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GISELE FISCHER SERVI

1. - ABSTRACT AND INTRODUCTION.

Research in Al has recently begun to address the problems of
non deductive reasoning, i. e. the problems that arise when, on the
basis of approximate or incomplete evidence, we form well reasoned
but possibly false judgments. Attempts to simulate such reasoning
fall in two main categories: the numerical approach based on proba-
bilities and the non numerical one which tries to reconstruct non
deductive reasoning as a special type of deductive process. In this
paper, we are concerned with “the latter usually known as non mono-
tonic deduction, because the set of theorems does not increase mo-
notonically with the set of axioms.

It is generally acknowledged that non monotonic (n. m.) forma-
lisms (e. g [C], [MC1], [MC2] [MD], [MD-D], [R1], [R2], [S]) are
plagued by a number of difficulties. A key issue concerns the fact
that most systems do not produce an axiomatizable set of validi-
ties. Thus, the chief objective of this paper is to develop an al-
ternative approach in which the set of n. m. inferences, that some-
how qualify as being deductively sound, is r. e.

The basic idea here is to reproduce the situation in first Or-
der Logic where the metalogical concept of deduction translates in-
to the logical notion: of material implication. Since n. m. deduc-
tions are no longer truth preserving, our way to deal with a change
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table context of monotonic logic.

To be precise, let us introduce the logical constant «A non
monotonically implies B» (A>B) and define n. m. inference (A | B)
as

@ Ak B iff |- A>B.

The problem now amounts to giving an adequate characterization
of the right hand side in (#). The first question that must be an-
swered concerns the interpretation of the standard logical cons-
tants. Generally speaking, n. m. logic refers to the following si-
tuation; it is required that we go beyond the available data A by
making a reasonable but defeasible assumption B. Our claim is that
this is a situation in which Intuitionistic rather than Classical
Logic. is appropriate. For, a basic idea in Intuitionistic Logic is
that the reasoning subject may not have all the information needed
to decide in each moment whether a statement is true. Similarly, we
are interested here in a logic that allows for the statement «A>B»
to be true when B is uncertain, i. e. when B has no definite truth
value. And this cannot be coped with, in a classical setting.

Our next concern is how to formalize the notion of non monoto-
nic implication (>). This concept is not a logical item of our vo-
cabulary, so the obvious question is just what is it supposed to
mean that «A non monotonically implies B». We propose to fix the
intuitive meaning of «A>B» with any one of the following: «if A,
then wusually B», «if A, then typically (mostly) B», «if A, then it
is reasonable to presume B». As far as its formal meaning is
concerned, it could be suggested that the conditional of Counter-
factual Logics ([Lw], [St]) presents enough analogies - with n. m.
inference to be useful in this context. But it has been noted ([N],
[D]), that these logics are problematic from the point of view of
n. m. reasoning since they allow from A and A>B the monotonic
inference B. This proves to be fatal because the very idea of n. m.
implication is that A and A>B could be true, even when B turns out
to be false.

More promising ideas can be found in [G2], where the author
presents two modal extensions of Intuitionistic first Order Logic.
One of them, named v, codifies the behaviour of the binary senten-
tial operator «on the basis of.. expect that..». The explicit mo-
tivation, in that paper, is to solve some problems connected with
Mc Dermott’s analysis of reasoning on propositions that can cohe-
rently be assumed (see [MD-D]). So the presentation of ¥ does not
seem to be related to the rationale for (#). Nonetheless, we think
that <y provides an attractive starting point for an investigation
into the concept of n. m. implication.

In [G2], the discussion of the modal axioms and rules of v is
purely informal. The present paper proceeds in the analysis of this
system by showing that it also has a suitable formal semantics. Us-
ing the latter, we can see that y is too weak to capture some logi-
cal properties of n. m. inference that have been discussed in the
literature. As a contribution to this debate, we introduce a pro-
per extension Y, of vy, that does satisfy these properties. In §4,
we establish completeness for both Y and Y, and see that the  set
of n. m. logical consequences based on ¥y (y1 resp.) is r. e. More-
over in §5, we show that the propositional subset of the n. m. con-
sequences based on <y is decidable. In §6, a discussion of n. m. de-
duction in a theory reveals that both <y and Y, are insufficient, so
we extend them to I and l"l respectively and provide each of these
new calculi with successful semantics. Last, we briefly discuss how
the present approach relates to other known proposals.

2. - NON MONOTONIC INFERENCE BASED ON 1.

In order to make this paper more readable, we recall the
axioms and rules of the monotonic calculus ¥:

(V)] Intuitionistic Predicate Calculus (see for example [F])
¢)) A>B A ASC «— A>(BAC);
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@) A — B, 3) A — A 4) A>1,

A > B ASB < A58 ° A
(5) A>B A (AAB)>C — A>C;
(6) A>B v —(A>B).

where A, B, C belong to the set ¥ of wff.’s in the language £ of .

For a brief discussion of the above, see the original paper

[G2].

Notation. - o) |- A stands for «A is a theorem of y»;

B) £ B stands for «there are Ax""’AnEZ such that AI/\.../\An—) B
is a theorem of y».

We introduce

Definition 2.1‘. - When |- A>B, we will say that B is non monotoni-
cally inferred from A (write: A b B)

and gain some insight into the logical properties of the n. m.
operator p :

Theorem 2.2, - For any AB.C € ¥

@) AR A

(8) Ak Band A C iff A} BAC.

) if Al Band ANB| C then A} C.
(10) if AB then A} B.

(11) Ak L iff | —A

(12) if b-—-Aand A} B then A}y —B.

(13) ° if .=—Aand A} B then A |~ —B.
14 From |-A - Band Cp A infer C} B.

(15) if Al BorAp C then A} (BVO).

Proof. Because of Def. 2.1, (7), (8), (9) and (10) are obvious. In
order to prove (11), take first A b 1; then by Def. 2.1 and (4) re-
sult obtains. Conversely use (2) and Def. 2.1. Now suppose to the
contrary in (12); then by (8) and (11) we have | —A, a contradic-
tion. Moreover, (13) follows from (12) according to (10). As for
(14), infer from hypotheses |- C>A and |—(AAC)>B (use (2) and Def.
2.1) so by (5) and Def. 2.1, C  B. To.prove (15), use (14).

Properties (7), - (8), (10) are expected; (9) holds for many
concepts of non monotonic inference discussed in the literature.
The next three properties are reasonable: (11) says that A is n. m.
inconsistent iff we are demonstrably sure of —A; according to (12),
incompatible statements cannot be n. m. inferred from the same con-
sistent formula so that any non monotonic consequence of a coherent
formula is consistent with it (see (13)). Moreover, by (14) n. m.
inference respects standard deduction. Note finally that the con-
verse of (15) should not hold.

At this point, we need to discover whether y has enough featu-
res related to non monotonicity. This will require some semantical
arguments, so we postpone a discussion of this topic to the end of
§3, after we develop a suitable formal interpretation for 7.

3. - v-MODELS AND VALIDITY.

The following semantical formal system will be shown to be
adequate for v.

Definition 3.1. - Consider a structure =(S,R 0,R,(S,[ D such that
S#J, Ro € Sx§, R < SXP(S)xS; o is a function which assigns to each
se€S, a set o(s) of individual constants and [ ] is a function that
assigns to each wff. A a set [A] of elements of S. Then ¥ is a
¥-model if it satisfies the following conditions. First, some fa-



miliar intuitionistic properties:

(16) R0 is reflexive and transitive and if s,22eS and (s,t)eRO
then o(s) < o(r).

Second, some restraints on the ternary relation R: for AB € ¥,

an if (s,[A],t)eR then te[A] (s,teS)
(18) if [A]J#2 then (t,[Al,u)eR, for some tuecS.
(19) If for every teS ((s,[A],t)eR implies te [B]), then for

every 1§ ((s,[Al,HeR implies (s,[A]N[Bl,f)eR). (se$)

0) (s,NeR 0 implies that, for every ues,
(s,[AL,weR is equivalent to (r,[Al.u)eR (5,2 S).

Third, [. ] satisfies the usual intuitionistic constraints, i. e.

21 if ®(s) is the set of all formulas in ¥ which may »be
constructed using only constants in o(s), then for A
atomic, se[A] implies Ae ®(s).

(22) if A is atomic then [A] is R 0-closcd.

(23) [AAB]=[A]N[B];
[-4]=(seS: Aed(s) & (s,)eR ) implies 1 [A]};

and so on.
Last, a condition for evaluating formulas containing >,
24) [A>B]={seS: A>B € ®(s) and if (5,[A],)) € R, then te[B]}.

A, formula A is said to be fue in a ymodel ¢ if
{seS: AeD(s)} < [A]. Also A is said to be y-valid if A is true in
all y-models. '

Notation. - As it is customary, we shall often write s} A for
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se[A]. Moreover, we replace (s,t)eR0 by sRot.
Given this definition we have,

Theorem 3.2. - Let ¥ be a y-model. Let Ac¥ and s,teS. Then,
(o) sl A implies A € ®O(s);
()] if sl A and SR 1, then t|— A.

Proof. (o) Immediate by induction on the complexity of A.
(B) We only show the case A=B>C. So let s|— B>C and SR 1. Then for
all ues,

@G) - (s,[Bl.weR implies ul- C.

Now take u such that (¢[Bl,u)eR; by (20), (s,[Bl.u)eR and from (i)
get u|- C; so t|- A.

Let us see that Def. 3.1 converts into an informal account of
reasoning under presumptions. The main idea in this intuitive read-
ing is that presumptions are based on what is «usual» in a situa-
tion or «typical» for a member of a class. These typical aspects
are not understood to exhaust «full meaning», but rather are taken
to fix a «stereotyped meaning» for the concept or the statement in-
volved. So, given a <ymodel ¢, interpret S to be a collection of
states of knowledge and 'sRot as indicating that the state ¢ con-
tains (possibly) more knowledge that the state s. Furthermore, con-
sider the set [A] to represent the full meaning assigned to A in
the model and consider the set {t: (s,[Al,H)eR} to fix the stereo-
typed meaning of A in 5. Given this interpretation, conditions (17)
to (20) are sensible: for instance, (17) states that sterebotyped
meaning is a part of full meaning and (18) says that if A has a
(non empty) full meaning, then it also has, at some stage, a (non
empty) stereotyped one. According to (19), if the stereotyped mean-
ing of A is included ‘ in the full meaning ofv B, then it is also in-
cluded in the stereotyped meaning of AAB (see (23)). Condition (20)
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indicates that knowledge of more or less facts does not affect ste-
reotyped meaning. Also, the truth condition (24) reveals that, in
s, all presumptions relative to A are independent of the facts es-
tablished in s, if s does not happen to belong to the stereotyped
meaning of A. Consequently, «if A, then it is reasonable to presume
B» may be true in § even if it turns out that «A and non B» is a
fact of s. Briefly, presumptions are based on stereotyped meaning
only, so they can be contradicted by facts. ’
We set to prove

Theorem 3.3. - Every theorem of 7y is y-valid.

Proof. By induction on the length of proofs in 7. Throughout this
proof, let ¢ be a ymodel and vs,t,u,ve S. For all axioms and rules
in (0) the proof is standard. To show that (1) is wvalid note that,
by (24), s|— A>B and s|- A>C iff ’

@) (A>B),(A>C)e @(s) and t|— BAC for (s,[A],DeR.

But (i) holds iff s A>(BAC).

Suppose now that sl- A — B, for ‘all s. Let (s[Al,)eR; by
(17), tj- A which by hypothesis yields ¢}— B. From Thm. 3.2(c),
(A>B)e ®(s), so S| A>B and (2) is valid. o

As for (3), it is sufficient to say - that s A>B iff s} A’>B
when [A)=[A’]. '

To prove the validity of (4) assume that s A>L for every s,
but ¢} A, for some r Then [A]# & and by (18) there are u,v such
that (u,[A],v)eR; impossible because of hypothesis and (24).

Now for (5): assume both tl- A>B and t|- (AAB)>C. The (first
assumption implies that for every u, if : ‘

Gy  (LIALWeER,

then wue[B]. So using (19) we infer that for every u satisfying

(ii),
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(iii) | @@[AIN[Bl,w)eR.

Clearly [A]N[B]=[AAB] (see (23)). Now let u satisfy (ii); then by
(iii) and second assumption, uf- C; since A>Ce®(r), we have 1|
A>C.

Last suppose that s|« A>B; so for some 1 (s,[AL,)eR and
tf>= B. Assume now that sI% v. Because of (20), (,]Al,)eR, thus
v |« A>B and hence s|— —(A>B).

The following describes an important class of y-models:

Definition 3.4. - Let (17)-(20°) be obtained from (17)-(20) by
substituting every occurence of [A] and [B] with generic subsets
0,0’cS. Then, the triple (S,RO,R) is said to be a full yframe if
S#J, R0 is a preorder relation on § and R, R 0 satisfy conditions
(17°)-(20°). Moreover, a full vYy-model is a structure (S,R 0,R,(S,[ D
where (S,RO,R) is a full yframe and o, [ ] are functions satisfy-
ing conditions (16), (21)-(24).

Clearly, a full y-model, is a y—modél;b such a 'y—model is said
to be based on a full vyframe. In a full y-model the function [ ]
is completely and freely determined by its values on atomic wif's.
In fact:

Theorem 3.5. - Ler S#J, R0 C SxS, and R < SxPS)XS. Let [ ]0 be a
function which assigns to each atomic formula P a set [P} OgS. Then

[1] o, can be uniquely estended to a function [ ] defined on all for-
mulas satisfying (21)-(24).

So, if (S,RO,R) is a full y-frame, the function [ ] 0 is arbi-

trary, and [ ] 1is obtained according to theorem 3.5, then
(S,RO,R,G,[ ]) is a y-model (in fact a full one).

11



Let us see whether v is an adequate base for n. m. inference.

Theorem 3.6. - The following wff.’s are not theorems of y:

25) A>B — (AAA’)>B.

(26) A>B A A>C — (AAB)>C.
27 A>B A B>C — A>C.
(28) A>(BvC) — A>B v A>C.

Proof. Let S={s,t,u}; name the non empty proper subsets of S:
0 =ls}; Q,=(t}; Q=(u}; Q={s.1}; Q={su};Q=(t.u}; Q=S={s,tu}.
Put R 0=@ and let R be determined by the following triples:

(5.Q,.9); (5.2, (5.Q,.u); (5.2 .0 (5,29); (5:Q01);
(5:Qu); (5.Q..0).

It is easy to see that (S,RO,R) is a full y-frame. Let & be the

constant function on § with value & and [ ] a function on ¥ satis-

fying both (21)-(24) and
@ [P1=Q; [P1=0; [P"I=Q,

for distinct O-ary predicates P, P’ and P". Thm. 3.5 ensures that
(i) determines a <y-model ¥ based on that frame. Now, [P] = Q7 and
only (s,Q7,t)eR; according to (i), f|— P", therefore s} P>P". On
the other hand, [P/\P’]=Q3 and (s,Q3,u)eR; since uf~ P" (see (i),
S|« (PAP’)>P". So (25) is invalid in .

To falsify (26), replace (i) with

@ PI=0,; [P1=0,; [P"1=0,

Since [P]=Q, and [PAP’1=Q g Cleally sl (P>P)A(P>P") but
s~ (PAP’)>P".

12

To falsify (27) in ¢, replace (i) with
(iii) [P1=Q,; [P'1=Q; [P"I=Q,.
As for (28), replace (i) with
@iv) P1=Q,; [P']=Q..
Take A = —(PAP’), B=P, C=P’. Note that Q =[A].

It has been argued in ([G3]) that restricted versions of the
Tarski-Scott  conditions for monotonic  provability relations, viz.
reflexivity  (7), restricted transitivity (9) and restricted mono-
tonicity (26), are the minimal logical properties that befit a
large class of n. m. inferences (see also [S]). From this point of
view and given Def. 2.1, we can interpret Thm. 3.6 as also saying
that y is too weak to capture a genuine non monotonic inference
relation. So consider the logic Y, obtained by adding (26) to v,
and put

Definition 3.7. - A |~lB iff A>B is a theorem of Y (|-—1A>B).

Corollary 3.8. - Replace |+ with K in (7)-(15). The resulting pro-
perties obtain. Moreover for any A, B, C € %,

(29) if A Band AL C, then AnB L C.
(30) if Al BandBY\ A, then AL Ciff Bl C.
31) if Ak BAC then AnB L C.

Proof. Def. 3.7 yields (29). We prove (30): from (5) we have
A>B — ((AAB)>C — A>C) and A>B — ((AAB)>C — B>()

and from (26) we have

A>B A ASC — (AAB>C and B>A A B>C — (AAB)>C

13



Intuitionistic ~ propositional  calculus  yields |—1((A>B)A(B>A) —
— (A>Ce— B>()). As for (31), use (8) and (29).

‘Remark. - Formula (30) says that the concept of n. m. inference ba-

sed on Y, allows for a proper definition of n. m. deductive equiva-
lence (A }le and B }‘i A).

To define yl-validity, extend Def. 3.1 with the converse of
the consequent in (19), i. e.

Definition 3.9. - $=(S,R.R,0,[ ]) is a Yl-model if ¥ is a y-model and
(32) if for every t, (s,[A]l,f)eR implies re[B]), then
for every ¢, (s,JA]N[B]l,f)eR implies (s,[A],H)eR.
A wif. A is y-valid if A is true in every yl-modcl.
Again, if we interpret n. m. reasoning as reasoning on the
basis of stereotypes, (32) and (19) say that, when the stereotyped

meaning of A is included in the full meaning of B, the stereotyped
meanings of A and AAB coincide.

Theorem 3.10. - Every theorem of Y, is yl~valid.

Proof. To show that (26) is wvalid, consider a Yl-model ?. and let
te§ be such that t}- A>B A A>C. Because of the first conjunct, we
have that for all ueS, if (t[A],u)eR then ue[B]. So the antece-
dent of (32) is satisfied, therefore if ueS '

6] (t.[AABl,w)eR impljes (t.[Al,w)eR.

Consider now, any veS such that (5,[AAB],v)eR. By (i) and the se-
cond conjunct in hypothesis, v|— C and thus t|— (AAB)>C.

Remark. - The y-models constructed in the proof of Thm. 3.6 can be
transformed - - into Yl-models, by adding (s,Q7,u)e R. Using suitable
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models it can be seen that neither Yy nor Y, are prime. Last, full
yl-models are defined by extending Def. 3.4 with

(32%) as (32) except that every occurence of [A] and [B]
is replaced by Q,0Q’ respectively (0,0°cS).

4. - COMPLETENESS THEOREMS.

To prove completeness for both y and Y, we use the same basic
semantic methods that have been successfully applied to Intuition-
istic and Modal Logic, i. e we construct a canonical model which
falsifies all non theorems. First, recall (see [F]) that a set of for-
mulas X is nice in ¥ (‘y1 resp.) with respect to a set of constants
Q if

G) {A: A is a theorem of ¥ (of Y, resp.)} € I,
(ii) X is closed with respect to Modus Ponens,
(iit) every formula in X uses only parameters in £,
@{iv) X is consistent, prime and rich.

Throughout this paragraph, considerable use will be made of

Main Lemma. - Let Xc¥F and Ac . Let Q be. the set of constants in T
or A. Let {a 1,...} be a countable collection of distinct constants
not in Q and let Q’=Qu{a1,...}. If £ |>= A, then ¥ can be extended
to a set s which is nice in Y ('yl resp.), with respect to S .and
such that A ¢ s.

Proof. The proof in [F, p. 68] applies to y ('yl resp.) also.
Second, arrange, as in [F], the collection of all constants in

the language of vy as follows:
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......................

and let Q°=8' U 8% U ... U 5"

Consider now,

Definition 4.1. - ¥
(yl respectively) if ]
@) S° is the collection of all sets s that are nice in Y

(S°,R(°),R°,G°,[ 1) is a canonical model for <y

('y1 resp.) with respect to some Qi (i<m);
(ii) o° is a function that assigns Qj to se8® if s is nice
with respect to Qj;

(iii) for any s,teS°, sR oct iff o°(s)co’(®) and sct;
(iv) for any Ae ¥, [A]l={seS": Aes);
W) (s,[Al,DeR" iff for every Be¥, if A>Bes then Bet (Ae9).

We say that a canonical model ¢¥° is the least canonical model
if, given any QcS°, (5,0,H)2R°, whenever there is no Ae% such that
Q=[A].

In order to show that the canonical models are Yy-models (yl-mo-
dels resp.), we establish first,

Lemma 4.2. - The relation R°, as given by Def. 4.1, is well defined.

Proof. Note that [A]=[A’] implies A «— A. So by (3)
(s,[A],t)eI;i’c iff (s,[A’],DeR".

Lemma 4.3. - If (5,[Al,DeR° then te[A].

Proof. Suppose that (s,[A],))eR®. Since - A>A, (see (7)), A>Aes
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and hence re[A].

Lemma 4.4. - For any seS°, if (A>B)¢s, then there is t€S° such that
(5.[A1,DeR® and te[B].

Proof. Let X={Ce¥: A>Ces}. Clearly, X}~ B, for if not, there would
be Cl,...,CneX such that |- CxA"'ACn —> B. Using (14) and (1), we
have |- A>CA.AA>C  — A>B; but for each isn, A>Ces, hence
(A>B)es, contradiction. Now apply main Lemma to X and B.

Lemma 4.5. - If seS° and (A>L)¢s then there is t€S° such that
s,[A1,D) € R

Proof. Apply Lemma 4.4 with B=1.
Lemma 4.6. - If [Al# & then there are s,teS° such that (s,[Alt)eR".

Proof. Deny the consequent, i. e. for all seS° there are no teS°
such that (s,[Al,)eR’. By Lemma 4.5, for all seS°, A>les and thus
| A>L. By (3) we have |- —A, hence [A]=0.

Lemma 4.7. - Condition (19) holds for R°.

Proof. - Suppose to the contrary, i. e.

@ if (s,[Al,DeR° then te[B] (e S5,
but for some z.€S° such that

(ii) (s,{A,2 O)E RS,

there is Ce ¥ such that

(iii) (AAB)>Ces and Ce ty

Then by (ii)) and second part of (iii), (A>C)¢s; now, (5) and first
part of (iii) yields (A>B)es. At this point, we apply Lemma 4.4 and
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find that there is wueS® such that (s,JAl.Lu)eR® and u¢[B]. But this
contradicts (i).

Lemma 4.8. - If steS° and sR;t, then for every ueS® (s,[Al,u)ekR’
iff (t[Alw)eR".

Proof. Let (A>B)et and (s,[Al,u)eR°. If (A>B)es then Beu. More-
over,. it cannot be (A>B)¢s; for if it were, by (6) —(A>B)es, and
since sct, —(A>B)et - contradicting our original supposition. Hen-
ce, (t[Alu)eR". Conversely, suppose (t[Al,w)eR’. Since scr, if
(A>B)es, then (A>B)et; thus Beu and (s,[A],u)eR".

Theorem 4.9. - If ¥ is a canonical model for v ('y1 resp.), then it
is a Yy-model (Yl-model resp.).

Proof. Let ¥° be a canonical model for y. It is obvious that R; and
o° satisfy (16). Lemmas 4.3, 4.6, 4.7, 4.8 ensure that (17)-(20)
are satisfied. Conditions (21)-(23) are also easily shown. Let wus
show that

(A>B)es iff for all t€S°, (s,[Al,DeR® implies te[B].

So suppose (A>B)es and (s,[A],)eR’, for some teS°. Then, use Def.
4.1(v). Conversely, suppose (A>B)es. Then Lemma 4.4 yields the de-
sired result. So ¥° is a y-model.

Suppose now that ¥° is a canonical model for Yy We show that
S is a 'yl-model. So deny the consequent of (32), i. e. suppose
that for some re S:

® (s.[AAB),1) €R",
but for some Ce %
(i) : (A>C)es and Cegr.

Then because of (i) and (i), (AAB)>Cegs; thus by (26) we conclude
(A>B)e s. Now apply Lemma 4.4 to find ueS® such that (s,[A],u)eR®
and u¢[B], thus contradicting the antecedent of (32).

18

Theorem 4.10. - Let ¥° be the least canonical model for vy. Then ¢°
can be extended to a full y-model.

Proof. Add the following triples to R% if QcS° and there is no Ae¥
such that Q=[A], then
(5,0,He R° iff te Q.

It is easy to check that R° so extended satisfies conditions
17)-20%).

Theorem 4.11. - vy ('yl resp.) is complete with respect to <Y-models
(yl-models resp.).

Proof. Thms. 3.3, 3.10, 4.9.
Furthermore:
Theorem 4.12. - vy is complete with respect to full y-models.

Proof. Thms. 3.3, 4.10.

We were not able to prove that Y, is not complete with respect
to full yl-models. Full models are important because they are mana-
geable (see Thm. 3.5 and surrounding comments). In fact, we shall
show in the next section that one method used to prove the finite
model property uses the fact that the logic 1is characterized by
full models.

5. - DECIDABILITY OF Yy
Using the filtration technique (see [G1], [L]), we prove that

Yy the propositional fragment of v, 1is decidable. First, let us
call £ the propositional language of Yy obtained from ¢ by forget-
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ting all n-ary predicates with n>0. Then,

Definition 5.1. - A structure 9’=(S,RO,R,[ D is a full 'yo-rhodel if
# is a reduct to :eo of a full vy-model (S,RO,R,O',[ D (see Def.
3.4). Then, $P=(S,RO,R) is said to be a full yo-frame. Clearly, the
full yo~frames are exactly the full y-frames.

The following is an obvious consequence of Thm. 4.11.
Corollary 5.2, - ¥, is complete with respect to full Yo-models.

We proceed as usual: given a full 'yo—model 9’=(S,R0,R,[ D and
any set ¥ of wff’s in £, if s,teS put

|s|=|t| iff for every AeV¥, se[A] iff te[A].
Now for every QcS, set
lol = (ls]: there is s’eQ such that |s’|=]s]}.

As a special case, note that
(33) Is| = (Is]: ses).

Definition 5.3. - Let OcS. The set Q is saturated if Q is equal to
a union of elements in IS l

Let us recall that saturated sets have wuseful properties,
namely:

Lemma 54. - Let 0,0’CS;

@A) if Q is saturated then for any seS, lsle |Q] iff seQ,

(ii) for any Q, there is one and only one saturated set Q’
such that 1Ql=10’|,

(iii) if Q and Q' are saturated sets so is Q N Q.
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From now on, let ¥ be a set of wif’s closed under subformulas
and negation (in particular, A,Be ¥ whenever (A>B)e'P).

Definition 5.5 - Let 3’=(S,R0,R,[ ) be a full 'Yo-model. Then ¢'=
=(|S I,R;,R*,[ 19 is a filtration through ¥ on ¢ if

@) |S| is as in (33);
(i) (|s|,|t|) € R; iff there are s’e |s| and t'e |t| such
that s’Rot’;
(iid) dsl,1al,lt]) e R* iff there are s'elsl|, relt] such

that (s°,Q0’,r')eR, where @’ 1is the only saturated
set such that |Q]=|Q’|;

(iv) for each O-ary predicate P, [Pl'c|s|; furthermore
[P*=|[P]| when Pe¥.

Note that (iii)) is- correct because of Lemma 5.4(ii)). We show that
Def. 5.5 is suitable.

Lemma 5.6. - Let ¥ and ¥* be as in Def. 5.5. Then

6)) if AeY then [A] is a saturated subset of S;

(ii) for every 0-ary predicate Pe¥, [P]" is R; closed;

(i) if —4e¥, (|sl,|t))eR} and se[-A] then 1e[A);

(iv) if (A—B)e?, (Isl,ltl)eR;, se[A—B] and se[A] then te[B];
V) if 4>B)e¥, (Isl,1141],]¢])eR* and se[A>B] then te[B].

Proof. (i). Since Ae'¥, [Al= U |s].
€ [A]
As for (ii), suppose that for some O-ary predicate Pe'?,

IslerP1’, i e |slelP1l. Let |s|R;|t|; so there are s'e |s|,
relel with sRp. But |s|e|(P]] and since Pe¥, Lemmas 5.60),
54()) ensure that s'e[P] and thus re[P]. We conclude |t]=
=lr|elp1l=lPT.

Parts (iii), (iv), (v) are easy.
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Let ¥ and ¥ be as in Def. 5.5. Extend [ ]' to arbitrary for-
mulas (see Thm. 3.5, applied to R* and R;).

Theorem 5.7. - If AeY, then for all seS,
lsletar ifr selal

Proof. By induction on the complexity of A. We single out case
A=(B>C). Let us first prove that

@ |B11=(B1".
Since Be¥, [B] is saturated, so

se[B] iff |slel[B]l.
Using the inductive hypothesis,

IslerBl” it |sle|m1l.
Now let

(i) |s|era1*

and (s,[Bl,)eR. Again [B] is saturated so (ls|,|[B1],/z])eR*. From
@), we have (lsl,[BI'|tl)eR* and by i), lsle[cr, i e te[C]
(by the inductive hypothesis). So se[A].

Conversely, let se[A] and (ls|,[B],|¢])eR*. By Lemma 5.6(v),
te[C]. The inductive hypothesis yields |tle[C]+, SO |s|e[A]+.

Unfortunately, ¥ is not a yo-model because R; is not necessa-
rily transitive and R+,R; are not connected in the way requested by
condition (20°). We shall show, however, that it is possible to
construct a y-model from ¥*. First note:

Lemma 5.8. - Let AeY and, for some s,t€S, suppose that | |R+| I
Then | Ie[A] implies | |e[A]

Proof. By hypothesis, there are s e s l and relr| such that s'R t.
By Thm. 5.7, s€[A] and so s ’e[A]. But then #'€[A], which by Thm.
5.7 implies |¢|=|7|e[A]".

%
In the sequel, let R0 be the transitive closure of R;.
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Lemma 5.9. - Ler AeY¥ and suppose |s|R:|t|. Then |s|e[A]+ implies
|t e AT

Proof. Apply repeatedly Lemma 5.8.

Lemma 5.10. - Ler (A>B)eY. For all steS, if |s|e[A>BI* and
|th |s|, then |t|e[A>BT".

Proof. Suppose that |¢[R |s| but |rl¢[4>BI". By Thm. 57 and (6),
we conclude te[—(A>B)]. But —(A>B)e¥, so |t|e[—(4>B)]": impossible,
because of initial hypothesis and Lemma 5.9.

Now call R the equivalence relation generated by R and let
R be defined as follows

Definition 5.11. - For all s,te S and QcS,

(sl.lel,leher”
iff there is ueS such that |s|R'0|ul and (|uHQ|,lt|)eR+.

Note that R+gR*.

Lemma 5.12. - Let (A>B)e¥. For all sgeS, if (Is|.[A]".|theR” and
|s|e[A>BT*, then |t e[BT".

Proof. By definition of R*, there is ueS such that
@ |sI® |l

(i) (lul,1ar,lther. .
Because of (i) (using reflexivity and tramsitivity of Ro), we can
find s ,....5 ,u,..u €S such that

1 n 1 n+l

|un+1|=|u| and |SIR:|u1|;
* *
lsj|R0|uj| and lsj|R0|uj+1| (0<j<n).
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Thus (i) and (ii) lead to the following situation

sl sl s |
N NN AN
P P I P R P P

1 2 n-1 n n+1l

[A]*ﬂ

|t

Using hypothesis and Lemmas 5.9 and 5.10 repeatedly, we have
|ule[A>BT*. Now (i) yields |z|e[B]".

For every O-ary predicate P, put [P]*=[P]+ and extend []* to
* *
arbitrary formulas (see Thm. 3.5 applied to R and R 0).

Theorem 5.13. - Let Ac'¥. Then [A'=[A]".

Proof. By induction on the complexity of A. We illustrate two ca-
ses. Let A=—B and suppose |s|e[A]+. Let |s|R:|t|; then, according
to Lemma 59, |r|e[A]. Thus |z|e[BI". By the inductive hypothesis
|t|¢[B]* and |s|e[A]*. The converse is immediate.

Now let A=(B>C); take Isle[A]+ and suppose (|s|,[B]*,|tl)eR*.
By the inductive hypothcsis, (Isl,[B]+,|tl)eR*, so we can use Lemma
512 and obtain |t|e[C]. Again by inductive hypothesis, |¢|e[C]",
SO |s’e[A]*. The converse is immediate.

Theorem 5.14. - The relation R* satisfies (17°)-(19°).

Proof. In the course of this proof let s,5°,t,eS and 0,0'cS. As-
sume (|s|,|Q|,ltI)eR+, i. e. there are s, © and there is a satu-
rated set Q° such that s’e|s|, t’e|tl, |Q|=|Q’| and (s°,0°,r')eR.
But ¢ is a full 'yo-model so t'eQ’. Since @’ is saturated, lt|=|t’|e
el |=Q| and (17") is proven.

Now suppose that |Q|¢®, i e |s|e |Q|, for some s. Use Lemma
5.4(ii) and find the only saturated set Q’ such that |Q!=|Q’|. Then
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|s|e IQ’I; Q’ is saturated, so seQ’. ¥ being a full y-model, we can
find s, such that (s,0°.0)eR. So (Is’l,lol,lrheR* and (18
holds.

As for (19°), suppose

i) dsl.lol,lther* implies |¢le |, (teS).

Because of Lemma 5.4(ii)) we may assume that both @ and Q’ are sa-
turated sets, so bearing in mind (i) we have, for every ¢ and every
sels | ,

(i) (s’,0,HeR implies teQ’.

Consider now any A such that (|s|,|Ql,lt0|)eR+. So there are
selsl and relr| such that (,Qr)eR. Since ¢ is a full
yo-model, from (i) we get that (5°,0NQ’,r)eR. By Lemma 5.4(iii),
ONnQ’ is . saturated, and since |QﬁQ’ I=lQ|le’ I, we  have
(|s|,|Q|m|Q’|,|to|)eR+; so (19°) is proved.

k %k %
Before we show that (|S I,R 0,R 1) is a 'yo-model we must note

Lemma 5.15. - Let s,iteS be such that |s|R:|tl. Then for all ues,
IsI® lul it 1e|R ful.

Proof. Just remember that R o is the equivalence relation generated
*®
by Ro'

Lemma 5.16. - Let s,u,0,Q’ be such that

*
@A) (Is],12||t])eR  implies |t|e|Q’| (e sS)
(i) |s|R0|u|.
Then

(|u],|Q],|t])eR" implies (|u],|@|N|Q’|,|t])eR".

Proof. The conclusion of this lemma being the same as that of for-
mula (19°) (relatively to R'), we only need to prove the hypothesis
of (19%). Suppose that (|u|,|Q],|t|)eR+; from @{i) and (G) we
obtain [t|e |Q’|. Apply Thm. 5.14 to get the desired result.
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Finally,

Theorem 5.17. - If 9’ is a f ltratzon through ¥ on a full Y -model
¥, then the structure 9’ (|S I R ,R L] ) is a full Yy -model.

Proof. We prove that (|S|,R:,R*) is a full yo-frame. Here s, 1, 7,
u, v eS and 0,0°cS.

Let (I | |Q| |t|)eR Then there is u with both | IR Iu| and
|u| |Q| |t|)eR By Thm. 5.14, | |e|Q| so (17°) is proved

‘Now suppose that |Q|¢® By Thm. 5.14 there are s, such that
dsl.lel,lther'cr™.

As for (19°), suppose that

G sl 1ol lther” implies |tlelo’] (teS)

and let  be such that ([s[.l0],]¢ [)eR"; then we show that
(|s|,|Q|m|Q’ |,|t’|)eR . First, by hypothesis there is u such that

(ii) ls|R0|u| and

(iid) lul,lol,lr er.
Because of (i) and (ii) we can apply Lemma 5.16 and obtain
@iv) (lul.lgllthert implies (lul,lolnlg’|,1:))er"

So (iii) and Giv) imply (lul,l@lnl@’],|¢])eR* which together with
G) yieds (Isl.lolnlg’l,l#her”.

Last we prove (20’); suppose that |s|R:|t| and
(|s|,|Ql,|v|)eR*. So there is u such that |s|R0|u| and

V) (lul,lgl, lvher.

By Lemma 5.15, [¢|R |ul which with (v) yields (l¢],10l,v])eR™
Analogously for the converse.

Note that if ¥ were not a full Yo-model, then the proof of the
%
fact that ¥ is a 'yo-model would not carry through (see Thms. 5.14
and 5.17).

The next result gives a positive answer to a question raised
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in [G2].

Corollary 5.18. - The system Y, has the finite model property and
hence it is decidable.

Proof. Suppose |—/,—Y A. Let ¥ be a falsifying full X—model for A
0

(Corollary 5.2). Take ¥ to be a set of formulas containing all the
subformulas of A and closed under negations. Use the filtration
through ¥ on ¢ to construct 3’*. Thms. 5.7, 5.13 and 5.17 ensure
that ¢ is a full y-model that falsifies A. Note that [S| is fi-
nite, because such is the set {[A]: Ae¥}.

6. - NON MONOTONIC THEORIES BASED ON y OR Y

An important fact about vy (*{l resp.) is that it is a «domain
independent» formalism for n. m. reasoning. By this we mean that
the pairs (A,B) such that A | B form the set of logically valid n.
m. arguments. By Def. 2.1 (3.7 resp.), this set is determined by a
decidable subset of a monotonic logic having the usual recursive
properties; so it is 1. e. '

Now the pure logic of n. m. reasoning is an essential but ma-
nifestly insufficient tool in the development of a satisfactory ap-
proach. For, as we attempt to extend our incomplete knowledge, we
take into account rational epistemic policies, observed regulari-
ties or established conventions that are constituent parts of a
theory we have about a specific domain. It follows that any useful
formalization of n. m. reasoning must also include a proper analy-
sis of n. m. deduction in theories.

The first natural move in response to this problem, is to con-
sider finite theories only, so that the following makes sense:

First proposal. - Given a finite theory T, let T also stand for the
conjunction of its axioms. Then, B is n. m. deducible in T iff

- T>B.
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In this section, |~ A stands for «A is a theorem of either 7y

or Y.

The first proposal is objectionable on both intuitive and
technical grounds. To begin with, non monotonic proof theory here
has a global characteristic: every axiom of the theory must be ta-
ken into account before an attempted proof can succeed. But this is
surely ~ counterintuitive: take the canonical example about Tweety
flying. Our theory T contains statements like

A X Vx(Bird(x) > Flies(x)),
A2: Vx(Penguin(x) — Bird(x) A —Flies(x)),
A Bird(Tweety),

and possibly some other statements about mice or elephants. Intui-
tively, you don’t presume that Tweety flies because you know all of
T but rather because you bear in mind the relevant portion of T.

Worst  still, the first proposal cannot handle the Tweety exam-
ple, since |« T>Flies(Tweety); yet there is no question that the
Tweety story captures some important aspects of n. m. reasoning.

Another objection to the first proposal is that general - state-
ments like A1 and A2 and particular facts like A3 have the same
standing with respect to n. m. deduction. To be sure, what we con-
sider to be knowledge includes both specific facts and general
principles that we are fairly confident about, but each behave dif-
ferently with respect to n. m. deduction. For, according to our
view, non monotonicity is caused here by gaining access to addi-
tional facts rather than by changing the theory used to supplement
the factual knowledge base (theory revision must be treated sepa-
rately!). To be more accurate, we think that the present context of
knowledge extension calls for the theory to be fixed, the factual
base to grow so that its consequences in the theory may diminish.
In order to express this distinction, consider
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Second proposal. - Let T be a theory. Then B is n. m. deducibile
from A in T iff T |- A>B.

The second proposal deals adequately with the Tweety example
(where T=A 1/\Az; A=A3; B=Flies(Tweety)). But it poses another se-
rious problem: not all plausible consequences are obtainable. For
instance if T is now
A4 - Vx(Canary(x) > Yellow(x))

A5 - Vx(Yellow(x) — — Green(x)),

from the fact «Canary(Tweety)», we should be able to obtain the n.
m. consequence «— Green(Tweety)». This turns out to be impossibile,
as a simple counterexample shows (note that there is no contrast
with rule (14), which requires A — B to be a logical theorem).

Another different and interesting idea can be found in [G2];
1t 1S

Gabbay’s proposal. - Let T be as in first proposal. Then B is n. m.
deducibile in T (write: Tw» B) iff there is Xe% such that - T>X
and TAX |- B.

The idea here, is to describe n. m. deduction (from a finite
number of formulas) as the result of a process occurring in two
steps: first there is a monotonic evaluation of the correct presum-
ptions, then from these a n. m. conclusion is drawn by standard de-
duction. But Gabbay’s proposal turns out to be equivalent to the
first proposal.

Theorem 6.1 - Let T be as in first proposal. Then T v B iff  T>B.

Proof. Suppose that there is a wff. X such that |- 7>X and
TAX |- B. Then  TAX—B which by rule (2) yields - TAX>B. So by
(5), | T>B. Conversely, let |- T>B; since TAB | B we conclude
Tw» B.
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Therefore, all objections to the first proposal also apply to
Gabbay’s  definition.  Nonetheless, this formulation of the first
proposal is attractive for it makes an important distinction - that
between drawing reasoned conclusions from an incomplete knowledge
base and the deduction mechanism of logic which is applicable to
the extended knowledge base. This kind of analysis reflects closely
the way we think (see for instance the Default Logic in [R2]): we
first look for plausible extensions of our knowledge base, then we
reason monotonically on these as if they were part of newly acquir-
ed knowledge and what we obtain is a n. m. consequence of our ini-
tial knowledge base.

So let us only modify Gabbay’s proposal so as to make it im-
mune from the objections discussed above. Consider

Definition 6.2 - Let T be a theory. Then B is n. m. deducibile from
AinT @A }vT B) if there is Xe ¥ such that T [~ A>X and T | AAX—B.

Note that Def. 6.2 is not equivalent to the preceding propo-
sals. It makes a distinction between theory and facts; it deals ad-
equately with exceptions and - until shown to the contrary - it al-
lows for reasoning about typicality. For instance, reconsider the
theory T={A4,A5}. We have,

@) T |- Canary(Tweety) > Yellow(Tweety)
(ii) T|- Canary(Tweety)AYellow(Tweety)— — Green(Tweety).
According to Def. 6.2, (i) and (ii) yield

(Canary(Tweety) }vT — Green(Tweety).
Using Def. 6.2 we have:
Theorem 6.3 - Let T be a theory and let A,B,Ce¥.

(34) Al A
(35) Aby B iff Ak B.
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(36) if TAA |- B then A k. B

37 if T |- A>B then A I”T B.

(38) A }vTJ. iff for every B, A }vT B.

(39) if Th—-A then A b L

40 i ALl and Ava’ B then Ay —B.

41) if A VT,_L and A k. B then TAA |« —B.

(42) fT —-B—C and A k. B then A}«T C.

43) A}vT B and A}vT C iff ’Akf BAC.

Proof. Easy.

Remark. - Formula (35) shows that Def. 2.1 captures the logical

properties of n. m. deduction when its meaning is fixed by Def.
6.2. Property (37) girves' a n. m. version of Modus Ponens (compare
with [D], where M. P. does not hold for conditional statements).
Moreover, if

‘ T={A>X; A — =X},
it is easy to see that A b L but TU{A} is consistent. This proves
that both the converse of (36) and that of (39) do not hold.

It turns out, however, that the n. m. deduction operatof given
in Def." 6.2 is not restrictedly transitive. To see this, let T be
the theory determined by the foliowing axioms: P>-M; -M — P’;
PAP'S>M’; M — M; (P>Z) — Z, for every Ze ¥, wheré PP’ MM’ are
O-ary predicates. Using these notations, we first show:

Lemma 64. - If P |- L, then T |- L.

Proof. Since T |- (P>P) — P, we have T |~ P (use (2). On the other
hand, the hypothesis of this Lemma means that there is Xe % such that

) T - P>X  and
(i) T P — —X.

T -PAX - 1, ie
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From (i) and the last axiom in 7, we infer T |- X. But this toge-
ther with (ii) yields T | —P; hence T |- L.

Lemma 6.5. - T is consistent.

Proof. Consider the structure ¢=(S,R 0,R) such that S={s,;,u} and
R0=®. Name the subsets of S as follows: Q1={s}; Q2={t}; Q3={u};
Q4={s,t},' Q5={s,u}; Q6={t,u}; Q7={s,t,u}. ’Let R be the following
set  of triples:  (5,0,,9); @00,  (Quu); (09,9,  (5Q.0;
6.0.u); Q.0 (2.5, Q.. Now let o be the constant
function on S with value & and [] the usual truth function such
that for O-ary predicates P,P’,M,M’,

[Pl = 0, = (s} M = Q,
[P] = Q, = {su) ] = 0,
Now it is easy to check that ¥ is a full 'yl-frame and so by Thm.

3.5, .9’=(S,RO,R,G,[]) is a full 'yl-model. Moreover, s |- T (note
that [PAP’]=Q5), so T is consistent.

Theorem 6.6 - For some theory T, the operator b is not restricted-
ly transitive.

Proof. Take T as above. Note that P }vT P’ and PAP’ }vT M: for,
T |-P>-M and T - PA-M — P’, so we have P }vT P’; also,
T | (PAP’)>M’ and T |- PAPAM’ — M yield PAP’ b, M. Now if
restricted transitivity held, we could infer

@) P }vT M.
On the other hand, T - P>-M and T - PA-M — —M, so P }vT M.

Using this last result, (i) and (43), we obtain P }vT 1. By Lemma
6.4, T |- 1, contradicting Lemma 6.5.

We believe that restricted transitivity is a desirable proper-

ty; a formalization of n. m. reasoning should account for some
«chaining» of non monotonic conclusions. Unrestricted transitivity
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leads to taking special care to avoid unwanted consequences, but
restricted  transitivity solves that problem. From this point of
view, Thm. 6.6 points out that either there is a serious flaw in
our concept of n. m. deduction or that Y, (and a fortiori vy) is not
strong enough to permit chaining in theories. We chose to investi-
gate this second option and propose another calculus, I', obtained
from y by substituting (5) with

(44) (AAB)>C — A>(B — O).

To evaluate the plausibility of (44) take the instances:
A=Bird(Tweety), B=Alive(Tweety), C=Flies(Tweety).
As in the previous case of 7y, the calculus I' determines a n.
m. Logic, i. e.
A B iff |—FA>B,

in which the following holds
(45) if AAB} C then A RB — O).

Note that (45) extends to the n. m. inference operator half of
the Deduction Theorem. The other half cannot hold for otherwise the
logic would be monotonic. For a discussion of (44) see also [S].

In the rest of this section, let A }vT B indicate n. m. deduction
based on I. We show that b is restrictedly transitive.

Theorem 6.7. - If A b B and AAB by C then A k C.

Proof. By hypothesis, there are X,Ye # such that
@ T |t ASX; (ii) T | ANX — B;
(iii) T |AAB)>Y; (iv) T | AABAY — C.

Using (44) and (iii), we have T '_1“ A>B — Y), which together with
(1) and (2) yields '

™) Thr A>(XAB — Y)).
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On the other hand, T l_l" ANXAB — Y) — AABA(B — Y) (use (i),
so by (iv) it follows that T I"I‘ ANXAB — Y) — C. This togethcr
with (v) yields the desired result.

Now for semantics: define 9’=(S,R0,R,0',[]) to be a I'-model if
it satisfies all properties given in Def. 3.1 except that (19) is

replaced by

(46) Let s,tucS be such that (s,[Al,DeR, tROu and uel[B].
Then (s,[A]N[B],w)eR.

Intuitively, (46) implies that if the stereotyped meaning of
AAB is empty, then the stereotyped meaning of A is included in the
full meaning of —B.

Theorem 6.8. - I' is valid in the class of I'-models.

Proof. Obviously, it is enough to prove that (44) is valid in the "

class of I-models. Take a I-model ¥ and s,,ueS such that (s,[A],)eR.

We show that t|- B — C when s|-(AAB)>C. So let tR u and u|~ B. By
(46), (s,[A]m[B] w)eR and thus uf—- C. Consequently, s | A>SB — O).

Theorem 6.9 - T is complete in the class of T-models.

Proof. Consider the canonical model ¥ as given by Def. 5.1, except
that now S° is the set of nice I-theories with respect to some Q
We set to prove that ¢° satisfies (46). Let (s,[Al,HeR’, rcu and
ue[B]l with s,t,ueS®. Furthermore, suppose that  (s,[A]N[B],u)eR°. So
there is Ce ¥ such that

® (AAB)>Ces

but Ceu.. Hence (B — C)#t. On the other hand, (i) and (44) imply
A>B — C)es. Therefore, (s5,[Al,)2¢R°, a contradiction. At “this
point use the arguments in the proof of Thm. 4.9 to show that ¥°
is a canonical model for I.
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Remark. - A full T-model 9’=(S,R0,R,G,[]) is a full y-model except
that (19’) is replaced by

(46’) as (46) except that every occurence of [A] and [B] is
replaced by arbitrary Q,0’cS.

It can be shown that no canonical model for I' is ever full
For, suppose to the contrary, i. e. that a canonical model ¥°=
= (SC,RC,R;,[],G) for T is a full T-model. Take a non maximal nice
[-theory, r; so teS° and there is ueS® such that rcu but ru. Now
let O={r}; then by (18’) there are s,7€5° such that (5,0,r)eR° and,
by (17°), r=t. Thus

@ (s,0,0eR".

On the other hand, if B = P—P, then ue[B] and since rcu, by (i)
and (46’), we have that (s,0N[Blu)eR". So, by (17°), ucsQnN[B], i.
e. ue, impossible.

At this point we can easily prove
Theorem 6.10 - ycT.

Proof. To show that (5) is derivable in I, we take a canonical- mo-
del y’°=(S°,R°,R;,[],G) for T and, given any se$° we will prove
that s|— (5). Suppose that

@) (A>B)es

and (AAB)>Ces, but A>Ces; thus, by (46),

(ii) A>B — C) € s,

and by (6) —(A>C)es. So there is teS° such that (5,[A],)eR° but
2[C] (Lemma 44). By (i), te[B] so that re[B—C], contradicting
(ii).

Now define a new calculus I‘l which bears the same relation to
Y, as I' does to y. From Thm. 6.8 onward substitute every reference
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to vy and I' with Y, and I‘l respectively. The resulting arguments
still hold. Hence we have the following G-lattice:

r/rl\v
N/

We shall call G-framework the set of n. m. operators br based
on the G-lattice.

We must check:
Theorem 6.11. - Deduction in the G-framework can be non monotonic.

Proof. We will find a theory T, such that b is n. m. Let T be de-
termined by the formulas (P>P’) and (PA—P')>Z — Z, for every Ze¥.
Let }vT belong to the G-framework. Using the same arguments as in
the proof of Lemma 6.4, it is easy to see that

@) if (PA=P)p. L, then T |- 1

Note that P }vT P’ (see (37)), so if }vT was monotonic we should have

(ii) PA—|P’}vT P’

But (ii) means that there is Xe ¥ such that

(iii) TH(PA—P’)>X

and T}H(PA—P’AX) — P’. Now, we also have TH(PA=P'AX) — —P’, so
by (iii) -

@iv) PA—.P’}vT P’

Therefore (ii) and (iv) imply PA—\P’}vT 1 and, using (i), we conclude
T 1. Hence, given any }vT in the G-framework, if }‘i" were monotonic
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then T would be (monotonically) inconsistent.

On the other hand, we can construct a I‘l-model which satisfies
T, so }vT cannot be monotonic. To see this, take S={s,t} and name
the nonempty subsets of S as follows: Q3=S={s,t}, Q2={t}, Q1={s}.
Now let Ro=® and let R be determined by the following triples:
(s,Ql,s), (s,Qz,t) and (s,Qs,t). It is easy to check that (S,RO,R)
is a full Fl-frame. Let us now define a l"l-model based on that
frame (use Thm. 3.5) by putting: [P]={s,t}=Q3 and [P’]={t}=Q2. It
is straightforward to verify that in this model s|- T.

7 - OTHER SYSTEMS.

The preceding sections served to show that justifiable con-
ceptions of deductive validity will not always rule out non monoto-
nicity.

Although a final verdict on the merits of the G-framework de-
pends on further research, we can already see that it offers a num-
ber of advantages. It provides for manageable proof procedures in
contrast with the non constructive fixed points used in many n. m.
deductive systems. It supports reasoning which cannot be supported
by some n. m. systems (see [R3] in connection with the example
T={A 4,A 5} in §6). Unlike many existing approaches, it possesses an
intuitively clean semantics, whose resulting concept of n. m. con-
sequence is 1. e. Admittedly, the present framework will offer a
true computational advantage only if a satisfactory implementation
of its logic can be devised. But this is one of the many questions
about non monotonicity that this paper is not meant to address.

Another interesting question concerns the relationship between
the G-framework and other n. m. systems. A comparative study of the
respective  formal properties might require the construction of a
unifying formalism. The G-framework by itself cannot provide for
one, because it is connected with a particular province of n. m.
reasoning. This is one in which we postulate the existence of a
«cognitive» or «causal» model that simulates the way things usually
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work out in a chosen part of reality. But there are other types of
intuitions  grounding formalizations of n. m. reasoning. For ins-
tance in systems that reason about closure, the -underlying intui-
tion is that the description of a setting is, in a certain sense,
complete. Many such formalisms propose some version of the follow-
ing scheme:
(47) if B does not followin S from A |

then —B follows from A4,
where S is a logical system. The addition of scheme (47) to- S,
yields a new formalism X which is obviously n. m.. So if we ma-
neuver ourselves into the position described by the antecedent of
(47), the scheme sanctions a conclusion which, using our notation,
we express as A }“Z —B.

The properties of the nm. d¢ducﬁon operator b will depend
upon many things: on the choice of S, on the kind of formulas A and
B to which (47) applies and on the interpretion given to the con-
cept ‘

@ «does not follow in S».

In fact, (47) comes in many varieties: see - for instance, [C], [G4],
[MD], [P], [R1], [R2]. But the point is that (47) ‘captures a common
pattern of reasoning that can. perhaps be explored in some way com-
parable to the G-framework. , :

So let us sketch a possibile approach for analysing by . Take S
to be a system containing First Order Intuitionistic Logic and let
L be the language of S enriched with two binary modal operators >,
<; read

«A<B» as «there is evidence that A does not yield B»;
«A>B» as «on the basis of A it is relatively safe to assume B».

The idea here is to. produce an analog of Def. (#) (see §1) and
translate . into the logic the metalogical concepts that appear in
(47). In other words, we interpret > and < as being the logical re-

ferents of the metalogical concepts }“Z and (i) respectively, and

take as a rule of our logic
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A < B
@) A =B

The problem concerns which axioms and rules should be put on

(47 revisited)

these operators.

The meaning of «A<B» was given in very broad terms. For ins-
tance, nothing was said about the nature of the required evi-
dence. Actually, we assert «A<B» simply when it is possible to know
A without knowing B. ‘

By the same token, the ineaning of «A>B» is generic. In fact we
take that "on the basis of A it is relatively safe to assume B" if,
as far as we know; whenever A obtains, —B doesn’t.

Bearing in mind these ideas, consider extending any calculus
in the G-lattice with (a) and

(b) - (A<B) — (A — B) ©) A —5 (A<l
A — B
(d) —_—
- (A<B)
A — A’ B —5 B’
(e) ®
(A<B) — (A’<B) (A<B’) — (A<B)
(2 A>(Bv-B) - (h) (A>=B) — A>(A<B).

Axiom (g) expresses the fact that > is an implication by
closure, ie. it is relaﬁvely safe to assume that if a statement
doesn’t hold, its negation does (of course, (g) 1is meaningful be-
cause we are using Intuitionistic Logic). ,

V It is likely that conditions (a)-(h) are insufficient for our
purpose. But whether there is a calculus ¢ in L such that the de-
finition '

Aby B iff 5 4B
captures reasoning under (47), is a problem that serves to close

this paper.
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