervals with respect to real numbers u(x) > 0 such that
σx ∩ U = [0, u(x)] for some unit U ∈ Σn0 , and let them satisfy conditions RI4
and RI5. Then their gluing (Ai =

⊔
|x|=1[0, ai(x)])i∈N is a good sequence of

star-shaped objects, with respect to the unit U .

Proof. It is easy to see that ([0, ai] = σx ∩ Ai)i=N is a good sequence of real
intervals: the star-shaped condition on the Ai’s and the fact that 0 is in their
topological interiors ensure that, for all i ∈ N and for each |x| = 1, σx ∩ Ai is
actually an interval [0, ai(x)], with 0 < ai(x). Moreover, conditions RI1 and
RI2 immediately follow from SS1, and SS2, respectively. Condition RI3 is clear
once we notice that RI3’ is equivalent to RI3, SS3’ is equivalent to SS3’, and
RI3’ immediately follows from SS3’.

Condition RI4 immediately follows from SS1. There remains to be proved
that RI5 holds. To this purpose, we first fix i ∈ N and recall that the gauge
function gAi is continuous and that, for each |y| = 1, gAi(y) = 0 if and only
if σy ∩ Ai = σy (see Theorem 4.1.10). Thus, if ai(x) = ∞, then gAi(x) = 0
whence gAi(xl) → 0. We have the following alternatives: either (gAi(xl))l∈N
is equal to 0 for all sufficiently large l, whence (ai(xl))l∈N is equal to ∞ for
sufficiently large l, or for each ε > 0 there exists an index jε ∈ N such that, for
all l ≥ jε, gAi(xl) < ε. In this latter case, for all l ≥ jε, σxl ∩ Ai = [0, ai(xl)]
with ai(xl) >

1
ε (see Lemma 4.1.9 and recall that |xl| = 1). As a consequence,

for each M > 0, there exists an index j 1
M

such that ai(xl) > M for each

l ≥ j 1
M

, whence the sequence (ai(xl))l∈N diverges. If, instead, ai(x) < ∞ then

gAi(xl)→ gAi(x) = 1
ai(x)

> 0. It follows that there exists an index j such that,

for each l ≥ j, gAi(xl) > 0 and hence ai(xl) = 1
gAi (xl)

→ 1
gAi (x)

= ai(x).

Conversely, conditions RI4, RI2, and RI3’ imply conditions SS1, SS2, and
SS3’. The point is to prove that each Ai

⊔
|x|=1[0, ai(x)] actually is in Σn0 . We

fix i ∈ N. The star-shaped condition is easy to show. If a ∈ Ai, then there exists
a point x with |x| = 1 such that a ∈ [0, ai(x)], whence [0, a] ⊆ [0, ai(x)] ⊆ Ai.
Trivially 0 ∈ Ai, and to prove that 0 is also in the topological interior of Ai, we
proceed by way of contradiction. If 0 does not belong to the topological interior
of Ai then the star-shaped condition ensures that for all ε > 0 there exists a
point yε with |yε| = ε which is not in Ai. Thus we consider the sequence(

xl =
y 1
l

|y 1
l
|

)
l∈N

.
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For all l, |xl| = 1, and ai(xj) < |y 1
j
| = 1

j . Moreover, the xl’s are all contained

in a compact subset of Rn (the unit sphere Sn−1), and hence they have an
accumulation point. Therefore, there is a subsequence (xlj )j∈N that converges
to some x ∈ Rn with |x| = 1. By RI5, the sequence (ai(xlj ))j∈N converges to
ai(x), but we also have ai(xlj ) <

1
lj
→ 0, whence ai(x) = 0, against RI2.

Next we prove that Ai is closed. We consider a sequence (yl)l∈N of points of
Ai which converges to the point y. If y = 0, then y ∈ Ai, whence we are done.
Otherwise, replace (yl)l∈N with the subsequence such that yl 6= 0 for each l ∈ N.
Then we can take xl = yl

|yl| and x = y
|y| . Since 0 6= |yl| → |y| 6= 0 and yl → y,

then |xl| → |x| and xl → x. By RI5, the ai(xl)’s converge to ai(x) (in the sense
of RI5). Trivially, if ai(x) =∞, then y ∈ Ai. Otherwise, the ai(xl)’s eventually
belong o R, and 0 < |yl| ≤ ai(xl)→ ai(x) and |yl| → |y|. Thus |y| ≤ ai(x), and
hence y ∈ Ai.

Finally, we show that the formal boundary of Ai is closed. So we take a
sequence (yl)l∈N of points yl ∈ bd(Ai) which converges to a point y. Since
0 is in the topological interior of Ai, yl 6= 0 for all l ∈ N, whence we can
consider the points xl = yl

|yl| and their associated ai(xl), that are exactly the

values |yl|. Moreover, y 6= 0: if y = 0, for all ε > 0 we can find an index
jε such that |yjε | < ε. Then, the points εxl are not in Ai and converge to
0, contradicting the fact that 0 is in the topological interior of Ai. Therefore,
0 6= yl → y 6= 0, and xl → x on Sn−1. Since yl lies on the (formal) boundary,
we have ai(xl) = |yl| < ∞ and, by RI5, ai(xl) → ai(x). This, together with
|yl| → |y|, ensures that ai(x) = |y|, whence y ∈ bd(Ai). This completes the
proof.

We are now in a position to represent each element of Σn0 as a good sequence
of star-shaped objects.

Lemma 4.3.12. Let 0 < u ∈ R. Then for each 0 < a ≤ ∞ there exists a unique
good sequence (with respect to u) of real intervals ([0, ai])i∈N such that

[0, a] = [0, a1] +g[0, a2] +g · · · .

Proof. For all n ∈ N and 0 < b ≤ ∞ we have the identity n.[0, b] =
[
0, 1

nb
]
. If

a =∞, then we can take ai =∞ for all i ∈ N. Moreover, condition RI3’ implies
that a good sequence of real intervals is always of the form

([0, u], [0, u], . . . , [0, u]︸ ︷︷ ︸
m times

, [0, c], [0,∞], [0,∞], . . . ),

with 0 ≤ m < ∞ and u < c ≤ ∞. The gauge sum of the intervals of this
sequence is given by

[0, c] if m = 0,[
0,
u

m

]
if m 6= 0 and c =∞,[

0,
u
mc
u
m + c

]
otherwise.

In any case, the result of the sum must be [0, a]. If a > u, the only possible

case is m = 0 and c = a, because u
m ≤ u < a for m 6= 0 and

u
m c
u
m+c ≤

u
m , for
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m 6= 0 and c 6= ∞. If a ≤ u, then there exists a unique k ∈ N/{0} such that
1
k+1u < a ≤ 1

ku. If a = 1
ku, then the only possible choice is m = k and c =∞,

because 1
ku ≤ u. If 1

k+1u < a < 1
ku, then we have to choose m 6= 0 and c 6=∞,

whence c = au
u−ma . Furthermore, the condition c > u implies au > u2 −mau,

and hence 1
ku > a > 1

1−mu. Then m > k − 1. On the other hand, since the

gauge sum is not increasing, 1
k+1u < a =

u
m c
u
m+c <

u
m implies that m must be

strictly less than k + 1. In conclusion, m = k and c = au
u−ka .

Lemma 4.3.13. Let U be a fixed unit in Σn0 and A ∈ Σn0 . Suppose that for all
points x ∈ Rn with |x| = 1 the sequnce ([0, ai(x)])i∈N is the good sequence (with
respect to u(x) such that σx ∩ U = [0, u(x)]) of real intervals such that

σx ∩A = [0, a(x)] = [0, a1(x)] +g[0, a2(x)] +g · · · .

Then conditions RI4 and RI5 are satisfied.

Proof. Since 0 is in the topological interior of A, there exists ε > 0 such that
the ball Bε(0) is contained in A. Moreover, U is compact, whence there exists
∞ > M > 0 such that, for all y ∈ U , |y| < M . Since 0 < M ∈ R and 0 < ε ∈ R,
then there exists 0 < k ∈ N such that M

k < ε. Thus,
{
y
k | y ∈ U

}
= k.U ⊆ A.

Therefore, for all |x| = 1,
[
0, 1ku(x)

]
= σx ∩ k.U ⊆ σx ∩ A = [0, a(x)]. By

the construction of ([0, ai(x)])i∈N given in the proof of Lemma 4.3.12, for each
l ≥ k + 1, al(x) =∞. This proves RI4.

To show RI5, we take a sequence (xl)l∈N, with |xl| = 1, that converges to
x with |x| = 1. Then we have the associated good sequences ([0, ai(xl)])i∈N
and ([0, ai(x)])i∈N. By continuity of the gauge function, gA(xl) → gA(x). If
gA(x) 6= 0, then (gA(xl))l∈N is eventually > 0, whence

a(xl) =
1

gA(xl)
→ 1

gA(x)
= a(x).

Otherwise, gA(xl) → 0 and a(x) = ∞. There are two cases: if (gA(xl))l∈N
is eventually 0 then (a(xl))l∈N is eventually ∞. Else, in the second case, Re-
placing (gA(xl))l∈N with a subsequence, we can assume gA(xl) 6= 0 for each
l ∈ N, and hence a(xl) = 1

gA(xl)
→ ∞. In both cases, a(xl) → a(x). Thus, by

Lemma 4.3.12, we have

([0,ai(xl)])i∈N =

=

[0, u(xl)], . . . , [0, u(xl)]︸ ︷︷ ︸
kl times

,

[
0,

a(xl)u(xl)

u(xl)− kla(xl)

]
, [0,∞], [0,∞], . . .

 ,

([0,ai(x)])i∈N =

=

[0, u(x)], . . . , [0, u(x)]︸ ︷︷ ︸
k times

,

[
0,

a(x)u(x)

u(x)− ka(x)

]
, [0,∞], [0,∞], . . .

 ,

with a(xl)u(xl)
u(xl)−kla(xl) = ∞ if a(xl) = u(xl)

kl
, and a(x)u(x)

u(x)−ka(x) = ∞ if a(x) = u(x)
k . If

a(x) =∞, then k = 0, a(x)u(x)
u(x)−ka(x) = a(x) =∞ and (a(xl))l∈N diverges. Since U
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is compact, there exists M > 0 such that, for all y with |y| = 1, u(y) < M , and
there exists an index j such that, for all l ≥ j, a(xl) > u(xl). Then, for all l ≥ j,
kl = 0 and a(xl)u(xl)

u(xl)−kla(xl) = a(xl). Thus, for all i ∈ N, [0, ai(xl)] → [0, ai(x)].

If u(x) < a(x) < ∞, then k = 0 and , a(x)u(x)
u(x)−ka(x) = a(x). Since the (formal)

boundary of U is closed, U is compact, and xl → x, then u(xl) → u(x). Since
a(xl)→ a(x), u(xl)→ u(x) and u(x) < a(x) <∞, there exists an index j ∈ N,
such that, for all l ≥ j, u(xl) < a(xl) <∞. It follows that, for l ≥ j, kl = 0 and
a(xl)u(xl)

u(xl)−kla(xl) = a(xl) → a(x). If u(x)
k+1 < a(x) < u(x)

k for some natural number

k > 0, the argument is very similar: there exists an index j ∈ N such that, for

l ≥ j, u(xl)
k+1 < a(xl) <

u(xl)
k ; then kl = k and a(xl)u(xl)

u(xl)−kla(xl) = a(xl) → a(x). For

a(x) = u
k (with k > 0), we have a(x)u(x)

u(x)−ka(x) =∞, and we obtain, in the same way

as before, u(xl)
k+1 < a(xl) <

u(xl)
k−1 , for l ≥ j, for some index j ∈ N, whence kl = k

or kl = k − 1. Then, for l ≥ j and i < k, [0, ai(xl)] = [0, u(xl)] and u(xl) →
u(x) = ai(x). Further for i > k + 1 the identity [0, ai(xl)] = [0,∞] = [0, ai(x)]
holds. In both cases, [0, ai(xl)]→ [0, ai(x)]. We have to check the convergence
just for i = k and i = k + 1. Since kl = k − 1 or kl = k, we have

[0, ak(xl)] =

[
0,

a(xl)u(xl)

u(xl)− (k − 1)a(xl)

]
→
[
0,

a(x)u(x)

u(x)− (k − 1)a(x)

]
=

=

[
0,

u(x)
k u(x)

u(x)− (k − 1)u(x)k

]
= [0, u(x)] = [0, ak(x)]

or
[0, ak(xl)] = [0, u(xl)]→ [0, u(x)] = [0, ak(x)].

Thus [0, ak(xl)]→ [0, ak(x)], in the sense of condition RI5. On the other hand,
we have

[0, ak+1(xl)] = [0,∞] = [0, a(x)]

or

[0, ak+1(xl)] =

[
0,

a(xl)u(xl)

u(xl)− ka(xl)

]
→
[
0,

a(x)u(x)

u(x)− ka(x)

]
=

=

[
0,

u(x)
k u(x)

u(x)− k u(x)k

]
= [0,∞] = [0, ak+1(x)].

So [0, ak+1(xl)]→ [0, ak+1(x)]. This completes the proof.

Combining Theorem 4.3.11, Lemma 4.3.12, and Lemma 4.3.13, we get the
following theorem.

Theorem 4.3.14 (Good sequences representation). Fix a unit U ∈ Σn0 and an
element A ∈ Σn0 . Then there exists a unique good sequence (Ai)i∈N in the unit
interval [U,Rn], such that

A = A1 +g A2 +g A3 +g · · · .

By the previous theorem, we can conclude that, as in the case of unital `-
groups, the information carried by the set of star-shaped objects equipped with
its vector lattice operations, is actually contained in any unit interval [U,Rn].
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Figure 4.3: Good sequences of star-shaped objects.
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4.4 Piecewise linearity and polyhedrality

In the previous sections we have obtained our main representation results (The-
orems 4.2.5 and 4.3.14) for Gn. In this section we show that the subset of Σn0
which corresponds to FVL+

n ⊆ Gn via the isomorphisms ω and γ consists of the
“polyhedral” elements, in the sense of the following definition. (Recall from Re-
mark 1.1.4 that polyhedra can be written as finite unions of finite intersections
of closed half-spaces.)

Definition 4.4.1 (Polyhedral star-shaped object). A star-shaped subset A of
Rn is polyhedral if it is a finite union of finite intersections of half-spaces, that
is, if there exists a finite number of half-spaces Hij , such that A =

⋃
i

⋂
j Hij .

In the following we will denote by Πn
0 the set of polyhedral star-shaped objects

of Σn0 .

The idea used in associating a polyhedral star-shaped object to a function
of FVL+

n is to decompose both of them into simpler elements. In more detail,
we will prove a correspondence between closed half-spaces (with the origin in
their topological interiors) and linear words (joined with 0), and then we will
put them together using the lattice operations to extend the correspondence.

In order to do that, we need:

Lemma 4.4.2. FVL+
n is the subset of FVLn of those elements that can be

written as finitely many meets of finitely many joins of linear words joined with
0:

FVL+
n =

f ∈ FVLn | f =
∧
k∈K

∨
j∈J

(njk∑
i=1

λijkπi ∨ 0

) ,

where J and K are finite sets of indices, and πi : Rn → R denotes the projection
on the ith coordinate.

Proof. The desired conclusion easily follows from Proposition 3.3.1, the fact
that, for all f ∈ FVL+

n , f = f ∨ 0, and the distributivity of the lattice structure
of FVLn.

Lemma 4.4.3. H is a closed half-space of Rn which contains 0 in its topological
interior if and only if its gauge function gH is of the form l ∨ 0, where l 6= 0 is
a linear word of FVLn.

Proof. H can be written as

H = {x = (x1, . . . , xn) ∈ Rn | a · x+ b = a1x1 + · · ·+ anxn + b ≥ 0},

with 0 6= a ∈ Rn and b ∈ R. Since 0 lies in the topological interior of H, we
can always choose a and b such that b > 0. We recall that for all λ > 0 the
point x belongs to λH if and only if 1

λx ∈ H. If x ∈ Rn is such that a · x ≥ 0,
then for each λ > 0 we have a · 1

λx + b ≥ a · 1
λx = 1

λ (a · x) ≥ 0, whence
gH(x) = 0. Otherwise, a · x = c < 0. Therefore, for all λ > 0 the inequality
a · 1

λx + b ≥ 0 holds if and only if λ ≥ − cb . In this case, gH(x) = − 1
ba · x =

−a1b x1 − · · · −
an
b xn =

∑n
i=1

(
−aib

)
πi(x). Finally, we observe that − 1

ba · x ≥ 0
if and only if a · x ≤ 0. We have thus proved the first statement of the lemma:

gH(x) =

(
n∑
i=1

(
−ai
b

)
πi(x)

)
∨ 0.
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On the other hand, given any

f(x) =

(
n∑
i=1

λiπi(x)

)
∨ 0 ∈ FVLn

we get

Cf = {x ∈ Rn | f(x) ≤ 1} =

{
x ∈ Rn |

n∑
i=1

−λixi + 1 ≥ 0

}
.

Thus, if 6= 0 then
∑n
i=1 λiπi 6= 0 and Cf is a closed half-space containing 0 in

its topological interior.

The following result provides a characterization of polyhedral star-shaped
objects in terms of closed half-spaces. This is the kernel of the proof of Theo-
rem 4.4.5. Moreover it allows us to forget, in the polyhedral case, the definition
of a star-shaped object, and just to use the more familiar one of half-space.

Theorem 4.4.4 (Characterization of Πn
0 ). The elements of Πn

0 are exactly those
subsets of Rn that can be written as finite unions of finite intersections of closed
half-spaces whose topological interiors contain the point 0:

Πn
0 =

=

A ⊆ Rn | A =

p⋃
i=1

qi⋂
j=1

Hij , Hij ⊆ Rn closed half-space, 0 ∈ int(Hij)

 .

Proof. If A is a finite union of finite intersections of half-spaces containing the
origin in their topological interior, then, by Lemma 4.4.3, Theorem 4.1.10 and
Proposition 4.1.12, the gauge function of A is a finite meet of finite joins of
linear words joined with 0, whence gA is an element of FVL+

n . This ensures
that A is in Σn0 and, of course, in Πn

0 .
For the converse, we have to split the proof into two parts. First of all, we

show that if A ∈ Πn
0 is such that A =

⋃p
i=1

⋂qi
j=1Hij , with the Hij ’s closed half-

spaces, then A is also a finite union of finite intersections of closed half-spaces
H ′ij which contain the point 0 (not necessarily in their topological interiors).

To do that, for all i = 1, . . . , p, we set Ki =
⋂qi
j=1Hij and we prove that there

exists K ′i =
⋂q′i
j=1H

′
ij , with H ′ij closed half-spaces containing the origin, such

that Ki ⊆ K ′i ⊆ A. If 0 ∈ Ki it sufficies to take K ′i = Ki. Otherwise, we can
take the set

K ′i = Conv(Ki, 0) = {λx ∈ Rn | 0 ≤ λ ≤ 1, x ∈ Ki}.

Since A is star-shaped, then K ′i ⊆ A, whence A =
⋃p
i−1K

′
i, because K ′i contains

Ki. Since Ki is a convex polyhedron (not necessarily compact), also K ′i is a
convex polyhedron, and hence it is a finite intersection of closed half-spaces H ′ij .
Moreover, since 0 ∈ K ′i, then 0 ∈ H ′ij for each j. This completes the first step
of our proof.

In the second part, we can consider only the closed half-spaces H ′ij containing

0 in their topological interior. Let A =
⋃p
i=1

⋂qi
j=1Hij , with the Hij ’s closed
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half-spaces containing 0. Then, we can proceed in the same way as in the
proof of Proposition 4.1.12 to show that gA =

∧p
i=1

∨qi
j=1 gHij . In the present

situation, gHij may take on value ∞, and we are assuming that r ≤ ∞, for
each r ∈ R; with these conventions the same proof goes true. Moreover, by
Theorem 4.1.10, gA ∈ Gn and, by Lemma 4.4.3, gHij = lij ∨0, for each Hij with
0 in its topological interior and for some linear word lij of FVLn. The other
Hij ’s, the ones which do not have 0 in their topological interiors, are of the form

Hij = {x ∈ Rn | a · x = 0},

for some a ∈ Rn. Hence, their gauge function is quite simple to describe:

gHij (x) =

{
0 if x ∈ Hij

∞ otherwise.

Because gA is in Gn, the gauge function gA is finite everywhere, and hence, it
may coincide with gHij for some closed half-space Hij not containing 0 in its
topological interior, only if both gA and gHij are equal to 0. This allows us
to restrict our attention to linear words lij together with the function 0. Let
W = {w1, . . . , ws} denote this set. For each permutation τ ∈ Perm(s) of the
index set {1, . . . , s} let the set Tτ be defined by

Tτ = {x ∈ Rn | wτ(1)(x) < · · · < wτ(s)(x)}.

Each nonempty Tτ is full-dimensional open cone of Rn. Moreover their set-
theoretic union

T =
⋃

τ∈Perm(s)

Tτ

is dense in Rn.
Now we focus our attention on a fixed x in a fixed nonempty Tτ . Here gA is

finite and, because it is a finite meet of finite joins of gHij ’s, it must be equal to
some wτ ∈W . Since Tτ is connected, gA coincides with a uniquely determined
wτ on Tτ . Then, in Tτ , we have gA =

∨
{wi | wi(x) ≤ wτ (x), ∀x ∈ Tτ}, whence

gA =
∧
Tτ 6=∅

∨
{wi | wi(x) ≤ wτ (x), ∀x ∈ Tτ}

on T . The continuity of gA, the fact that gA(x) ≥ 0 for all x 6= 0, and the
density of T in Rn ensure that

gA = gA ∨ 0 =

 ∧
Tτ 6=∅

∨
{wi | wi(x) ≤ wτ (x), ∀x ∈ Tτ}

 ∨ 0 =

=
∧
Tτ 6=∅

∨
{wi ∨ 0 | wi(x) ≤ wτ (x), ∀x ∈ Tτ}.

We can now use the map ω of Theorem 4.1.10 to translate the last identity into
the geometric language of half-spaces:

A =
⋃
Tτ 6=∅

⋂
{ω(wi ∨ 0) | wi(x) ≤ wτ (x), ∀x ∈ Tτ}.
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By Lemma 4.4.3, in the last equation ω(wi ∨ 0) is not a half-space if and only if
wi = 0. In this case ω(wi ∨ 0) = Rn. This, however, is not a problem: Rn can
be simply deleted in any intersection where it does not appear alone. If there
is some intersection which involves Rn only, then A = Rn, and hence it is easy
to write it as a finite union of finite intersections of half-spaces with 0 in their
topological interior. For example, we can take the union of the following two
half-spaces:

H1 = {x ∈ Rn | x1 + 1 ≥ 0} and H2 = {x ∈ Rn | −x1 + 1 ≥ 0}.

This completes the proof.

Theorem 4.4.5. The maps ω and γ are isomorphisms between

(FVL+
n ,∨,∧,+, {λ}λ∈R+ , 0) and (Πn

0 ,∩,∪,+g, {λ.}λ∈R+ ,Rn).

Proof. The bijection between the elements of FVL+
n and Πn

0 is given by Propo-
sition 4.1.12 and Lemma 4.4.3 applied to Lemma 4.4.2 and Theorem 4.4.4. The
fact that ω and γ are order-reversing isomorphism between the two structures
follows immediately from Theorem 4.2.5.

4.4.1 Polyhedral good sequences

To prove the polyhedral version of Theorem 4.3.14, we make essential use of the
isomorphism result of Theorem 4.4.5. We begin by specializing the definition of
good sequences for star-shaped objects to the polyhedral case.

Definition 4.4.6 (Polyhedral unit). A polyhedral star-shaped object U is a
polyhedral unit if it is a unit of Σn0 . Equivalently, U ∈ Πn

0 is a polyhedral unit
if for any P ∈ Πn

0 there exists 0 ≤ λ ∈ R such that λ.U ⊆ A.

Definition 4.4.7 (Polyhedral good sequence). Fix a polyhedral unit U ∈ Πn
0 .

The sequence (Pi)i∈N of elements of Πn
0 is a polyhedral good sequence if it is a

good sequence of star-shaped objects, that is, if

PS1) there exists an index j ∈ N such that, for all i ≥ j, Pi = Rn;

PS2) U ⊆ Pi, for all i ∈ N;

PS3) Pi⊕g Pi+1 = Pi, for all i ∈ N.

Now, we translate Definition 4.4.7 into algebraic language. The maps ω
and γ then preserve good sequences, meaning that the element-wise image of a
polyhedral good sequence is a good sequence of FVLn, and vice versa. We repeat
here for clarity the definition of good sequence even though it is an instance of
Definition 1.3.9.

Definition 4.4.8 (Good sequence in FVLn). Fix a unit u of FVLn. A good
sequence is a sequence (fi)i∈N of elements in FVL+

n such that

FS1) there exists an index j ∈ N such that, for all i ≥ j, fi = 0;

FS2) fi ≤ u, for all i ∈ N;

FS3) fi ⊕ fi+1 = fi, for all i ∈ N.
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Here, a⊕ b is defined as the element (a+ b) ∧ u, for all a, b ∈ FVLn.

The following lemma is a special case of Lemma 1.3.10 in [11].

Lemma 4.4.9. Let u be a unit of FVLn. Then for each f ∈ FVL+
n there exists

a unique good sequence (fi)i∈N of elements of the unit interval [0, u] such that
f = f1 + f2 + . . .

Now, coming back to geometry, we obtain the desired result:

Theorem 4.4.10 (Polyhedral good sequences representation). Fix a unit U ∈
Πn

0 and an element P ∈ Πn
0 . There exists a unique polyhedral good sequence

(Pi)i∈N in the unit interval [U,Rn] of Πn
0 , such that

P = P1 +g P2 +g P3 +g · · · .

Proof. From Lemma 4.4.9 and Theorem 4.4.5.



Chapter 5

Conclusions

In this final chapter we indicate directions for possible further research.

5.1 A Riesz Representation Theorem for star-
shaped objects

Let X be a metrizable Hausdorff compact space, and let C(X) be the set of
all the real-valued continuous functions on X. Then C(X) is a vector lattice
with respect to the pointwise operations of minimum, maximum, addition and
products by real scalars. Moreover, by the compactness of X, the function
identically equal to 1, denoted by 1, is a unit of C(X), whence the pair (C(X),1)
is a unital vector lattice.

Definition 5.1.1 (State of a unital vector lattice). A state of a unital vector
lattice (V, u) is a map s : V → R that is

S1) linear: s(αf + βg) = αs(f) + βs(g), for all f, g ∈ V and α, β ∈ R;

S2) order-preserving: if f ≥ 0 then s(f) ≥ 0, for all f ∈ V ;

S3) normalized: s(u) = 1.

We denote by S(X) the set of all states of (C(X),1).

Remark 5.1.2. We immediately notice that, by linearity, a state of (V, u) is
completely determined by the values it takes on the positive cone V +.

Definition 5.1.3 (Probability measure on X). Let B(X) be the Borel σ-algebra
of X. A probability measure on the space X is a map µ : B(X)→ [0, 1] that is

PM1) a measure on B(X);

PM2) normalized: µ(X) = 1.

We denote by M(X) the set of all probability measures on X. Note that each
element of M(X) is regular.
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Theorem 5.1.4 (Riesz Representation Theorem, [32, Theorem 18.4.1]). The
map

R : M(X) → S(X)

µ 7→
(
sµ(f) : f 7→

∫
X

f dµ

)
is a bijection.

The idea is to translate the Riesz Representation Theorem in the language
of star-shaped objects.

Let CP(Rn) be the set of all the continuous and positively homogeneous real-
valued functions on Rn. This set (equipped with the usual pointwise operations
of minimum, maximum, addition and products by real scalars) is a vector lattice,
and its positive cone is Gn (see Chapter 4). Moreover, if we fix a unit f on
CP(Rn), it can be shown that the pair (CP(Rn), f) is unitally isomorphic to
(C(X),1), where X = f−1(1) = {x ∈ Rn | f(x) = 1}.

Using the vector-lattice version of the Stone-Weierstrass Theorem ([2, The-
orem 11.3, p.88]), we obtain the following:

Corollary 5.1.5 (Riesz Representation Theorem for FVLn). Let f be a unit
of FVLn. Then there is a bijection between the set M(f−1(1)) of probability
measures on f−1(1) = {x ∈ Rn | f(x) = 1} and the set S(f−1(1)) of states of
the unital vector lattice (FVLn, f). This bijection is given by the map

R : µ 7→

(
sµ : g 7→

∫
f−1(1)

g dµ

)
.

We notice that the set f−1(1) is precisely the (formal) boundary of the
compact polyhedral star-shaped object Cf = {x ∈ Rn | f(x) ≤ 1}, that is, the
set associated to f by the maps ω and γ of Theorem 4.1.10. This, together with
Remark 5.1.2, indicates that there is a theory of Borel measures on boundaries
of compact polyhedral star-shaped objects to be developed.

5.2 Integral polyhedral star-shaped objects

As we have seen in Chapter 1, the free vector lattice FVLn is generated by the
projections

πi : Rn → R
(x1, . . . , xn) 7→ xi,

for i = 1, . . . , n.
If we now consider the set generated by the projections πi’s with the `-group

operations of pointwise minimum, maximum, addition, and additive inverse,
we obtain the set of all continuous, positively homogeneous and piecewise linear
real-valued functions on Rn, such that each linear piece (see Definition 1.2.5) has
integer coefficients. By the Baker-Beynon duality for `-groups, this set, equipped
with the aforesaid operations, is actually the free `-group over n generators FGn.

Hence, we can specialize the correspondence of Theorem 4.1.10 to FGn. The
resulting set is a subset of the set of polyhedral star-shaped objects Πn

0 (see
Definition 4.4.1). More precisely, the positive cone of FGn corresponds, via the
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maps ω and γ, to the set of integral polyhedral star-shaped objects. They are
the subsets of Rn that can be written as finite unions of finite intersections of
rational closed half-spaces with 0 in their topological interior, that is, half-spaces
of the form

H = {x ∈ Rn | a · x+ b ≥ 0},

with 0 6= a ∈ Zn, and 0 < b ∈ Z.

Using an analogue of Definition 5.1.1, we can consider the notion of state
on the unital `-group (FGn, u). The Riesz Representation Theorem (and hence
Corollary 5.1.5) can be adapted to this context by taking the divisible hull of
FGn, and then applying the Stone-Weierstrass Approximation Theorem to the
resulting lattice-ordered rational vector space.

Let us fix, for example, the unit u =
∑n
i=1 |πi| in FGn. We observe that

u−1(1) is the (topological) boundary ∂O of the octahedron

O = Cu = conv{±ei | i = 1, . . . , n},

where {ei | i = 1, . . . , n} is the standard basis of Rn. There is a natural measure
η on ∂O induced by the (n− 1)-dimensional Lebesgue measure. Results in the
literature on the characterization of the Lebesgue state of the free MV-algebra
on n generators (cf. [29, 24, 23]) can be adapted to give a characterization of the
state of FGn induced by η. A key ingredient here is the invariance of η under the
unital automorphisms of (FGn, u). The passage from vector spaces to groups is
essential, because no such characterization is available on vector lattices: η is
not invariant under the unital vector lattice automorphisms of (FVLn, u).

This suggests that there should be a way to characterize a natural corre-
spondent of the Lebesgue measure on integral polyhedral star-shaped objects
in terms of invariance with respect to the appropriate group of automorphisms.
We hope to be able to obtain such a result in the future.

5.3 Integrals of support functions and states of
gauge functions

We notice that the states on FVLn with the fixed unit u are examples of additive
valuations on FVLn. This fact, together with the correspondence given by
Theorems 3.4.8 and 3.4.10, suggests that each state s of (FVLn, u) induces a
unique M-additive valuation νs on Pn? (see Definitions 3.4.2 and 1.1.5). In
particular, for each P ∈ Pn? ,

νs(P ) =

∫
∂u−1(1)

fP dµs, (5.1)

where fP is the support function of P , and µs is the unique measure associated
to s by the Riesz Representation Theorem.

Let us recall that there is a well-known connection between support functions
and gauge functions of convex bodies. Let C be a closed convex subset of Rn
that contains the origin 0 in its topological interior. If we consider its polar set

C? = {x ∈ Rn | x · y ≤ 1 for all y ∈ C},
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then C? is a closed convex subset of Rn which contains 0 in its topological
interior, too. Moreover, the gauge function gC? of C? is precisely the support
function fC of C (see [13] for more details).

In conclusion, the integral formula (5.1) suggests an interesting four-way
connection between gauge functions, support functions, measures on compact
convex star-shaped objects, and states of vector lattices. This, we believe, is
well-worth exploring in future research.
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