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ABSTRACT. In this paper we introduce a theory of finite sets (FST) with a
strong negation of the axiom of infinity asserting that every set is provably
bijective with a natural number. We study in detail the role of the axioms of
Power Set, Choice, Regularity in FST, pointing out the relative dependences or
independences among them. FST is shown to be provably equivalent to a
fragment of Alternative Set Theory. Furthermore the introduction of FST is
motivated in view of a nonstandard development.

0. Introduction.

It is our opinion that Cantor's main contribution in introducing the theory of sets
is the explicit formulation of the axiom of infinity, essentially stating that the
collection of the natural numbers is a set. Such a notion was needed to construct
the real numbers and to found the infinitesimal calculus in the manners that were
emerging at the end of the past century. A large part of the mathematical
community of those times was ready to accept the possibility of considering
infinite procedures as completed, as finished, and to use them as a whole in the
role of elements in new constructions. Since then this position has always been
taken for granted in the development of set theory, and, even when the axiom of
infinity was not explicitly assumed in order to study the relative strength of the



different axiom systems, there was no intention to negate the above mentioned
assumption.

On the contrary, we want to study a set theory in which the cantorian axiom of
infinity is explicitly negated, precisely because we do not want to admit the
possibility of considering a procedure going on forever as completed, as one
element.

One could immediately object that thus one gives up a large part of the
mathematics known today, but we reply that already in the first half of the past
century calculus had a flourishing development based upon leibnitzian notions
that, surely, did not include the above mentioned cantorian concept of infinity (see
[Mo]). It is true that the foundations of the leibnitzian calculus were a little bit
shaky, but nowadays most of the criticisms from that era have been overcome by
some clarifications coming from mathematical logic and non standard analysis
(although the latter, in its current formulations, fully accepts the cantorian point of
view). Still, we think that it will be possible to develop a non standard analysis
omitting the cantorian notion of infinity, but this will be the subject of further
research which will find a starting point in this one: indeed, before facing
infinitesimals and non cantorian infinites, it will be wise to state precisely from
which set theory negating the cantorian axiom of infinity it is convenient to start.
Thus the sets that will occur in the theories that we are going to develop will be
finite from the cantorian point of view, but, since the notion of finiteness cannot
be made precise through formulas, this also leaves plenty of room for non
standard notions of finiteness.

As far as we know, there are no works that investigate a set theory with the
negation of the cantorian axiom of infinity outside the framework of Alternative
Set Theory (AST). Indeed the theory FST that we will introduce in section 4 and
a fragment of AST including only axioms for sets turn out to be provably
equivalent. This equivalence will be discussed in section 6. As a matter of fact,
both AST and FST negate the cantorian axiom of infinity, and both will have to
face the problem of recapturing a large part of the existing mathematics. It worths
recalling that AST finds the shortcomings of Zermelo Fraenkel set theory in the
very limited notion of proper class and extends this notion to all the collections
that are not well defined in any possible way, thus "too large" being an instance of
"not well defined" (see [V2], [H-V], [S1]).

On the contrary, our non standard development will restrict the non well defined
collections to those that an external observer will hardly be able to grasp because
of their size. In the nonstandard development the collection of natural numbers
will thus play a central role. The same will be true of the notion of being a
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standard element, which we will read as "not too numerous to be reached"”, and
of the axiom schema of separation whose application without any restriction on
the use of the predicates standard and internal in the formulas gives rise to the
external sets (for an account on these points see [Ka], [N], [R]).

As we said, the non standard development is out of the scope of the present
paper, so the previous remark is just intended to motivate the introduction of a set
theory with the negation of the cantorian axiom of infinity different from AST.
As a consequence of the equivalence between FST and a fragment of AST, many
of the results presented in this paper are not new. However they are proved in a
setting (FST) that seems to us most suitable for further extensions of the theory
to a non standard framework.

1. Preliminaries.

We will adopt the usual notation, as found, e.g., in [BM].
In particular we recall some definitions.

" x is an ordinal” On(x) = Trans(x)A Ew(x);
Notice that this definition of an ordinal already embodies its well-foundedness.

"x is a natural number" is defined by Nat(x) = On(x) A Vy (y <x — —
Lim(y)).

o denotes the collection of natural numbers, i.e. X € ® <> Nat (x).

We will adopt the usual shortenings for "f is a Function" (Fun(f)), "the Domain
of f" (Dom(f)), "the Range of " (Ran(f)), "f is Injective” (Inj(f)).

We remark that the usual induction on the natural numbers requires the axioms

of extensionality, empty set, union and replacement only. A careful review of the
steps needed to prove in ZF that, for every formula @(x),

¢®0) A Vo (@) = o(au{n})) = Vn ¢(n)



is a theorem, makes sure that the only axioms used are those just mentioned (see,
for instance, [BM]).
Incidentally, notice that, under these axioms, Nat(x) is equivalent to the following

On(x) AVy (x2yAy#0— Ju(ey A Vv (vey = (v#u — vew))) ).

From now on, we will appeal to the principle of induction on natural numbers,
without further mention, in those theories of sets including the axioms of
extensionality, empty set, union and the schema of replacement.

2. Axioms for the Elementary Set Theory.

We will call Elementary Set Theory, and denote it by EST, the theory whose
axioms are the following ones.

Ext: Vxy (Vz (zex > zey) > x=Y).

Pair: VxydzVu(uez > u=xvu=y).

Union: Vx dy Vz(ze y > Ju (ue x A zeu)).

Repl: Vyie-Yk Yu(Vxeu Iy o(x,y) — JzVy (yez <> Ixeu ¢(x.y))).
Emptyset: IxVy(yex & y#y).

We will denote by Uof2 the sentence VxVydzVu(ue z¢>(ue xvue y). Remark
that Uof2 is a consequence of the axioms Union and Pair.

We will denote the empty set by the symbol 0, the n-th numeral by the symbol
n. n+1 will denote nu{n}. Just from the axioms Ext, Pair, Uof2, Emtpyset, by
metatheoretical induction on n, one can prove that 1) n+1 = {0, 1, ... , n} for any
n, and 2) n#m for any m#n, and 3) every numeral is a natural number.

The operation "union with its singleton" can be applied also to any natural
number x and it yields another natural number, called the successor of x, and
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denoted by x'. Remark that any natural number which is not 0 is the successor of
a natural number.
We will state the axiom of infinity in the following form:

Inf: 3Ix 0ex AVy (yex — yu{ylex)).
Notice that Inf is not an axiom of EST.

Among the several notions of finiteness already present in the literature (see
[Ma] where an extensive list of references is included), which are all equivalent in
ZF, we single out three of them in order to represent three different positions in
dealing with such a notion.

There are definitions of finiteness which assume the axiom of infinity, e.g.

"x is w-finite ":  Fin®(x) = —3f (Fun(f) A Inj(f) A Dom(f) = o A x 2 Ran());

Of course we are not interested in such definitions because ® is a set only by
virtue of the axiom of infinity.

There are other definitions of finiteness whose equivalence can be shown only
using the axiom of choice, e.g.

"X is f-finite ": Finf(x) = 3f In(Fun(f) A Inj(f)A Nat(n) A Dom(f) = n A Ran(f) =
X)

"x is Dedekind-finite ": FinP(x) = —3f y(x 2y A y#x A Fun(f) A Inj(f) A
Dom(f)=x A Ran(f)=y).

The notion of Dedekind is more geared towards a characterization of the infinite
sets which turns out to be equivalent to the negation of finiteness via the axiom of
choice. We will eventually accept the axiom of choice, but we do not want to stick
to this assumption from the beginning. Hence we choose the notion of f-finiteness
as our formal definition of finiteness.

3. Some initial results about finiteness.



The following results show some relationships among the three notions of
finiteness that we have introduced.

The first result is well-known in the literature. It is worth noticing that it can be
proved without using the full power of ZFC.

Lemma 1. EST+Inf |- Vx (Fin®(x) < FinP(x)).

Proof. (—) By contradiction. Let x > y and x#y and assume that there is a
bijection f of x onto y. Let zge x-y. By recursion on the natural numbers, define
Zn+1=f(zp). Let us show that if m#n then zy, # z;,.

Assume, on the contrary, that ng is the least natural number such that there is
m#ng for which znj=zm. no cannot be 0, since zpe x-y, while zie y for all i>0. For
the same reason, also m can never be 0. So let ng=n'+1 and m=m'+1, for some n’'
and m' respectively. Thus zp, =f(zp), and zm=f(z). Hence zy=zpy, due to the
injectivity of f, contradicting the minimality of ng.

(¢<-) By contradiction again. Choose x such that Fin®(x) does not hold and let f
be an injective function that witnesses the property of x. Let h be the restriction of
f to -{0}, and let s be the successor function on the natural numbers. The
function h(s(f-1)) is a bijection of Ran(f) onto Ran(h), a proper subset of Ran (f).
Thus FinP(x) does not hold. ®

The next two lemmas are easy consequences of Lemma 1.

Lemma 2. EST I- Vx FinP(x) — —Inf.
Proof. Let us assume Inf. It is a known result of EST that Inf implies the
existence of the set ® of the natural numbers. The identity function on ®
witnesses that —Fin®(®) holds. ®

Lemma 3. EST I- Vx Finf(x) — —Inf.
Proof. Again let us assume Inf. Arguing as in the previous lemma, we have that
the collection ® of the natural numbers is a set. Let us prove that —ﬁFinf(OJ).
By contradiction, assume Finf(m). Let

ng =min{n: Nat(n) A 3f (Fun(f) A Inj(f) A Dom(f)=n A Ran(H)=m},

and let g be a bijection from ng onto . Since ng cannot be 0, ng=mg+1 for some
natural number mg. Let x={n: ne ® and n<g(mg)} and y=g-1[x]. Let us define
the function h from mq to ® as follows:

h(m) = { gm),if mey ,, pred(g(m)),if me mg-y.
where pred is the predecessor function on the natural numbers.
It is clear that h is a bijection from mg onto ®, against the choice of ng. ®

We remark that the principle of induction on natural numbers is available in EST
since its usual proof relies on the principle of minimum on natural numbers. In
order to prove that each non empty subcollection of the natural numbers has a
least element one does not need to know that such a subcollection is a set for the
least element can be found in the (finite) subset whose elements are those of the
given subcollection that are less or equal to an arbitrary element of the
subcollection.

4. Finite Set Theory.

We will call Finite Set Theory, and denote it by FST, the theory whose axioms
are those of EST together with the finiteness axiom

Fin: Vx Finf(x),

i.e. FST = EST + Vx Finf(x) = EST + Fin.

Let WO be the sentence asserting that every set can be well ordered, and AC
the sentence asserting the existence of a choice function on any family of non
empty sets. Furthermore, let Pow be the sentence asserting the existence of the
power set of any set. Formally:

WO: Vx do 3f (On (o) A Fun(f) A Dom(f) = o A Ran(f) = x A Inj(f)).
AC: Vx 3f (Fun(f) A Dom(f) = x A Vyex(y # 0 — f(y)ey)).
Pow: Vx dy Vz(zey > x D 2).
Remark that the usual proof of the equivalence between WO and AC needs Pow
to show that AC—WO: Pow guarantees that the collection of the subsets of the

set for which we want to find a well order is indeed a set. Since Pow is not a
theorem of EST, this proof cannot be obtained in EST.
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WO and AC are provable equivalent in FST since we will show that Pow is a
theorem of FST. Furthermore we have that:

Lemma 4. FST |- WO.
Proof. Straightforward. ®

So also AC is a theorem of FST in view of the following

Theorem 5 ([V1]). FST |- Pow.

Proof. It suffices to show that, for any natural number n, the collection P(n) of

its subsets is a set. For, if we prove that
FST |- Vn (Nat(n)— Ix(Vy (yex <> n2¥))) )

then the existing bijection between any set s and some natural number n induces a
bijection between P(n) and the collection of all subsets of s. Thus, by
Replacement, the collection of all subsets of s is a set.
The proof of (1) is by induction which is allowed in view of the remark at the end
of the previous section. The base case is trivial. For the inductive step, since the
collection y = {xU{n}: xe P(n)} is a set by Replacement, then P(nu{n}) =
P(n)uyisaset. ®

Remark 6. In EST the cartesian product of two sets is a set. Indeed, let x and y
be the two sets. For each z belonging to y, let f, be the function of domain x
defined as follows: f,(v)=<v,z>. By Repl Ran(f;) is a set. Now let g be the
function of domain y defined as follows: g(z) = Ran(f,). Again by Repl we have
that Ran(g) ={Ran(f,): ze y} is a set. Finally by Union we have that WRan(g) is
a set, and it is easily seen that URan(g) = xXy.

Now let us study some interesting relations among the axioms introduced so far.
We need a preliminary lemma which is well known in the usual elementary
theory of sets.

Lemma 7. EST I- Vm Vn (Nat(m) A Nat(n) A 3f (Fun(f) A Dom(f) =m A
. Ran(f) =n A Inj(f)) - m =n).
Proof. (Sketch) One easily gets a contradiction considering the least natural
number m for which there are another number n, n#m, and a bijective function
from n onto m. ®

Notice that, as an immediate consequence of Lemma 7, we have the following

Corollary 8. FST |- Vx d!n 3f (Nat(n) A Fun(f) A Dom(f) = n A Ran(f) = x A
Inj(D)).
Proof. Straightforward, ®

We are now in the position to prove the following

Theorem 9. EST |- (Pow A —Inf) — Vx Finf(x).

Proof. Assume Pow and, by contradiction, let x be such that —1Finf(x) holds.

We claim that for any natural number n there exist a subset y of x and a bijection
fonn ontoy. If not, let ng be the first natural number for which the claim is false.
Clearly np#0. Let ng=n'+1. Then there exist a subset y of x and a bijection f from
n' onto y. Furthermore x - y #0, since otherwise we would have Finf(x), against
what we assumed. Let u belong to x - y. We may now consider the extension g of
f such that g(n') = u. g is a bijection of ng onto the subset yu {u} of x,
contradicting the choice of ng. Thus we have proved the claim.

Now let u = {ye P(x): In If (Nat(n) A Fun(f) A Dom(f) =n A Ran(f) =y A
Inj(f))}. u is obtained by separation (which is a consequence of Repl) from the
collection of the subsets of x, which is a set since due to Pow. Thus u is a set. We
may now define the function h which maps each y belonging to u into the unique
natural number n for which there is a bijection from n onto y (the uniqueness of
the natural number n corresponding to y is an easy consequence of Lemma 7).
Applying Repl once more, we have that Ran(h) is a set.

Since we have just proved that for any natural number n there are a subset y of x
and a bijection from n onto y, we have that 0e Ran(h) AVy (ye Ran(h) — yu{y}
e Ran(h)). Thus Inf holds and we have reached the desired contradiction. ®

We will show later that the previous result cannot be strengthened to drop Pow
from the hypothesis.

Corollary 10. EST I- Vx Finf(x) <> (Pow A —Inf).
Proof. The direction not dealt with by Theorem 9 is an immediate consequence
of Lemma 3 and Theorem 5. ®



In the sequel it will be convenient to have the following characterization of the
notion of natural number. Let Lim(x) be the formula On(x) A x#0 A Vy (yex —
x#yuiy}).

Lemma 11. EST |- Vx (Nat(x) > On(x) A Vye x —Lim(y)).

Proof. (—) Let us argue by contradiction. Let x be an ordinal number for which
Lim(y) holds for some ordinal ye x. Since x is transitive, y is a non empty subset
of x. We claim that y has no maximum. Otherwise, let u be the maximum of y,
i.e. uey and v<u for all vey. Since y is an ordinal and u belongs to it, then uuU{u}
either belongs to y or equals y, but it cannot equal y since Lim(y), so it belongs to
y contradicting the maximality of u and proving the claim. On the other hand
Nat(x) implies that any non empty subset of x, and y in particular, has a
maximum. This contradiction completes the argument.

(¢-) Let x be an ordinal such that Vy<x —Lim(y). Let y be a non empty subset of
X. Let us prove that y has a maximum element. Let z = Uy. Then z is an ordinal
greater than or equal to all the ordinals in y, and also smaller than or equal to x. If
it is greater than all the ordinals in y, then for each v belonging to z also vuU{v}
would belong to z. But this would imply Lim(z). Since we are assuming
—Lim(y), it follows that z must be equal to an ordinal iny, and therefore z is the
maximum of y. ®

Now we want to prove the equivalence in EST of Vx Finf(x) with WO A —lnf.

Theorem 12. EST |- Vx Finf(x) <> WO A —Inf.

Proof. (—) This is just what was proved through the Lemma 3 and 4.

(¢-) Let x be any set and R be a well ordering of x (the existence of R is
guarantied by WO). As it is usually done in set theory, using only the axioms of
EST, it can be shown that every well ordered set is order isomorphic to a unique
ordinal number. Let o be the ordinal number such that (x,R) = (o€ ). Since we
are assuming —Inf, it follows that Vp<o—Lim(f), whence Nat(c), due to Lemma
11. ®

5. The axiom of regularity.
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Set theories without the axiom of regularity have been thoroughly investigated
by Boffa [B1], [B2], [B3], and Felgner devotes to the subject several pages of his
book [F]. The usual formulation of the axiom of regularity is the sentence

UReg: Vx (x# 0 — dy (yex A ynx = 0)).

Our next goal is to show that UReg is independent of FST.
Let FST* = FST + UReg.
First let us remark that FST is consistent relative to ZF. To see this, consider
(Rw,€) in the hierarchy of the well founded sets which is definable form the
axioms of ZF. Clearly

Rg,€) I=FST+.

The problem of the independence of UReg does not have an equally
straightforward solution. We start with the following result.

Theorem 13. UReg is independent of EST + —Inf.

Proof. As mentioned in [K1], the following result holds (see also [F]).

Let F be any bijection from the intended universe V of ZFC in itself. Define the
relation E on V as follows

xEy e xe Fy).

Then, assuming the consistency of ZFC, we have that (V,E) |= ZF~, where ZF-
is ZF without the axiom of regularity.

In analogy with this result, we want to show that, if F is the bijection of Ry, onto
itself such that F(0) = 1, F(1) = 0 and it is the identity elsewhere, then

(R@.E) I= EST+—Inf+—-UReg,

where E is defined as above.

We begin by proving that (R,E) = —UReg. We have to show that
Rp.B) I=3x (x 20 A Vy (yex — Jz (zey A zeX))).

Let us remark that 00R@-E) = 1, Indeed,

RpE)I=Vy(yeze y£y)s] © Vr(eF(s) < r#1) © F(8)=0 & s=1,
where 1 and s are elements of R, 0 is the empty set and 1 is its singleton in R,
Thus 0 is not the interpretation of the empty set in (Rg,E), and we prove that it is
indeed an element for which UReg does not hold, i.e.
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RpE) =x#0AVy (yex = 3z (zey A zex))) [0],
This claim is equivalent to: (0 # 0Rw.E) 4 Vy (ye F(0) — 3z (ze F(y) A
ze F(0)))); and it holds since 0= 1 A Vy (yel — Jz (ze F(y) A ze 1)), given
that F(0) =1 and Oe 1.

Next we prove that (R,E) I= —Inf.
To this end, first let us remark that (xuU {x) )(R w-BE)=F-
LExRoE)UIx(Ro-E)}). Indeed
RuE) =Vy(yez e yexvy=x)[st] @ Vr@eFt) < reFGs)vr=3) <
F@t) =F@s)u{s} & t= FLFEs)Us}),
where 1, s and t are elements of Rg,.

Thus, if, by contradiction, we had (Rg,E) |= Inf, then there would be a set r
belonging to R¢, such that
O0R0.E)e F(r) A Vse Ry (se F(r) — F-1(F(s)u{s})e F()).

An easy check shows that 1, {1}, {1,{1}}, {1,{1}},{1,{1}}}, ... would belong
to F(r), i.e. "the numerals built starting from 1" would belong to F(r).

In ZF we may define by recursion on the natural numbers a function g such that
g(0) = 1 and g(n+1) = gm)v{gn)}.

Hence the function f of domain F(r) defined as follows

f(s) = {n, if s = g(n) for some natural numbern , , ,0, otherwise

has range equal to .

But (Rg,€) I= Repl. Hence we will have (Rg,€) I= Inf : a contradiction.
Therefore (R,E) 1= —Inf.

The proof that (R,E) |= EST is simple, except, maybe, for Repl.
Soleta, ay, ..., ax € R and @ be such that

Re,B) 1= (Vxeu Aly 0x,y,y1, .., yO)la, a1, ....ak],
then VreF(a) A!s (p(RCO’E)(r, S, a1, ..., k).
Since Repl holds in (Ry,€), there is be R, such that

Vs (se b «> dre F(a) (p(R‘D’E)(r, S, a1, ..., ak) ).

Therefore (Ry,E) I= Vy (yew <> Ixeu @(X,y,y1,..., k) ) [a,F-1(b),a1,....ax],
whence the immediate conclusion. ®

Now let us prove that UReg is also independent of FST.
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Theorem 14. UReg is independent of FST.
Proof. In view of the proof of Theorem 13, it is enough to show that Pow holds
in (Ry,E), i.e.
Re:B) I=Vx 3y Vz (zey & Vw (wez —> wex).

Let r be any set belonging to Rg, we have to prove that there is s belonging to
R, such that

YVt (te F(s) <> Vq (qe F(t) — qe F(@) ),
ie. YVt (te E(s) «> F(r) 2 F(v) ).
Let s =F-1({t: F(r) 2 F(t) }). s is well defined and it is the set we were looking
for.
Now, as a consequence of Corollary 10 and of Theorem 13, we have that

(Re,E) I= Vx Finf(x) A =UReg,

whence the desired independence result, keeping in mind that FST = EST +
VxFinf(x). ®

Introducing the sentence UReg, we wanted to distinguish between the usual
notion of regularity and a stronger one. So now we introduce a sentence, that we
will call strong regularity, shortly SReg, remarking that it can be stated only
within theories in which the usual hierarchy of the well founded sets (the
hierarchy of Rg's) can be defined. Of course, a sufficient condition for the
possibility of stating SReg is the provability of Pow in the given theory.

SReg: Vx da ( On(o) A R(o) 2 x).
The following theorem holds.
Theorem 15. FST I- SReg — UReg.
Proof. First remark that SReg can be stated in FST, since Pow is a theorem of
FST (see Theorem 10). Then the proof proceeds as in ZF, once the notion of
rank of a set has been introduced. ®

Theorems 14 and 15 give an immediate proof of the following Corollary.

Corollary 16. SReg is independent of FST.
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The two notions of regularity introduced are equivalent in ZF. The proof in ZF of
the implication which is not dealt with in Theorem 15, is based on the possibility
of showing that for every set x there is a transitive set containing x. This proof is
immediate once one has Inf.

Since Inf is not an axiom in any of the theories we are dealing with, let us
introduce an axiom asserting that for every set there is a transitive set containing
1t.

Trel : Vx dy (Trans(y) Ay 2 X).

At first sight it could seem that Trel is provable in FST (after all, in FST every
set is f-finite). Actually, we have the following

Theorem 17. Trel is independent of FST.

Proof. Under the hypothesis that ZF is consistent, we will produce a model of
EST + Pow + —Inf + —Trcl.

We take advantage of the following result (see [K1]): If ZF is consistent, then
also ZF + "there is a countable set {x,: ne ®} of distinct elements such that, for
all n, Xp = {Xp4+1}" is consistent. So the latter theory has a model, say (M,E), and
let y be the set {xy: ne w} of pairwise distinct elements x,'s in M such that x, =
{Xn+1}, for all natural numbers n.

Let us use the following notation: yo=y, yn+1 = {X: yn2x and x| < ®}.
Finally let N=uU{yp:ne®} andlet E'be the restriction of E to N.
It is easy to check that (N,E') |= EST A —Inf A Pow A UReg A —Trel. ®

The above theorem has already been proved (within the framework of Alternative
Set Theory) in [S3]. In the same paper, the author proves also that UReg is
independent of FST +Trel, while it is easy to show that

EST I- (UReg A Trel) <> SReg,
by using the same proof of the equivalence given in ZF.

Corollary 18. UReg and SReg are not equivalent in FST.
Proof. With the notation of Theorem 17, let x,, be any chosen element of y. It is
obvious that x; cannot be obtained iterating the power set operation starting from
the empty set. ®
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In the literature the name "axiom of weak foundation", WReg, is reserved for the
following sentence:

3z Vx (x20 — Ty (yex A (ynx=0 v (yez A y={y}))).

This kind of regularity is compatible with the existence of an infinite set of
reflexive elements. We will use this fact in the next section.

6. A comparison of FST with a fragment of AST.

As stated in the introduction, FST is equivalent to a Fragment of Alternative Set
Theory including only axioms for sets. In this section we are going to describe
this fragment and sketch the proof of the equivalence. ‘
Let us call VF the fragment of Alternative Set Theory (see [S1]):

VxVy (x=y & Vz (ze x <> ze y)) (Extensionality);
dxVy (y & x) (Emptyset);
VxVy JzVw (we z> we xvw=y) (Union with a singleton);

(@(0) A VxVy (0(x) = o(xu{y})) = Vxo(x) (Schema of induction on
sets),
where we use the notation xU{y} for the set whose existence is ensured by the
axiom of union with a singleton.
Notice that VF captures within ZF the collection of hereditarily finite sets.
It is proved in [V2] that from the axioms of VF one can derive those of FST,
once the definition of natural number is given. In particular, to prove Fin, one
applies the schema of induction to the formula Finf(x) (see section 2).
For the converse, the only non trivial step is to show that the schema of induction
on sets follows from the axioms of FST. That is done by combining the
induction on natural numbers with the axiom of finiteness. For, assume that for
some formula @, @(0) and VxXVy (0(x) — @(x{y}) hold, while Vx@(x) does
not hold. One easily gets a contradiction by considering the least natural number n
for which there exists an x bijective with n such that ¢(x) does not hold.
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7. The independence of FST from EST + —Inf.

Our plan is to show that FST is independent of EST + — Inf, relative to the
consistency of ZF-, consists in exhibiting a model of EST + —Inf in which
VxFinf(x) fails.

We need some preliminaries. Given any set A, we define

Ro(A)=A
and, for any ordinal o,

Ro1(A) = A;

Ry (A) = A, when a is a limit ordinal.
We let N(A) = U{R,(A): Nat(n)}
and WEF(A) = U{Ry(A): 0e On}.

Recall that a set x is reflexive if x = {x}. Of course, the existence of a reflexive set
is inconsistent with the usual axiom of Regularity of ZF.
It is well known that if ZF- is consistent, then ZF- + "there exists a countable set
A of reflexive elements such that V = WF(A)" is consistent (see, for instance,
(FD).
We will construct our model within the latter theory. So, let (M,E) |= ZF-
+"V=WF(A)", with A a denumerable set of reflexive elements in (M,E). Since
from now on our intended universe of set theory will be (M,E), we will use € in
place of E. Furthermore, since the structures that we will introduce are
substructures of (M,e), we will also denote by € the membership relation
restricted to such substructures.

One might be tempted to prove that

(N(A), €) I= EST + — Inf + —Vx Finf(x).

Unfortunately, this is not true. It can be proved that all the axioms of EST but
Repl are true in (N(A), €). Also — Inf, Pow and —Vx Finf(x) hold in
(N(A),&).

If Repl were true in (N(A),e ), then Theorem 9 would lead to a contradiction.
So it is necessary to "refine" (N(A), €).
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The following model, Theorem and its Lemmas have been suggested by Kunen
[K2].

We start with the description of a model that will lead us to the results that we
want.

In (N(A),e), there is an isomorphism & between the group of permutations of A
and the group of permutations of N(A) that preserve the membership relation,
such that, for each permutation ¢ of A, (o) is the unique membership
preserving permutation of N(A) that extends ¢. Given a subset F of A, let Ho(F)
be the set of all permutations of A that fix the elements of F, i.e.

Ho(F) ={0c: o is a permutation of A and ¢(x)=x for all xe F}.

Let H(F) be the set of all the extensions to N(A) of the permutations of Ho(F),
ie. H(F) = {o: 0=£(c") for some o'e Hy(F)}. We will refer to a permutation of
H(F) by saying that it is a permutation that fix F. So H(0) is the set of all
extensions to N(A) of the permutations of A, i.e. the set of all permutations of
N(A) that preserve the membership relation. From now on, we will use the
words "permutation of N(A)" to mean a permutation of N(A) that preserves the
membership relation.

Let HBy = {xe N(A): for each y belonging to Te(x)U{x} there is a subset Fy of
A with k elements such that if 6e H(Fy) then o(y)=y }.

Let M = U{HBy: ke »}. (M,€) is our candidate for the required "refinement".

Before proceeding towards our goals, let us remark a basic feature of this
structure.

Lemma 19. The HBy's are all transitive, so M is transitive.
Proof. Let k be any natural number and let xe ye HBg. Then Te(x)u{x} 2
Te(y)u{y}, so that for each element t belonging to Tc(x)U{x} there is a subset F;
of A with k elements such that if ce H(F) then o(t)=t. Thus x belongs to HBy. ®

Theorem 20. i) (M,e) l=—Vx Finf(x),
i) (M,e) I=—Inf, and
iii) (M,e) I= EST.
Proof.
i) A belongs to HB1, and hence to M, and —Finf(A).

ii) It is not difficult to show by induction on the index n of the R(A)'s that every
set belonging to N(A) without reflexive elements in its transitive closure is f-
finite. A fortiori the result holds for M. Assuming that we have already proved
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iii), it follows that —Inf, since, otherwise, by Inf and Separation one could assert
the existence of a set without reflexive elements belonging to its transitive closure
which is not f-finite.

iii) The only point that involves some difficulties is to show that (M,&) I= Repl.
So let X be a set belonging to M and ¢(x,y) a formula in the language of ZF
enriched with the names m for all elements me M. Remark that only a finite
number of names will occur in the formula @(x,y). Assume that (M,e ,M) = Vx
(xeX — 3dly 9(x,y)). For each xe X, call y(x) such a unique y. Let Y = {y(x):
xe X }. We have to prove that Y belongs to M, i.e. it belongs to Rp(A)NHBy for
some convenient natural numbers p and k . Since each y(x) is an element of M, it
suffices to show that

a) there is a finite subset F of A such that 6(Y) =Y for all o H(F), and

b) there are uniform bounds pg and ko such that , for all xe X, y(x) belongs to
Rp,(A)NHBy,.

Since Xe M there are n and k such that Xe Rp41(A) N HBy (hence Ru(A) M
HByx o X due td the definition of Rp(A) and Lemma 19).

Let F be a finite subset of M such that, for all permutations ce H(F), we have
that 6(X) = X and also o(m) = m for all elements m whose names occur in
O(X,y).
Notice that such a finite F does exist since the parameters in @(x,y) are finitely
many.

In this situation, we have also that 6(Y) = Y for all oe H(F). Indeed, let yeY,so
that o(y)e o(Y) and y = y(x) for some xe X, and use the following lemma.

Lemma 21. For every natural number p, for every p-tuple mi,...,mp of
elements of M, for every formula o(x1, ...,Xq.m 1,---p) in the language of ZF
plus the names mj,...,m;, of the elements mjp,...,mp, and for every permutation
o€ H(G), where G is a finite subset of A such that H(G) fixes mj,...,mp,

M,e smy,....mp) = oxy, ceoXpM 1, Mp) S

M,e ,my,....mp) I= (c(x1), ..., O(Xp),m1,....Mp).
Proof. By induction on the construction of the formula o.. No point involves any
difficulty. ®

Resuming our proof of Theorem 20, we make use of this Lemma by letting G be
the set F previously defined and letting  ou(xj, -+>Xp,M,...,.Mp) be the formula
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¢(x,y). For all oe H(F), since o(x)e X then also o(y)e Y and we have that Y o
o(Y). The same argument applied to 6-1 yields the other inclusion. So 6(Y) = Y
for all ce H(F), and a) is proved.
To prove b), we argue as follows. For any finite subset G of A and for any xe M,
we define
orbg(x) = {ye M: Jo (6e H(G) A o(y) = x)}.

orbg(x) will be called the G-orbit of x. Notice that, for each G, the relation of
belonging to the same G-orbit is an equivalence relation on M. As a consequence
of Lemma 21, if an element x of X belongs to orbg(z) for some ze X, then y(x)
belongs to orbr(y(z)): so the number of F-orbits that can be found in Y is not
greater than the number of F-orbits that can be found in X. Now we will be done
if we prove that

*) for any finite subset G of A, for any p and k, and any ze R,(A)"HBy, orbg(z)
is contained in Rp(A)NHBy (this follows from Lemma 22 below), and that

*#) for any finite subset G of A and for any Ze M, Z is the union of finitely many
G-orbits (this follows from Lemma 23 below).

Indeed, **) applied to our F and X implies not only that X is partitioned into
finitely many F-orbits, but also that Y is partitioned into finitely many F-orbits,
say orbp(y(x;)) for i=1,...,q, in view of the already remarked consequence of
Lemma 21. On the other hand *) tells us that each F-orbit partitioning Y, say
orbr(y(xi)), is included in some Rp,,(A)NHBY;.

So let pp = max{pj: 1 £i<q} and kg = max{k;: 1<i < q}. Thus pg and kg are
the uniform bounds that we were looking for, and Y is included in
Rpo(A)NHBg,. ®

Lemma 22. For any natural numbers p and k and for any permutation
oe H(0), o(Rp(A)NHBy) = Rp(A)NHBy.

Proof. Since intersections are preserved by the permutations, we prove
separately that
1) if x belongs to Rp(A) then 6(x) belongs to Rp(A), and that
ii) if x belongs to HB then also 6(x) belongs to HBy.

i) is proved by induction on p. The base step is obvious. Thus let us consider
Rp+1(A) = P(Rp(A)). Let oe H(0), then 6(Rp+1(A)) = {6(x): Rp(A) 2 x}. By
inductive hypothesis Rp(A) 2 o(x); hence Rp41(A) 2 O(Rp+1(A)). The same
argument, with 6-1 instead of o, yields the other inclusion.
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ii) The hypothesis that xe HBy means that for all ye Te(x)U{x} there is a subset
Gy of cardinality k of A such that, for all te H(Gy), 1(y) = y. To prove that
o(x)e HBy, we have to show that for all ze Tc(o(x))U{o(x)} there is a subset L,
of cardinality k of A such that, for all e H(L,), 1(z) = z.

First notice that Tc(o(x)) = o(Tce(x)) and that 6({x}) = {6(x)}, so that the z's
that belong to Tc(o(x))u{o(x)} are none other than the o(y)'s for ye Te(x)U{x}.
We claim that, for every such o(y) and every te H(c(Gy)), 10(y)= o(y). This is
obvious, since 6-1tce H(Gy).

Thus if we take Lg(y) = 0(Gy) then, for all ze Tc(o(x))U{o(x)}, Loy is a
subset of cardinality k of A such that, for all te H(Lo(y)), ©(2) = z, and ii) is
proved. ®

Lemma 23. For all natural numbers m and k, and for each finite subset G

of A, the permutations ce H(G) partition Ry(A)NHBy into a finite number of G-
orbits.

Proof. First we remark that it is correct to say that the G-orbits partition, not
only M, but also Rp(A)NHBy, for all p and k. Indeed every permutation, and in
particular the permutations that fix G, maps Rp(A) and HB onto themselves
respectively, as is stated in Lemma 22.

So we are left with the proof that the number of orbits partitioning Rp(A)nHByg
is finite. We argue by induction on p and show that for all numbers k and all finite
subsets G of A, Rp(A)mHBy is partitioned into finitely many G-orbits.

If p = 0 then Ro(A)NHBk = ANHBy which equals either the empty set, if k=0,
or A, if k#0. In the first case there is nothing to prove. Otherwise, let G = {ajl,

ajh}’ thus Ro(A)NHBy = A is partitioned in h+1 G-orbits, namely {aj1 | S
{ajh} and A-G.

So let p = gq+1 and assume the inductive hypothesis true up to q. We have to

count the G-orbits of Rq+1(A)NHBy, with G of cardinality h, say. We claim that
the following hold:

1) for any set K of cardinality h+k such that A 5 K o G, there are finitely many
elements re Rq1(A)NHBy that are fixed by the permutations of H(K);

2) every se Rg+1(A)NHBy is in the G-orbit of some r as in point 1.

To prove 1), notice first of all that, by Lemma 19, re Rg+1(A)NHBy implies that
Rg(A)NHBg 2 1. Now, by Lemma 22, Rq(A)NHBy 2 orbk (1), for all ter.
Therefore r is the union of K-orbits in Rq(A)NHB and, by the inductive
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hypothesis applied to the K-orbits, there are finitely many such orbits, so there
are finitely many r that are fixed by H(K).

To prove 2), let s be an arbitrary element of Rg+1(A)NHBy. So s is fixed by
H(L), for some L of cardinality k. By considering GUL and by adding further
elements, if necessary, we get a superset J of G of cardinality h+k such that s is
fixed by H(J).

Choose K any superset of G of cardinality h+k and ¢ any permutations that
maps J onto K and fixes G. Then the element r = 6(s) is fixed by H(K). Indeed,
for any te H(K), o~1toe H(J), and therefore 6~116(s) = s. So 2) is proved.
Now, since every s€ Rq11(A)NHBy is in the G-orbit of some re Rq+1(A)NHBg
that is fixed by all the permutations of H(K), with KOG of cardinality h-+k, and,
since by 1) there are finitely many such r's, then there are finitely many
possibilities for orbg(s).

That proves the Lemma. ®

We can now state and prove the desired independence result.

Corollary 24. If ZF- is consistent, then Pow, WO and Vx Finf(x) are
independent of EST + —Inf.
Proof. The independence of Vx Finf(x) of EST + —Inf follows immediately
from Theorem 20. The independence of Pow and WO of EST + —Inf is
straightforward from Corollary 10 and Theorem 12. ®

Notice that another consequence of Corollary 10, Theorem 12 and Theorem 20 is
that (M, e ) satisfies neither Pow nor WO.

8. Conclusion.

The relationships among the different theories that we have considered so far are
summarized in the following picture. The presence of an arrow from one theory
to another means proper inclusion of the former into the latter. The presence of a
double arrow stands for equivalence
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FET + BReg
FET + UReg

EST + —Inf + Pow ¢——— FET «—> EST + —Inf + 0

EST + — Inf

EET

Since the present work has been carried out in view of the development of a finite
non-standard set theory, it remains to choose a theory for finite sets that we
consider the most adequate for that purpose. We feel that it is very natural to think
of sets as well determined by the rank construction starting from the empty set.
So we will assume the strong axiom of regularity and we will choose FST +
SReg as our theory for finite sets, now being aware of the relative strength of its
axioms.

We will name this theory Regular Finite Set Theory and we will denote it by
RFST.

It is interesting to note that, if Con(PA) and Con(RFST) are, respectively, the
sentences asserting the consistency of the theory of formalized arithmetic (PA)
and the consistency of RFST, then it can be proved finitistically that

Con(PA) <> Con(RFST).
A sketch of the proof is as follows. Notice first of all that the usual interpretation
of PA within ZF - Inf implies that Con(ZF - Inf + —Inf) — Con(PA).
Moreover, it can be proved quite easily the existence of a primitive recursive
relation E on natural numbers such that (0,E) and (Ry,,€) are isomorphic
structures (see exercise 5 in chapter III of [K1]). The isomorphism between the
above structures allows us to define a translation * of the formulas in the language
of ZF into formulas in the language of PA such that , for every sentence ¢ in the
language of ZF,
ZF -Inf + —Infl-¢ = PA |- @*.
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From the above metaimplication we get that Con(PA)— Con(ZF - Inf + —Inf).
Since ZF - Inf + —Inf and RFST have the same strength, Con(PA) <
Con(RFST) can therefore be proved finitistically.

As stated in the introduction, the development of RFST in a non-standard
framework will be pursued in future works.
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