Claudio Sossai

Turing Machines,
Uncertainty and Parallelism

R

AILA PREPRINT

n. 7 febbraio 1991

Direttore Responsabile: Ruggero Ferro
Iscrizione al Registro Stampa del Tribunale di Padova n. 1235 del 26.9.1990

Pubblicato con il contributo di:

iﬁj Cassa di Risparmio di Padova e Rovigo

Stampa: Rotografica Padova

TURING MACHINES, UNCERTAINTY AND PARALLELISM

CLAUDIO S0SSAI
Via Vlacovich 20 - 35100 Padova

Abstract.

A definition of machine is given which is an extension of Turing’s defini-
tion and describes a proper extension of the concept of computability: we
will show that for such machines the halting problem becomes decidable.
The main characteristic of extended machines is the ability to work in situ-
ations of uncertainty and to carry on parallel computations. Parallelism and
uncertainty appear in this frame as intertwined concepts.

1. Introduction.

In this paper we define a class of machines which is an extension of the
class of Turing machines. A Turing machine in every step of the computation
chooses between two possible instructions which must be executed depending
on the value observed on the tape, which may be 0 or 1. The machines we
will define are able to work with an extension of the integer numbers which,
being the elements of a boolean valued model of arithmetic, have the following
property: a number may be equal to more than one standard number with
different degrees of truth. Thus the symbol which a machine may observe
on the tape may be a number which at the same time is similar to 0 and 1;
we then can say that the machine is in a situation of uncertainty. To decide
which of the two possible instructions must be executed, the machine now
has to decide whether the number 0 or 1 is represented, and to do this it
needs a certain amount of information. For this reason, a new parameter is
provided to any machine, expressing the amount of available information.

In this framework, three different possibilities, and hence three different
kinds of computation, may arise:

1) The machine never finds situations of uncertainty. Then it works like a
Turing machine.

2) The machine finds situations of uncertainty, but it has enough infor-
mation to make a choice. In this case it makes some operations which are
performable also by a Turing machine.

3) The machine has not enough information to decide a situation of uncer-
tainty.

A standard Turing machine would have no chances to proceed in such
a situation: here we propose two definitions of the concept of computation
which allow the machine to go on. One is to conceive computations as a linear
sequence of operations; then the machine will choose randomly between the
two possible instructions and will extend its own information to the minimal
piece of information which it should have had to make that same choice with-
out uncertainty. According to our second definition, we allow the machine to
proceed in parallel and execute both sequential computations corresponding
to the two possible instructions; then the parallel computation can be rep-
resented as a tree, each branch of which represents one possible sequential
computation and each branching is characterized by a piece of information.
In either cases, all the operations which are performed by the machine with
no change of information, are recursive. As we shall see, a machine with the
sequential concept of computation does not correspond to a function. On
the other hand, a parallel computation describes a function from extended
integers into extended integers, and thus the computing ability of extended
machines may be compared with that of Turing machines. We will use the
halting problem as a test, and we will show that it becomes decidable in the
extended sense.

I want to apologize for the presence of some concepts, for example that of
random choice, which are undefined and must be taken as ”primitive”, and
also for the style that is not in a definitive form, but I hope that the reader
can overcome these difficulties and find some useful ideas.

1.1 Uncertainty.

The usual environment in which we can describe uncertainty is the Boolean
algebra of possible events. The set of truth values 2 = {0, 1}, where 0 stands
for false and 1 for true, is a Boolean algebra; so it is possible to extend the
classical semantics of logic to a semantics with uncertainty by interpreting
the sentences in a Boolean algebra different from 2. There is an elegant theory
where we can find all the tools we need: Boolean-valued models of set theory.
An exposition of this theory may be found in [B]; here we give an informal
description of the ideas contained in this theory that we shall need. A set X
in the universe of sets V may be identified with its characteristic function cx

defined by:
1 fzeX
CX@%“{O ifz ¢ X

So we can identify the universe of sets V with the class V(® defined as follows
(by recursion on the ordinal numbers a, f3):

V) = {f: function(f) A 3B)[B < a A domain(f) C Vﬁm] A range(f) C 2}

and
v = {:c :(3a)(z € Va(Q))}.

Now if, in the previous definition, we replace 2 with a complete Boolean
algebra B, it is possible to give a new definition that describes a new universe,
named V(P) where we can interpret the sentences of set theory.

We can associate with every sentence ¢ of the first order language of set
theory an element b of the algebra B which describes the truth value of the
sentence and we shall indicate this with the formula b = ||¢]].

In the model V(&) logical axioms as well as all axioms of set theory have
truth value 1 and this property is preserved by the rules of inference.

1.2 Information.

Let B be a complete boolean algebra. A subset C of B is said to be dense
in B iff 0 ¢ C and for every element b € B, with b > 0, there is an element
¢ € C such that ¢ < b. A dense subset of B is also called a set of information
for B, and each ¢ € C is called a piece of information.

A central idea in information theory is that if ¢ is an event that has proba-
bility less than b, then the occurence of a gives us more information than the
occurence of b. In our model of set theory we will not use measures and so
we cannot speak of probability; however, it is well known that in a Boolean
(sigma) algebra if a < b then as soon as we define a measure u necessar-
ily p(a) < p(b), so the partial order of the Boolean algebra captures some
interesting properties of the idea of information.

Let ¢ be a piece of information, i.e. an element of a dense subset of B, and
let ¢ be a sentence; the well known forcing relation ¢ | ¢ has among others
some properties which capture the above idea.

In this frame, the forcing relation may be defined in the following way:

cl-¢iff c <[l

Some of its properties can be interpreted as follows: (d < cAc = ¢) — d | ¢
captures the above idea of information theory, (Vc)(3d < ¢)(d |- ¢Vd = —¢)
says that any piece of information can be extended until the truth value of
a sentence is decided, (¢ | ¢) — —(c | —¢) shows the soundness of the
definition.

Since we want to define a computable relation between information and
sentences, first of all we need a complete Boolean algebra with a set of infor-
mation in which Boolean operations are computable. Let G be 2%V, the set of
all functions from the integers to 2. Let H be the set of functions from finite
subsets of N in 2 partially ordered by inverse inclusion. For every h € H we
put:

N(h)y={feG:hC [}

Subsets of the form N(h) form a base for the product topology on G when
2 is assigned the discrete topology. Each N(h) is a clopen (i.e. closed and
open) subset in this topology, in particular it is a regular open set, and
it is easy to verify that the map h +— N(h) is an order isomorphism of
H onto a dense subset of RO(G), the set of the regular open elements of
G. Therefore (RO(G), N) is a Boolean completion of H, and the latter is
(up to isomorphism) a set of information for RO(G). So if we take B =
RO(G) as a Boolean algebra, all the information we need is given us from
the characteristic functions of the finite subsets of the integers, which are
computable objects. We call C the isomorphic image of H into B and let A be
the Boolean algebra generated by C'. From now on when we will speak of the
Boolean algebra B we will mean the complete boolean algebra B = RO(G).

We will also use the following convention to simplify the notation: an ele-
ment b = {(n1,71),... (ng, 1)}, with n; € N and ~; € 2 for every j < k, of
H is denoted by [n1,...,nx), where each n; is barred if and only if v; = 0.
For instance, if h € H is defined as:

dom(h) = {1,4,5}
h(1) = 0,h(4) = 1,h(5) =1,

then we will denote it by [1,4,5]. Identifying h with its isomorphic image
N(h) in B, with this notation it is easy to see that for instance:

[1,2,6] A 3,8 = [1,2,3,6,8]
—[1] = [1]
1

P

=[1,3] =[1,3] V[1,3] V[1,3].
In this framework we can thus express two important concepts: uncertainty
and information.

1.3 An arithmetic with uncertainty.

Recursive functions, Turing machines and computability have their natural
environment in the natural numbers, and it is known that the set of finite
ordinals is a model of the integers in set theory; so we can describe an arith-
metic with uncertainty using the set of finite ordinals in a boolean valued
extension of set theory.

What are such integers with uncertainty? It is known, that it is possible to
define integers in set theory with a restricted formula INT(z) and so integers
in our model, that we shall call N(&) are all the elements = of V() such
that |[INT(z)|| = 1. It is also possible to construct them explicitly.

First of all we can describe a copy of the integers in our model in this way:
given an integer number n we have a copy of n, named 7, defined by:

i={(3,1):j €n).

The set of such numbers behaves just like the natural numbers and so from
now on we shall identify 7 with n.

Recall that a partition of unit is a family {a;}ier of elements of B such
that:

(1) a; Aa; =0 for every i,j € I,

(2) Vigrai=1.

If we have a partition of unit {a;};c; and a family of integers {u;};es, we
can define a new element u, called mixture and written v = Z;cra; - u;, In
the following way:

dom(u) = U dom(u;)
i€l
u(z) = \/[ai Az € ul]] for z € dom(u).
i€l

We will usually write u = b-1@® —b-0 for u = Z;era; - n; when I = {1,2},
a1 = b and as = —b.

It is possible to show that all the extended integers are mixtures of standard
integers and that they enjoy all the first-order properties of standard integers.
For example, we can see how the sum works in this extended arithmetic. We
can follow the traditional way to define the sum, i.e. for v € N (B) we let
v =uU{u}and put u+0=wand u+v' = (v +v)".

We leave it to the reader to verify that with such definitions we have:

THEOREM 1. If ¥;cra; - n; and ;e b; - m; are two elements of NB) then
|Zicrai - ni + Zjesbj -mj = Zierjes(ai Abj) - (ni +my)|| =1

Note that in the following we will use the symbol ¥ for mixtures, while >
indicates the sum.

COROLLARY 2. Let Sjera;-n; be any element of NB) where I = {0, ...,k}.
Then there exist j; and b;, 1 < k, such that:

ko Ji

Sierai-ni =y (Y (bi- 1@ -b;-0))

i=0 =1

In the following we will use only extended integers that are mixtures made
by finite partitions of unit of elements of A.

This explains why in the sequel we can restrict to extended integers that
are sums of numbers of the form —¢; -0 @ ¢; - 1.

2. Extended Turing machines.

We are now able to define Extended Turing machines, shortly ET machines.
Remember that A is the Boolean algebra generated by the set of information
C. To see the relation with standard Turing machines, it is convenient to
recall the definition of Turing machine, as given e.g. by Rogers ([R], p.13).
Let:

Q = {q; : i € N} be the set of internal states,
2 = {0,1} be the set of scanned symbols,
S = {R,L} U2 be the set of operations performed by the machine

(where R means go to the right, L go to the left, 1 write 1 and 0 write
0).

DEFINITION 1. A Turing machine t is a mapping from a finite subset of Q x 2
into S x Q.

According to our philosophy, we first substitute 2 with the Boolean algebra
A; so now A will be the set of possible symbols on the tape, and hence

S" = {R,L} U A is the set of operations which can be performed by the
machine.

DEFINITION 2. An Extended Turing machine T is a mapping from a finite
subset of @ x A into S’ x Q that satisfies the following restriction: for any
1, if (Gn, 1), - . -, (Gn, bm) € dom(r) are all pairs with initial state gy, then it
must be that m = 2 and by = —by.

As usual, if ((g;, b)), (s,q;)) € 7, we say that g;bsq; is an instruction of 7.
Then the above restriction says that whenever q;bsg; is an instruction of T,
then necessarily 7 contains also an instruction beginning with g¢;—b, and no
other instruction with initial state g;; we shall call macro instruction a pair
of instructions of the form: ¢;b..., ¢;—b....

2.1 Sequential computation with ET machines.

ET machines work with a tape which, like for standard Turing machines,
has an infinite number of cells. However each cell may contain an element b of
the Boolean algebra A. Such b is interpreted by the machine as the extended
integer number b -1 @ —b - 0. Note that when b is equal to 1 € A, then the
number it represents is the number 1, while when b = 0, it is the number 0.
This means that, if in this context we restrict to the boolean values 0 and
1 only, the tape will represent numbers formally as in the standard Turing
machines.

Unlike Turing machines, ET machines have an additional memory where
they can store the information achieved during the computation in the way
we will specify below.

We can suppose that ET machines have a finite alphabet made of: 0,1, [,], -.

Then, for example, the element [2,3] may be represented on the tape by:
. 0][]-]1]1jo]1)1f1]}]0]...

The machine in every moment of the computation will be positioned on a
cell which is called scanned symbol or scs.

In every moment of the computation the machine is in a certain internal
state, ¢;, which means it is pointed to the macro instruction ¢;b...,¢=b....
Then let a1, as be defined by:

a; =||b-1®-b-0=scs 1 =scs-0|
ag=|-b-1®b-0=scs-1d—scs- 0

We can say that a; represents the degree of likeliness between the number

(represented by) b and the number (represented by) the scanned symbol;

similarly, ao is the degree of likeliness between —b and the scanned symbol.
First of all it is useful to see that as = —a;.

LEMMA 1. Ifa,b€ A, then|a-1®—a-0=b-1®-b-0|| =a < b.
PROOF: To simplify notation, we call n(b) the number represented by b on the

tape, i.e. n(b) = b-1@ —b-0. It is easy to see that dom(n(a)) = dom(n(b)) =
{0}. Applying the definition of equality we have:

[n(a) = n®)|| = (n(a)(@) — 1|0 € n(d)]I) A (n(b)(@) — |10 € n(a)]]) =
= (@0 € 1)V (maAl® €0])) — [0 € n(d)l)
AGANDe LDV (=bAlBeOl) =110 €n(a)l) =
=(((eAD)V(maA0)) = D) A(((BAL)V (mbAD)) — a) =
=a < b

PROPOSITION 2. Ifa; and aq are defined as above,then as = —a;.

PROOF: Using the previous lemma we have a3 = b < scs and ag = —b « scs
and using the tautologies ((a « b) V (=a < b)) and —((a < b) A (-a < b))
we have that a; V ap = 1, a1 A ag = 0 and therefore as = —a;. ¢

We assume that the machine can start the computation only if it is provided
with a piece of information consisting of an element ¢ in C'. This element may
vary in the course of computation, as we will now explain; we will call it the
information available to the machine in that moment.

If at a certain moment the machine is in state g;, the values a1, ag are
defined as above and c is the information available in that moment, then
only three cases are possible and mutually exclusive:

(1) c<as

(2) ¢ < ag, that is ¢ < —ay

(3) ¢ £ ay and ¢ £ as.

If the first case occurs, we have from the definition of forcing that
(1) ch=b-1®-b-0=scs- 1 —scs-0.

Then we may say that the information ¢ available to the machine is enough
to force equality between the number represented by the scanned symbol and
that represented in the first instruction ¢;b..., and hence the machine will
choose and execute this instruction; similarly if ¢ < as holds, it means that

(2) cl=—-b-1®b-0=scs- 1@ scs-0

and so the machine will execute the instruction ¢;—b. ..

If neither the first nor the second case occurs, we may say that the informa-
tion c available to the machine is not enough to decide whether the number
represented by the scanned symbol is equal to the number represented in
the first instruction or the number in the second instruction. We then put
¢1 = cAay and ca = ¢ A ag; obviously, ¢1,c; > 0and ¢; - b-1@-b-0 =
scs 1@ -scs-0and ca - —-b-1®b-0=scs-1@ —scs- 0. In this case the
machine stops and waits until an external agent, for example a generator of
random numbers, provides it with a number, 0 or 1, which the machine takes
as indication whether the first or the second instruction must be executed,
respectively. It is important to note that the external agent has no knowledge
about the machine and its computation; thus we could say that the machine
chooses randomly. Moreover, if 0 is provided, the machine extends its infor-
mation from ¢ to ¢y, and similarly, if 1 is provided, it extends its information
from ¢ to ¢o; in other words, after a random choice, the machine extends its
information in such a way that, if it would have had that information before,
it would have executed the same instruction without any indication from the
external agent. Even more informally, the machines assumes to have a pos-
teriori the information which justifies the choice which it actually has taken
randomly?.

So if it chooses to extend the information ¢ with ¢;, it will execute the
first instruction, and the second otherwise. It is worthwhile to note that in
this way to every random choice there corresponds a proper extension of the
information previously available to the machine. It is easy to see that in the
case of the Turing machine, namely when if b = 1 or b = 0 and scs = 1 or
scs = 0, no information is needed to make a choice.

Once the machine has chosen the instruction, it executes the operation
indicated by the instruction, that is: if the operation is L then it moves the
tape one cell left, if the operation is R then it moves the tape one cell right
and if the operation is b then it writes b in the scanned cell.

L After some conversations on this point, G. Sambin proposed to refer to such a behaviour
of ET machines as " The Jesuit’s principle”.

10

The halting condition occurs when the machine is in a state to which there
corresponds no macro instruction.

Since the computation may depend on random choices, it is quite impossi-
ble to determine the behaviour of the machine, and so the concept of function
does not correspond to this kind of computation. In section 3 we will describe
another kind of computation for ET machine, one that is specifically devised
to capture the concept of function.

It is possible to describe (see [R], p.15) every computation made by a
Turing machine ¢ provided with input n, with a sequence of pairs (g;,0),
called instantaneous descriptions, formed by an internal state ¢; and a state
of the tape o (which includes the indication of the scanned symbol). We
have seen that the actual value of the symbol scanned by an ET machine
sometimes is not in general sufficient for the machine to choose between the
two parts of a macro instruction; however, if we know also the information ¢
reached by the machine after the execution of the instruction, then we can
say which of the two instructions has been executed. Thus we can give the
following definition.

DEFINITION 3. An instantaneous description for ET machines is a triple
{gi,0,c¢), where q; and o are an internal state and a state of the tape, and c
is the information reached by the machine after the execution of the macro
instruction corresponding to g;.

We suppose that a machine employs the same amount of time to execute
any instruction, and we call the moment of the execution of an instruction a
step of the computation.

Since every instantaneous description is generated by the execution of an
instruction, we can index the set of instantaneous descriptions by the corre-
sponding step number.

We will indicate with T'(7(y)) the sequence of instantaneous descriptions,
generated by the machine 7 with input y and indexed by step numbers.

2.2 First analysis of ET sequential computations.

Since the set A of symbols is recursively enumerable, the totality of ET
machines can be equipped with & Gddel numbering. At every instant of a
computation, only a finite number of cells contains a nonzero symbol. Ac-
cordingly, we call state of the tape the description of this part with the
indication of the scanned cell. It is possible to give a coding for the possible
states in which the tape can be. From now on we shall identify possible states
of the tape and Extended Turing Machines with their codings.

We have noted that the set of programs of the Turing machines is a subset
of the set of all programs in the extended sense. But if we take a program
of a Turing machine, it behaves like a Turing machine only if the input is a
standard integer. In fact, if the input is an extended integer it is possible that

11

a program of a Turing machine reaches a condition of uncertainty and so it
must make a random choice. So the programs of Turing machines, from the
viewpoint of extended machines, represent Turing machines only for standard
inputs.

If the machine = with input y stops and gives output z we call (y,z) an
input output pair.

DEFINITION 1. We call graph of the machine = the set G(z) of all pairs of
input output of the machine x started with no information (i.e. with 1 as
information).

THEOREM 2. There exists an ET machine T whose graph consists only of
standard integers, but for no Turing machine t, G(7) = G(t).

PROOF: It is easy to see that there is a machine which decides if a number is
a standard integer or not. So we can define the machine 7 as follows: for any
input y if y is not a standard integer then 7 with y as input loops, otherwise it
writes 1 on the scs and passes the control to the following macro instruction:

¢[0]1g; 41
¢i—[0]1g;
Qi+18top

It is easy to see that 7 with input y gives no output if ¥ is not a standard
integer, otherwise it stops or not depending on a random choice. So no Turing
machine can have the same graph since it is not r.e. ¢

DEFINITION 3. We define a predicate S in the following way: S(z,y, ¢, p, z, d)
holds iff the machine z, with input y, and starting information c, in p steps
reaches the tape state z with terminal information d and then stops.

Note that if no random choiches are made during the computation then
all the operations performed are combinations of boolean operations over
A, which we know to be recursive operations, and that at the end of the
computation, the machine has the information sufficient to make all choices
needed to end the program. So if we start again the machine, then it will
repeat the same computation, but now with no random choices. All these
observations are summarized in the following:

ProprosiTION 4. If S(z,y,¢,p,2,d) and ¢ = d, then the operations performed
to compute z are recursive operations.

PROPOSITION 5. For all z,y,c, if there are p, z,d such that S(z,y,c,p, 2,d)
then we have S(z,y,d,p, z,d).

In information theory the amount of information contained in an element
b of the algebra of possible events is defined as I(b) = — log(u(b)), where u
is a probability measure on the algebra of possible events.

12

THEOREM 6. For every probabilistic measure p on B, if S(x,vy, ¢, p, z, d) and
¢ # d then I(c) < I{d).

PRrROOF: We have already noticed that if ¢ # d then ¢ > d. Any measure p is
monotonic, and then p(c) > u(d), so that I(c) < I(d). &

Roughly speaking, the theorem states that after every random choice, the
amount of information available to the machine increases.

3. Parallel computations with ET machines.

If we start two copies of the same ET machines, even with the same input
and information, it may well happen that they follow two different sequen-
tial computations and give two different computations. This is due to the
dependence of sequential computations on random choices.

For this reason, ET machine with the sequential concept of computation
do not correspond to our intuitive idea of “computing a function”; thus, if
we want to compare ET with Turing machines, we must give a more mathe-
matical description of the concept of computation.

Randomness, in the description we give, appears like a primitive and un-
defined concept. One way to analyze its role and meaning in ET machines,
may be found by answering the question: what must we do formally, so that
all the power of the machine remains but randomness disappears? The so-
lution of the problem lies in passing from a sequential computing mecha-
nism to a parallel one. Let us see how. Randomness comes into play when
the information c available to the machine is not enough to choose between
two instructions. This means that if ¢;b...¢;—b... are the two instructions,
a; = [|b-1@-b-0 = scs-1@-scs-0| and ag = ||=b-10b-0 = scs- 1@ -scs-0)),
where scs is the value of the scanned symbol, then ¢ € a; and ¢ £ ay. The
role of randomness was to choose between the two possible extensions of in-
formation, cAay = ¢; and cAag = ¢y, and thus between the two instructions.
Now, if we could parallely compute with the same machine but with two dif-
ferent information ¢; and ¢y, no random choice would be necessary and so
randomness would be eliminated. This is precisely what we want to do in
describing parallel computations with ET machines.

To describe parallel computations we must add the following new ability to
ET machines: an ET machine 7 is able in every moment of the computation,
if necessary, to produce a copy of its program, a copy of the tape and to
carry on a new parallel computation with the new tape and a new state
of information. So when the information ¢ possessed by the machine is not
enough to decide which instruction must be executed, the machine creates a
copy of itself and carries on two computations, one with the new information
c; and the other with the new information cy. In this way random choices
completely disappear from the computation of ET machines.

We have supposed, in ET sequential computations, that the same time is
needed to execute each instruction and we called the moment of the execution

13

of an instruction a step of the computation. Similarly, we suppose that in a
parallel computation the same time is needed to execute each instruction. We
will also suppose that no time is required to an ET machine to duplicate its
program and the tape, so that, also if there are duplications of the computa-
tion, the execution of the instructions remains synchronous between parallel
branches.

Accordingly we can call step of a parallel computation the moment of the
simultaneous execution of all instructions that are performed contemporarily
in all the branches of the computation. In the parallel case, the set T(7(y))
of all instantaneous descriptions, indexed by the corresponding step number,
of the parallel computation of 7(y) is not a linear sequence but rather a
possibly infinite binary tree. A branch of the tree T'(7(y)) is a sequence of
instantaneous descriptions corresponding to a sequential computation of 7(y).

Let ¢ be a piece of information contained in an instantaneous description of
T(1(y)); we will denote by 7¢(y) the computation 7 with input y started with
information ¢. Note that T(7°(y)) is the subtree of T'(7(y)) determined as fol-
lows. Assume that the first step in which ¢ appears is p, and that (g, om, ¢)
is the corresponding instantaneous description. Then an instantaneous de-
scription (g, 0,d) € T'(r(y)) belongs to T(7%(y)) if either it corresponds to a
step n with n < p and d > ¢ or it corresponds to a step [with [> p and
d<c.

DEFINITION 1. We will call states of information of a step p of the compu-
tation 7(y), all the pieces of information that belong to some instantaneous
description of T(7(y)) with index p.

DEFINITION 2. T'(7%(y)) is a terminal branch in the computation 7(y) if
T(7¢(y)) is the set of all instantaneous descriptions generated by a sequential
computation that stops with an instantaneous description where ¢ appears.

This means that the computation 7°(y) is a sequential computation that
stops with no random choices.

DEFINITION 3. A state of information ¢ of a step p, is an active state if ¢
does not determine a terminal branch at step p.

If a subtree of the computation is a terminal branch, we suppose that, after
it has reached the stop condition, in every unitary interval of time it makes
a copy of its tape. The reason is, as we shall now see, that in every moment
of the computation we must know the state of the tape of every branch, and
it is easier to produce a copy of the tape of the terminal branches, than to
search; in every moment, for the tapes of the branches that have stopped.

3.1 Output of a parallel computation.

We have noticed that when a machine changes its state of information
¢ into two new states ¢; and cg, then ¢; and co satisfy: ¢ V ey = ¢ and

14

c1Acg = 0. Therefore, since an ET machine always starts with information 1,
in every step of the computation, if {c1,...,¢c,} are the states of information
corresponding to that step, we have that: ¢; V- Ve, = 1 and ¢, A ¢, =

0 for h,k <n and h # k; this means that {c1,...,c,} is a partition of unity.
Every step p of the computation, uniquely determines two finite sets: the

set {ui,...,u,} of all numbers represented on all the tapes and the set
{c1,...,cn} of the corresponding states of information.
For the reason that uy, ..., u, represent extended integers and {ci,...,c,}

is a partition of unit, we have that u = 3;<,c¢; - u; is a new extended integer.

DEFINITION 1. We say that the number v = Fi<nCi - u; is the number rep-
resented on the tape(s) at that step of the computation, and we will write
(y) = w.

Note that for an ET machine it may happen that, for some input, there are
some branches which are terminal branches and some other branches which
do not stop. This may be a problem if we want to define the output of an
ET machine.

We can overpass this problem simply considering a branch that never
changes the number represented on its tape, as a branch where the com-
putation is completed; and so we can give the following definition of the
output of an ET machine 7 with input .

DEFINITION 2. The output of an ET machine T with input y is z, written
7(y) = z, if there exists p such that ||7,(y) = z|| = 1, and for every q > p, we
have ||74(y) = z|| = 1.

Note that 7(y) = z may be not Turing decidable, and we can say that,
in general, an ET machine, in a finite number of steps, can give us only a
partial information about its output, for example: the output of 7(y) would
be surely z if the machine could have the information ¢. Anyway this is not
a problem for ET machines, because we have constructed them so that their
main characteristic is the ability to work in conditions of partial information.

3.2 Sequential and parallel composition of ET machines.

We have seen that for ET machines there are two ways of computing: the
sequential way and the parallel way. Similarly, there will by a sequential mode
of composing machines and a parallel one.

DEFINITION 1. Let 0,7 be two ET machines and y be an extended integer;
the sequential composition of o, 7 , written o(7), is the new machine which
applied to y behaves in the following way:

1) starts the computation 7(y),

2) if and when the parallel computation 7(y) meets a stop condition with
terminal branch T(7¢(y)) and corresponding tape number w, then the com-
putation o°(u) is started.

15

Note that, if at some step p, 7(y) meets more than one stop condition with

terminal branches determined by ¢, ..., ¢,, and corresponding tape numbers
U1, .., U, then simultaneously all the computations ¢ (uy),...,0% (uy)
start.

Now let us say what is the number represented at step p on the tapes of
the computation o(7(y)). Suppose that at step p the machine o(7(y)) is in
the following situation:

1) e1,...,¢n are the active states of information of 7(y), with numbers
u1,..., U, represented in the corresponding tapes, and ¢p41,. .. Cpym are the
states of information corresponding to terminated branches, with correspond-
ing numbers Un11, - - -y Uptm,

2) by,...,b; are the states of information and corresponding tape numbers
w1, ..., w, produced by the computations o+ (upy1),..., 0™ (Upim)
generated by the terminal branches determined by ¢,+1,- .-, Crtm.-

We have already seen that the family {c;};<n+m is a partition of unit; and
it is easy to check that also the family {an}r<n+: where a; = ¢; for i < n,
and an4; = b; for j <1 is a partition of unit.

DEFINITION 2. Let {vp}n<n4: be the family of extended integers with the
following property: v; = wu; fori < n, and vpq; = w; for j < [; then the
extended number v = X;<nq1a; - v; is the number represented on the tapes
at step p of the computation o(7(y)).

Intuitively, the number represented on the tapes of o(7(y)), is the mixture
generated by the active branches of 7(y) at step p together with all branches
of the computations of o started from terminated branches of 7.

Note that the result of a sequential composition of ET machines is an ET
machine. In fact let the sequential composition be o(7(y)), and let ¢ determine
a terminal branch of 7(y); this means that 7°(y) ends with an instruction of
the form: g;asq; but no instructions of the form g; appears in 7. So we can
add to 7 the program obtained from o by modifying in an obvious way the
indexes of internal states.

This method of composing ET machines is very close to the usual one: if
and when one machine stops, the other takes the output of the first machine
as input and starts the computation; thus we shall now define a new method
of composing machines: the notion of parallel composition of concurrently
computing machines.

DEFINITION 3. The parallel composition of two ET machines o, 7, that we
will indicate with the symbol o ® 7, is the procedure defined, for every pair
of extended integers x,vy, in the following way:
1) start simultaneously the two computations o(z) and 7(y), so that in
every moment the two machines have performed the same number of steps.
2) Let {a;}i<n be the active states of information at step p of the computa-
tion o(z), and {v;};<, the numbers represented on the corresponding tapes.

16

If and when at step p the computation 7(y) reaches a stop condition with
terminal branch determined by c, and value u on the corresponding tape,
then every computation o (v;), satisfying 0 < cAa; < a; splits into the new
computations o*"¢(u) and o*""¢(v;).

To clarify the above definition, it is simpler to assume = = y. Then note that
by the condition 0 < cAa;, 7¢"*(z) is defined, and since obviously (cAa;) < ¢
we have that 7¢/%(z) = u. The meaning of the second part of the above
condition, that is (¢ A a;) < a, is to make sure that o(z) is in that moment
computing using a piece of information a;, which may be split through e,
and extended to two different hypotheses a; A ¢ and a; A —c. Since a; A ¢
and a; A —c are proper extensions of a;, o(x) knows nothing about 0%”¢(z)
and 0%"7%(z). On the contrary, 7(z) knows that 7¢"%(z) = u, and thus
o(x) utilizes the output u reached by 7(x) to proceed with the computation
o®/\¢(u), while it goes on with its own value v in the computation o®\™¢(z).

The following assertions are easy consequences of the definition.

1) If there are at least two terminal branches at step p in the computation
7(y), the order in which they split the computation o(z) does not modify the
computation itself. In fact, if for example 7(y) at step p reaches the terminal
branches determined by ¢; and ¢y and corresponding numbers u; and wug,
then the final result is in any case that the computation of o is split into
the three computations @1/ 72 (yy), g® /7N (o) and o® AN (1),
since a; A ¢y Aeo = 0.

2) Imagine that the computation 7(y) reaches a terminal branch deter-
mined by ¢ in the same moment in which the computation o(z) splits with
information a; and ag; then the same computation is obtained if we first
split the computation o(z) with information ay,ay, and then each branch
with ¢, ¢, or conversely.

Moreover, note that the meaning of the condition a; A ¢ < a; is also to
avoid possible conflicts of opinion between ¢ and 7; in fact, if it is a; = ¢,
then there is no splitting and the computation of 0% (v;) is not changed.

It is easy to generalize the parallel composition of two ET machines to a
finite number of ET machines.

DEFINITION 4. The parallel composition of oy, ..., 0, written o1 @ ... ® oy,
is the behavior defined, for every extended integers x, ..., Ty, as follows:

1) start simultaneously the computations o1 (1), ..., O (Tm),

2) let {a;i}i<n; be the active states of information at step p of the compu-
tation o;(x;), and {vji}i<n, the numbers represented on the corresponding
tapes, for every j < m. If and when, for every j < m, at step p the compu-
tation oj1(2;41) reaches a stop condition with terminal branch determined
by ¢j41, and value u;q1 on the corresponding tape, then every computa-
tion o7 (v;:) of oj(z;), satisfying 0 < cj11 Aaj,; < aj; splits into the new

. aj iNc; aj s ATCs 4
computations ;""" (u;11) and oy I (05.4).

17

Now we can define the value represented on the tapes of a parallel compo-
sition of ET machines.

DEFINITION 5. Let o1, ...,0, be ET machines, the value represented on the
tapes of the computation o1 ® ... ® o, at step p is the number represented on
the tapes of oy at step p.

It is easy to see that the definition of output of o; ® ... ® 0, is the same as
the one we have given for an ET machine.

We will now describe a new kind of dynamic memory for ET machines.

Let ¥ be an ET machine representing the identity function (e.g. the ma-
chine with the program go11qo, go00qo); then for every ET machine T and
numbers x,y, the machine 1)(z) parallely composed with 7(y) behaves like a
dynamic memory. In fact assume that ¢ determines a terminal branch with
tape number v at step p in the computation 7(y); then the tape of the branch
c of the machine 1 (z) in the computation ¢(z) ® 7(y) after the step p has
the value v and never changes it.

Contrary to the case of sequential composition, it is still an open problem
whether a parallel composition of ET machines is again an ET machine (even
if my conjecture is that the answer is no).

We can observe that if 0 = 01 ® ... Qo and 7 = 7 ® ... @ T, are two
parallel compositions of ET machines we can define their parallel composition
as: 0T =010 .00, T ® ... 7. Thus the class formed by all ET
machines and all the finite parallel compositions of ET machines is closed
under parallel composition, i.e. the parallel composition of two elements of
this class is an element of the class.

DEFINITION 6. We call Cooperative Extended Turing machine, shortly CET
machine, a finite parallel combination of ET machine.

4. Computability of the halting problem for CET machines.

Given a CET machine 7 with input y we are also interested in the set of
all pieces of information ¢ that characterize terminating branches. We can
describe this set as: n(7(y)) = {c : ¢ determines a terminal branch}, in fact
for every information d < \/7(7(y)) we have that 7%(y) surely stops.

We are now able to compare the computing ability of Turing machines with
the one of CET machines, and we will use the halting problem to investigate
the difference between them in facing this task.

We have noticed that a CET machine T with input y may have some
branches that are terminal branches and some others where the computation
never reaches a stop condition; for this reason the halting problem must be
redefined in this framework.

First we will extend to CET machines the familiar notion ¢, ()|, meaning
that the Turing machine ¢, with input = stops. We shall then give a descrip-
tion of the truth degree b with which a CET machine 7 with input y can

18

reach a terminating branch.

By the above remarks, it is reasonable to define this value as ||7(y)l|| =
V 7(7(y)); and then the degree of truth that a CET machine 7 with input y
can not reach a terminal branch, may be defined as ||7(y)1]| = =||7(v)!||.

For Turing machines the halting problem may be formulated as the task
of calculating the characteristic function of the set: K = {z : ¢,(z)]}. The
characteristic function of K may be described as cx(z) = ||¢(z)]|, where
for Turing machines the only possible values for ||¢,(z)]|| are 0 and 1.

We have seen that ||¢,(2)]||, when z is seen as the code for a CET machine,
may have a value 0 < b < 1 and so it is quite reasonable to expect that for
CET machines K becomes a Boolean valued set. For this reason, if we call
KB the set corresponding to K for CET machines, then it is meaningful to
require that its characteristic function has the following properties:

lexem (2) = 1] = Jlo € K| = ||¢u(2)]
lexecs (2) = 0]l = |lo ¢ KP|| = ||¢u()1]

But all such properties together characterize uniquely the following function:

e (@) = [|gz(@)I]| - 18 || ¢z (2)T]| - O

which we will consider as the characteristic function of K(®) in the CET
sense.

Before showing that there is a CET machine that computes the above
function, we must prove the following property of the stop sets.

THEOREM 1. For every y € NB) with finite domain, and = € N, the set
(¢ (y)) is finite.

Proor: We will prove the theorem by induction on the number of parallel
compositions used to define ¢,.

Assume that no parallel compositions appear in ¢, i.e. ¢, is a single ET
machine. We have seen in paragraph 1.3 that all extended numbers y € N(B)
that we use have finite a domain, and so y may be described as a finite sum
of numbers of the form a; - 1 ® —a; - 0.

Moreover, the program ¢, is made of a finite number h of instructions
of the form g;bsq;, and to simplify we shall call b the left symbol of the
instruction and s the right one. Let S; be the set of all left symbols of the
program ¢, while an element of Sy is either a right symbol different from
R, L, or an element a; that appears in the decomposition of y. Obviously Sy
and 5o are finite sets. We then put:

Z:{/\(bi —¢;): for some k € N,by,...,b € S1,c1,...0p € Sa}.
i<k

19

It is clear that 7 is a finite set too. Hence it is enough to show that n(¢.(y))
is contained in Z. Assume e € n(¢,(y)); we show that e € Z by induction on
the number [of extensions of initial information that were made to reach e.
Note that, since e € (¢, (y)), { is surely finite.

Ifl=1thane = 1 Aajore =1Aas, wherea; = ||[b-1®-b-0 =
scs-1@=scs-0] and ag = ||=b- 16 b-0 = scs- 1@ —scs-0]] for some b, b € Sy.
By §2.1 , Lemma 1, this means that a; = b « scs and ag = —b « scs, for
some b,—b € S1. It is easy to see that scs € Sy because scs may be only
either a number a; already written on the tape when the machine starts, or a
number written by the machine during the computation, i.e. a right symbol;
in any case e has the form b «» ¢ and thus it is an element of Z.

Let il=m+1,ie.e=dAa; or e=dA as, where d € Z by the inductive
hypothesis, and a; and aq have the same form as in the previous step of the
proof, i.e. ay = by «» ¢1, and as = by «» co where by, by are left symbols and
¢1, ¢ are right symbols. Thus e = d A (by <> ¢1) or e = d A (bg «> ¢3), where
d € Z, and hence e € Z. And this concludes the proof for the case of a single
ET machine.

Now assume ¢, (y) = o(y1) ® 7(y2) where y = (y1,¥2).

By inductive hypothesis we may assume that n(c(y1)) = {c1,...,¢n}, and
n(r(y2)) = {d1,...,dmn} with corresponding numbers {uj,...,un} repre-
sented on the tapes. But then also n(c% (u;)) is finite for every i < m, and
thus also n(c(y1) ® 7(y2)) is finite, since it is contained in (J,,, n(c% (u;)) U
{Cl, NN ,Cn}. <>

Now we are in a position to prove:
THEOREM 2. The set KB is a CET computable set.

PROOF: What we must do is to construct a CET machine 7 such that for
every n € N we have ||7(n) = cxm (n)|| = 1, where cgs) is the characteristic
function of KB that we described.

We can construct 7 by composing two ET machines with the dynamic
memory. For every n € N, the first machine p is the machine which builds
up the ¢, machine and starts the computation ¢, (n). The second machine o
is the machine which for every extended integer v as input gives the number
1 as output.

We then define 7 to be obtained by sequential composition of p and o,
followed by parallel composition with 1, i.e. we put 7(n) = 7(0,n) = ¥(0) ®
o(p(n)).

We now show that [|(7(n) = cxm (n))] = 1.

In fact, by the preceding theorem the stop set of o(p(n)) is finite; if it
is empty, then o(p(n)) diverges on any branch, then the tape of ¥ is never
changed, and hence the output of 7 is 0.

Now assume n(o(p(n))) is {c1,...,¢n}, and let p1, ..., p, be the steps nec-
essary to reach the respective stop condition.

20

At step p1, ¢n(n) reaches a stop condition with information ¢; and tape
number uy, the computation o (u;) = 1 causes the tape of ¥(0) to be split
into two tapes: one with tape number 1 and corresponding information c;,
the other with tape number 0 and corresponding information —c¢;.

If and when at step pa, ¢,(n) reaches the second stop condition with in-
formation cz and tape number uy, the computation o2 (u;) = 1 causes the
tape of 7 (0) to be split into two tapes: one with tape number 1 and cor-
responding information ¢, the other with tape number 0 and corresponding
information —c; A —cy.

It is easy to verify that at step py the number represented on the (0)
tapes is zz such that ||z = (c1 Ve2) - 1@ =(c1 Vep) - 0] = 1.

After p = max {p1,...,pn} steps, all the stop conditions for ¢,(n) are
reached, thus the tapes of ¥(0) never change, and so we have:

Ir(r) =\ ei-1@=\/c;-0] =1

i<n i<n
This completes the proof.

Acknowledgements.

I thank Professor Giovanni Sambin, who has played a role in connection
with this paper even beyond that of an advisor; his interest in my ideas, and
his patience to examine several preliminary versions, have been essential to
clarify my own understanding, to find suitable definitions and to improve
exposition. But of course, if the paper still contains mistakes or obscurities,
it is only my responsibility.

I thank also Professor Enrico Pagello, Doctors Nino Trainito, Nicola Gua-
rino, Silvana Badaloni and Paolo Bison that provided valuable discussions.

References.

[B] Bell, J.L., “Boolean valued models and independence proofs in set theory,” Second
edition, Oxford University Press., 1985.

[H1] Halmos, P.R., “Lectures on Boolean algebras,” Van Nostrand, New York, 1963.

[H2] Halmos, P.R., “Measure theory,” Van Nostrand, New York, 1950.

[R] Rogers, H., Jr., “The theory of recursive functions and effective computability,”
McGraw-Hill, 1967.

[S1] Sossai, C., An eztension of Turing machines, in “The mathematical revolution
inspired by computing,” J. H. Johnson and M. J. Loomes eds., Oxford University
Press, 1990 (to appear).

[S2] Sossai, C., Learning by abstraction using CET machines, in preparation.

[TZ] Takeuti, G. and Zaring, W.N., “Introduction to axiomatic set theory,” Springer,
Berlin, 1971.

21

