where p, ¢, Q, hi,...,h, are new distinct variables of L< and < is the usual
predicate of L<. Define now the formula o™ as follows

3Q3hy - 3RQFzr - Qrze( )\ funct(hs) A 6%)

1<i<k

where the quantifier Qfz; is obtained by relativizing the quantifier @); to the
predicate z; < 0 A nat(z;). We give now a sketch of a proof of (1). Assume
N = a. Let Hy,..., H, be numerical functions which satisfy a (we denote
the functions as the corresponding variables). Using (iii) of Proposition 3.8
it is easy to define, for any H;,¢s = 1,...,r a term, possibly infinite, which
we denote by h; such that, for every a,b € N,

Hi(a)=1b ifandonlyif f(a,b) <h

and such that h; satisfies funct(h;) in (IT, <) (the construction is similar
to that of term in figure F1a. 1). Besides, we construct an infinite term €2
which has as its subterms all the elements of NAT, all the f(a,b) such that
the pairs (a,b) determine the natural bijection between

{m,...,0} and {r,...,r—n} forevery m,n,r € N such that m+n =r

and all the terms f(a,b) which determine the natural bijection between
{m,..., 1} x{n,...,1} and {r,...,1} for every m,n,r > 1.

Using now Propositions 3.8 e 3.9 we get that (IT, <) |= «*. The converse can

be proved straightforwardly by using the same propositions and the definition
of §+.
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Abstract

We examine the problem of solving equations, disequations and
atomic formulas built on the subterm relation in algebras of rational
and infinite terms (trees). We prove that this problem is decidable for
any such algebra in a finite signature S with possible new free con-
stants. Moreover, even in presence of subterm relation, the existential
theory of rational trees is the same as the existential theory of infinite
trees. We leave out the easier case where S has no symbols of arity
greater than one. When S has only a symbol of arity greater than one,
the decision procedure is different in case that the algebra of rational
or infinite trees contains new free constants or not.
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INTRODUCTION

In recent programming methodology high level languages manipulate a vari-
ety of inductively defined data structures. This feature, initiated with LISP,
is useful for integrating the recursion into programming and it is pursued for
theoretical and practical benefit. In theory, any computation may be reduced,
by coding, to a computation on the natural numbers. However, the coding
may obscure the structure of the original problem and may lose clearness
and simplicity in designing algorithms. In this framework the decidability of
properties of abstractly defined data structures is useful for reasoning about
programs, in termination proofs and in verification, as well in automated
deduction.

Most of data domains like strings or trees are absolutely free algebras,
called also (finite) term algebras, on a given signature. Other domains are
initial algebras and can be presented as quotients of free algebras. Solving
equations in absolutely free algebras was known to be useful for automated
deduction since Herbrand [1930]. This need grew stronger after the imple-
mentation of the resolution rule (Robinson [1965]) and the development of
Horn Logic Programming by Colmerauer and Kowalski in the early seventies.

The decidability of the first order theory of free algebras goes back to
a landmark paper by Mal'cev [Mal61] who gave axioms for the locally free
algebras. Quite closely Oppen [Op80] analyzed the first order theory of the
recursively defined data structures and gave a decision procedure. The ax-
ioms of Mal’cev have been used to assign declarative meaning to the Negation
as Failure Rule [C178,L187] in Horn Logic Programming. So, the decidability
of the theory of the absolutely free algebras becomes indispensable in the
Fitting [Fi85] and Kunen [Ku87] approach to the semantics of the Logic Pro-
gramming. The work of Mal’cev falls into the scope of what is now called
disunification [Com90]. This attempts to solve more general formulas than
simply equations and it arises in many problems in computer science like
the complement problem, the sufficient completeness problem for the spec-
ifications [GH78], the representation of answers to queries in Prolog II (see
[Com90] for a discussion).

Recently, Venkataraman [Ven87] has considered decidability problems for
the absolutely free algebras in the first order language with operation sym-
bols, equality and a symbol for the subterm relation. In the presence of the
partial order induced by the subterm relation, the full first order theory of
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an absolutely free algebra, with some operation of arity greater than one, is
undecidable. This was observed by McCarthy [McC77] | see also [VYHS3].
However, Venkataraman [Ven87] proves that the problem of solving existen-
tial sentences is decidable and N P-complete.

In this paper we take into consideration algebras built on, possible infi-
nite, terms. We solve the decision problem for the existential sentences in the
first order language which has symbols for a finite number of operations, for
the equality and the subterm relation. Infinite term algebras arose in mathe-
matical investigations on the semantics of programming languages, mainly in
the French school, see [Co85]. They became relevant also for the semantics
of the new Prolog generations [Col84]. The decision problem for the theory
of infinite terms without the subterm relation was solved by Maher [Mah88].
Disunification algorithms were studied by Comon and Lescanne [CL89]. In
a subsequent paper Marongiu and Tulipani [MT89] complete Maher results
and introduce some expressions, called terms with pointers, to represent the
rational terms. This representation helps us to design, in this paper, the
required procedures.

We work with a finite signature S where the subset of constant symbols Sy
is non empty and S\ Sy contains a symbol, say f, of arity at least 2. Often we
use an [ of arity 2 to simplify notation. Our assumption is motivated by the
feeling that, when S\ Sy has no symbols of arity greater than 1, the full first
order theory of rational or infinite terms is decidable as it is for finite terms
(see [Ra77]). This will discussed in a future paper. Our language contains
operation symbols, the equality and the symbol < to be interpreted, in term
algebras, in the preorder given by the subterm relation.

In Section 3, along a similar line pursued in [Ven87], we reduce the prob-
lem of deciding existential sentences to the problem of solving special sys-
tems, called reduced systems. In Section 4 we study the solution of reduced
systems in the algebras IT[X] and RT[X] which are the infinite and the
rational terms, respectively, formed by adding to the signature a new set X
of free constants, called indeterminates. We give an algorithm for testing the
solvability of a reduced system in IT[X] and in RT'[X] and for determining
solutions. Moreover, we prove that existential sentences in our language are
true in RT[X] if and only if they are true in IT[X]. In Section 5 we give a
procedure for solving systems in the algebra RT of the rational terms and
we prove that RT and the algebra IT of infinite terms have the same first
order existential theory. It turns out that the existential theories of RT[X],
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where X is non empty, and RT are different if and only if S\ Sy has a unique
symbol. We say in this case that S is singular. We have to treat differently
singular and non singular signatures because in the first case there is only
one full infinite tree, i.e. a term without constant symbols as subterm, and
in the second case there are infinitely many full trees. In Section 6 we show
that our method can be used also to give another proof of the decidability
result of Venkataraman [Ven87| for the algebra of finite terms. Finally, in
Section 7 we discuss axioms which direct the use of the rules in the previous
procedures.

The undecidability of the first order theory of the algebra of finite terms
carries on infinite terms [Tre90,Tre90a]. In fact, in our signature the fragment
of ¥;-sentences true in RT', denoted Thy, (RT), is undecidable. In analogy
with the arithmetical hierarchy we call ¥;-sentences the sentences which are
existential quantification of formulas where other quantifiers may appear if
they are all bounded by the symbol <. Moreover, it can be proved that
Ths, (RT) is recursively enumerable, but the %;-theory Thy, (IT) of infinite
term with subterm relation, unlike in the existential case, is very different
from Thys, (RT). In fact its degree of unsolvability, being X1, is above the
arithmetical hierarchy.

There are very recent papers which are related to our work . The paper
[Com90a] in which the existential theory of a lexicographic path ordering
on finite terms is proved to be decidable and the paper [MS90] where some
decidability problems about rational trees are studied and, constructions and
useful techniques are developed. The author is very grateful to the Referees
for having informed him about the work in progress and for remarks and
comments which have so much improved the final version of the paper.
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1 Notation and preliminaries

A signature S is a set of ranked function symbols. The rank of an f € S is
called the arity of f. As we said we assume that the set of constant symbols
So is non empty and that S\ Sy contains a symbol of arity greater than one.

Let N be the free monoid of words on the alphabet of positive integers
N; € will denote the empty word. If p,q € N then |p| is the length of p |
p = ¢ means that p is an initial segment of ¢ , p < ¢ if p < ¢ and p # ¢ and
p.q is the concatenation of p with q.

A non empty D C N is a tree domain if it is closed under initial segments
and ifi.p € D, fort € N, then j.p € D for every 7 < p. A functiont: D — S
is called a term if for every p € D, t(p) = s iff the arity of s is equal to the
number of successors of p in D. IT will denote the set of all terms in our
fixed signature S. This is an algebraic structure over S. F'T will denote the
substructure of all the finite terms, i.e. of finite domain. Any element p € D
is called an occurrence, or position, in ¢; D will be occasionally denoted by
Occ(t). When t is finite the depth of ¢, denoted depth(t), is the maximum of
the lengths of all the occurrences in Occ(?).

Let V be any set of new elements such that VNIT = (. We define IT[V],
FT[V] as before by adding the set V' to the signature, where any element
of V is considered of arity 0. The elements of V' are called variables and
occasionally indeterminates. If t € IT[V] then var(t) denotes the set of the
variables in the range of ¢; more generally, if H C IT[V], or it is any kind
of syntactic object, then var(H) denotes the set of variables which occur in
every term of H. 7

Assume s,t € IT[V]. Then s is a subterm of t, denoted s < ¢, if there
is some p € Occ(t) such that Occ(s) = {¢ : p.g € Occ(t)} and s(q) = t(p.q)
for every ¢ € Occ(s). The term s is denoted by t/p. Observe that the
interpretation of any n-ary operation f in IT[V]is such that: f(t1,...,t,) =1
iff Occ(t) = {&,i.p : p € Occ(t;) forsome 1 <i<n}andt(e)=f t/i=
t; for every 1 <1 < n.

RT[V] is the substructure of IT[V] of terms having a finite number of
subterms; the elements of RT[V] are called rational terms. Any such term
can be represented by a syntactic expression which can be defined as follows.
We consider the algebra of finite terms FT[V U N.] on the signature S,
where N, is the set of the positive integers; we may suppose that S, the
variables V' and N, be pairwise disjoint. Then the set R[V] of terms with
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pointers is
R[V]={t:te FT[V U Ny] and t(p) € N, implies t(p) < |p| }

We call a pointer in t any occurrence p € Occ(t) such that t(p) € Ny and
we denote by point(t) the set of all pointers in ¢. If p € point(t) and t(p) =
m € N, then we denote by #(p)] the unique position ¢ € Occ(t) such that
q < p and |p| — |q| = m. Any pointer p € point(t) such that ¢(p) = |p| will
be called mazimal pointer. If p is maximal then ¢(p)7 is the occurrence e.

Any ¢t € R[V] will also be called a syntactic term or simply a term when
it is clear from the context. Although the elements of R[V] are defined to
be functions, they may also be thought of as well-formed expressions on the
alphabet which represents the set S UV U N,. In fact, the elements of
FT[V U N.] can be defined as expressions in the usual inductive way.

Since R[V] is an algebraic substructure of the absolutely free algebra
FT[V U N.] it is possible to define replacement and substitution in terms
with pointers. Given ¢, sy, ...,s; € FT[VU N.| and occurrences py,...,px €
Occ(t), which are incomparable with respect to <, we denote the replacement
in t of s1,...,s; at positions py,...,pr by t[p1 < s1,...,pk < Sk). Further-
more, as usual, ¢[s/v] will denote the substitution of s in ¢ for the variable
v. In an analogous way, the simultaneous substitution of many variables
t[s1/v1, ..., Sk/vi] will be defined.

Note that R[V]is stable for the operation of replacement and substitution.
This means that when ¢, s1,...,s; € R[V] then also t[p1 « s1,...,pk < S
and t[sy/vy,. .., si/vk] are still in R[V]. Observe also that any substitution
on R[V] is a morphism which is the identity on V' except a finite subset of
variables. On the other hand, we recall, that replacement and substitution
are defined also for infinite terms of IT[V]. Substitutions are morphisms
of IT|V] which are the identity on the variables except on a finite subset.
Moreover, the substructures RT[V] and FT[V] are stable with respect to
replacement and substitution. In what follows we denote by [s1/v1, . .., Sk/vk]
either a substitution in R[V] or in IT[V] depending on whether all the s;, for
i=1,...,n,arein R[V] orin IT[V]. The substitutions and the replacements
will be put to the right of their arguments.

Observe that if ¢ € R[V] and p € Occ(t) then the subterm t/p is in
FT[V U N,] and t/p is in R[V] if and only if t(¢) < |g| — |p| for every
pointer ¢ with p < ¢. Now we define the notion of n-th unfolding ™, for
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every t € R[V] and every natural number n, and we define the term t//p, for
every p € Occ(t). This turns out to be useful to represent the rational terms
of RT[V] by means of syntactic terms in R[V] and to handle the notion of
subterm at position p, respectively. We proceed by induction as follows: ¢(®
is t; t(1) is the term obtained with the replacement of ¢ in ¢ at every maximal
pointer; t™*1) is ¢ if depth(t) = 0, i.e. t is a variable or a constant, and
tt) = f ((t(l)/l)”, . (t(l)/k)”), if depth(t) > 0, t(e) = f and f is of arity
k. Then the term t//p is defined as t(P) /p, for every p € Oce(t).

It is easy to see that if ¢ € R[V] then ¢™ and ¢//p are in R[V] for every
n. Moreover, the main properties are

1.1) if ¢ =™ (p)7, for some p € Occ(t™), then |q| > n;

Occ(t™) C Occ(t™+1) for every n;

(
(1.2
(
(1.4

)
)
1.3) t™(p) =tV (p) for every p,n such that p € Occ(t™) and |p| < n;
) t™/p=tM)p  for every p € Oce(t™) with n > |p|.

Let t be in R[V]. Then we define a formula D;(w, %) in the first order
language £ with equality and signature S. The free variables of such a
formula are the variables ' in var(t) and a new variable w. We denote point(t)
by {p1,...,pr} and we take a set of new variables {wy,...,w;}. We define
the finite term ¢’ € FT[V U{wy,...,wp}] by t' = tlp; — w; ¢ =1,...,k].
Then, D;(w,¥) is the formula

Jwy ... Fwe( ( YA N (wi =t /tp)T))

1<i<k

Now, it is possible to give axioms for the first order theory 7;r of infinite
terms in our signature S (see [Mah88,MT89,Com90]). They are the universal
quantification over the free variables of the following

(Fl) f(vl,...vk)zf(zl,...zk) — V=21 A NV = 2

for every f € S}
(F2)  f(v,...vx) #g(21,...2,) forall f,g € S with f # g;
(D)  FwDy(w,v) where t ranges on R[V] for V countably infinite.

The syntactic terms of R[V] can be interpreted in every model of the
axioms of 7yr. Such an interpretation extends the usual one when it is
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restricted to the terms in F'T[V]. The interpretation is based on the following
proposition. If s € R[V] and w is a variable different from s, we denote by
s¥ the term in R[V] defined by

si(p)=Ip| ifs(p)=w and sy(p)=s(p) otherwise.

Of course, if w ¢ var(s) then s} is s itself. We define s¥ also when s is w to
be the variable w.

Proposition 1.1 Let A be a model of Trr and o =V — A be an assignment
for the variables in V. Then, there exists a unique morphism & : R[V] — A
such that a is the restriction of & to V' and &(t[ty /w]) = &(ty) for every term

t and variable w. Moreover, a(t[s¥ /w]) = B(t), for every variable w € V
and every s € R[V], where 8 is the assignment such that f(w) = &(s¥) and
B(v) = a(v) forveV\{w}.

Proof: By axioms in (D). (See [MT89]).

Now, we make some remarks and state some facts which follow easily
from Proposition 1.1 and the various given definitions. To simplify notation,
we occasionally denote by « the morphism & of the above Proposition.

Remarks

1.2 Proposition 1.1 allows us to interpret in models of 77y any formula
which is built as a first order formula on the atomic formulas ¢ = s for
t,s € R[V] (see [MT89]). Such formulas will be called formulas with
pointers. It is also clear that any formula with pointers is equivalent
under axioms of 77y to an ordinary first order formula which can be
easily computed.

1.3 We may define the relation on R[V] by: t ~ s iff T;7 =t = s. Here,
variables are thought universally quantified. The relation ~ is a con-
gruence relation on the algebra R[V] and we have for all terms ¢, s and
every natural number n .

(1.5) t~ ™)
(1.6) t~s implies t™ ~ s,
(1.7) ¢t~ s and p € Occ(t) with |p| < n implies
p € Oce(s™) and ¢ (p) = s™(p);
(1.8) t™/p~tfp forn > |p|;
(1.9) t/lp ~1t)lq for every p,q € Occ(t) such that ¢ = t(p)T .
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1.4

1.5

1.6

1.7

The proof follows by the properties (1.1)—(1.4) and by Proposition 1.1.

By means of the notion of n-th unfolding we may define a morphism
ey : R[V] — RT[V]. Given t € R[V] we define ey(t) = £ where
t: U, Occ(t™) — SUV and t(p) = t™(p) if n is the minimum
number such that p € Occ(t™) and n > |p|. By properties (1.1)-
(1.4) the definition is correct. Moreover, by the various definitions and
properties in Remark 1.3, we have

(1.10) ey (t/fp) =t/p for every p € Occ(t);

(1.11) £ is a rational term and it is the unique element such that
the defining formula D;(w, ¥) is satisfied in RT[V] under the assignment
w +— t and v +— v for every v € V;

(1.12) ey is a morphism and Im(ey) = RT[V];

(1.13) t~s iff i=3

(1.14) Let A be a structure for the signature S. Then, for every
morphism f§ : R[V] — A, which preserve the congruence ~, there exists
a unique morphism 3 : RT[V] — A such that §(¢) = 8(t); so, 8 = ey .
The morphism ey will be called canonical morphism.

IT[X] and RT[X] are models of T;r for every set of indeterminates X.
In fact, given ¢ € R[V] and an assignment a : V' — RT[X], then the
formula D;(w,¥) is satisfied in RT[X] and in IT[X] by the assignment
v = a(v) for v € V and w +— #[a(v)/v : v € var(t)]. Moreover,
the map ey : R[V] — RT[V] is the unique map which, according to
Proposition 1.1, extends the embedding V' — RT[V].

For every formula with pointers ®, every variable w and every term
with pointers s

Tir = VU (Ew(w =sAP) <I>[3"T”/w]>

where ¥ is a list of the variables in var(®,s) \ {w}.

Let ® be v = w in the previous remark, where v ¢ var(s). Let A be a
model of 7;7 and « be an assignment for the variables in var(s) \ {w}.
Then we may conclude that the interpretation of sy in A,a s the
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1.8

1.9

1.10

unique solution of the equation w = s(w). More generally, let w; =
s;(w) be a system, where s; € R[{wy,...,w,} UX]\ {wy,...,w,}, for
t=1,...,n. Then it is possible to compute unique elements 7; € R[X]
such that

RT[X] }:'Ti = Sz'[’l"j/’w]' 01 S ] _<_ ’I'L}
fort=1,...,n. (See [Co85] ).

For t,s € R[V] we define ¢ < s iff there is p € Occ(s) such that ¢ ~ s//p.
Then

(i) The relation < is reflexive and transitive, i.e. a preorder.
(ii) t ~ s implies t < s; ¢t < v, for v variable, implies ¢ = v.

(iii) t<Qsin R[V] iff ¢ < &in RT[V], i.e. the canonical morphism
ey is a preorder morphism.

Let V be finite, then every morphism R[V] — R[X], which fixes the ex-
tra constants in N, is a substitution o = [s1 /vy, ..., $,/v,]. Moreover,
given o, by Remark 1.4 there exists a morphism ¢ : RT[V] — RT[X]
such that cex = eyd. The morphism & is nothing but the substitution
[81/v1, ..., 8n/vn]; SO, every morphism RT[V] — RT[X] is 6 for some
o. Moreover, for every t,s € R[V]

(i) ¢~ s implies to ~ so

(i) ¢ < s implies to 4 so

(i) to=16.
In what follows only morphisms of this kind are considered.

When (i) of the previous remark can be reversed, i.e. for every t,s €
R[V], to ~ so implies t ~ s, we say that o is injective (modulo ~).
In fact, in this case ¢ is injective. When (ii) can be reversed we will
say that o is a preorder morphism (modulo ~). If one of the above
conditions is satisfied only for all ¢,s € H, where H is a fixed subset of

R[V], we will say that o is injective (modulo ~), or preorder morphism
(modulo ~), on H.
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2 Subterm relation

We have already defined the notion t < s, “¢is subterm of s”, for ¢, s € IT[X].
It is a simple remark to observe that such a relation is a preorder, see Remark
1.8. The relation < is a partial order on the finite terms FT[X]. Moreover,
here < coincides with < .

Now, we consider the first order language £ for the signature S with
equality and the language L£< which is obtained by adding to £ a new binary
relation symbol that we still denote <. We call formulas with pointers of L<
the formulas which are built, as first order formulas, on the atomic formulas
t = sand t < s, where t,s € R[V] and V is some countably infinite set
of variables. We occasionally say terms and formulas instead of terms with
pointers and formulas with pointers.

Definition 2.1 Let A be a structure for L< and the restriction of A to L be
a model of Trr. Then, we stipulate that A satisfies the atomic formula with
pointers t < s under the assignment « if A, « satisfies, in the usual sense,
the first order formula

3”13“2 (Dt(ul, ’17) AN DS(’ZLQ, ﬁ) A\ Uq S u2>

where u1, Uy are new variables and the variables ¥ of var(t, s) are interpreted
by . We keep the notation A, o =1 < s.

Remark 2.2 The interpretation given in Definition 2.1 is well behaved. In
fact, the property in Remark 1.6 is true also for sentences of L< . Hence, ev-
ery model A and assignment a satisfy, as in Definition 2.1, the substitutivity

t=tAs=8§ — (t<st <)

where t,t',s,8 € R[V].

Now, we consider the following axioms in the language L<:
(O1) Reflexive and transitive for <

(02) Antisymmetric for <
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(03) Vovuy...Vu, (v < f(ur, .- 0m) = (0= f(vr, ..., 00) V Vicicn ¥ < vz))

for all f € S; if the arity n is 0 then V;<;<,(v < v;) disappears.

(04) Vivz (Z A (VpEOcc(t) z = t//p N V'va;ar(t) z < U)

where t ranges on R[V], V is countably infinite, and ¢ is a list of
the variables in var(?).

Then, we recall (see [Mal61,Com90] ) that the theory 7pr of finite terms in
the language £ has axioms (F1), (F2) and the infinite set of axioms

(0C)  t(v) #v

for every t € FT[V], v € var(t), t different from v and V countably
infinite.

Definition 2.3 In the language L< we define the theories:
Orr with azioms Trr, (01), (04) ;
Opr with azioms Tpp, (01), (02), (03) .

Remarks

2.4 IT[X] and RT[X] are models of Orr and FT[X] is model of Opr, for
every set X of indeterminates, when the symbol < is interpreted in
the subterm relation. Moreover, (IT[V],<) =t < s holds, where the
variables are universally quantified, iff ¢ < s holds, for ¢, s € R[V].

2.5 Axioms similar to Oy were already considered in [VYHS83, Section 6]
and in [Ven87]. Here, Venkataraman proves that the existential frag-
ment of the sentences true in (F'7T, <) is decidable and the problem is
N P-complete. Observe that axiom (O3) is consequence of (O4). In the
presence of the axioms for <, the theory Opr is finitely axiomatizable.
In fact, the Occur-check Axiom schema (OC) can be replaced by the
finite set of axioms

‘v’vl...an( /\ f(’Ul,.“

1<i<n

,Un) L v;) forevery f € S.
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s enae

2.6

2.7

Let A be any model of Oy and o : V' — A be a variable assignment.
Then, the morphism & : (R[V],<) — A preserves the preorder, i.e.
s < ¢ implies &(s) < a(t), for every s,t € R[V]. Analogous property
holds for models of Opp and FT[V].

Let S be a finite system of basic formulas with pointers, i.e. S contains
formulas t = s, t # s,t <s,t £ s for t,s € R[V]; we may suppose V
finite. Then S is satisfiable in RT[X], for some set X of indeterminates,
iff there exists a substitution ¢ : V' — R[X] such that:

to ~ so if t=s€8
to o so if t#£s€8
to < so if t<seS
to 4 so if tL€ses

Moreover, if n : R[X] — R[Y] is a morphism which is injective (modulo

~) and a preorder morphism (modulo ~) then o7 gives a solution of S
in RT[Y].
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3 Satisfiability of existential sentences in
models of O;r and reduced systems

In this Section we deal with the satisfiability of sentences Jv; ... Jv,®, where
® is a quantifier-free formula with pointers in the language £< . Such sen-
tences are equivalent under the theory Ojr to mere existential sentences of
L< (see Remark 1.2 and Definition 2.1).

We will say that a transformation of sentences is correct with respect to a
given theory 7 if whenever 1 is transformed into ¢ then 7 |= ¢ < ;. It is
helpful to put in the language two special symbols TRU E and FALSE to be
interpreted in obvious way. Any atomic formula with pointers ¢ = s, where
s,t € R[V], is called equation with pointers. It is called elementary equation
with pointers if t is a variable in V. Now, we recall a Lemma [Hue76] which
gives a decomposition of an equation with pointers into elementary equations
with pointers. We denote by A E, V E, the conjuction, the disjunction,
respectively, of all the formula in the set £.

Lemma 3.1 (Elementarization). There is a procedure such that for every
equation with pointerst = s computes a set E, where either E = {FALSE}
or E is a finite set, possibly empty, of elementary equations with pointers

and
T}Tl:(t:s)HAE.

Here the variables are universally quantified and we agree that N0 is TRUE.
Moreover, every term with pointers u which appears in E is such that u <t
oru<s.

We now derive a corollary which will be useful later. We say that a set
H of terms with pointers is closed under subterms if ¢ € H and s < t implies
s € H. Moreover, we use the definitions given in Remark 1.10.

Corollary 3.2 Let 8 : R[V] — R[X] be a morphism, determined by a sub-
stitution, and H C R[V] be a set closed under subterms. Then,

(1) B is injective (modulo ~) on H iff:
(1i) t8 ~vf impliest =v, for everyt e H, v € var(H).
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(2) If B is injective on H and Hy C H then [ is a preorder morphism
(modulo ~) on Hy iff:

(21) tB < vp impliest=wv, for everyt € Hy, v € var(H).

Proof: First recall Remarks 1.9 and 1.10. Then observe that the proof
of (1) is immediate by Lemma 3.1 and Remark 2.4. To prove (2) assume [
is injective (modulo ~) on H and assume (2i). Start with G < sf for some
t,s € Hy. Then, by axiom schema (O4), only two cases can occur

Case 1: t# ~ zf for some z < s. Then, t ~ z because ( is injective
(modulo ~) on H. Hence, t d s.
Case 2: There exists v € var(s) such that ¢5 < vf3. Then ¢t d s by (2i).

Axiom schema (O4) gives for every formula with pointers s < ¢ a finite,
possibly empty, set D of equations and of formulas with pointers of the kind
s < v, where v € var(t), such that O;7 = s <t <V D. So, given a formula
with pointers @, we replace, first, every atomic formula with pointers s < ¢,
where t is not a variable, by the disjunction \V D which can be computed
as described before. Then, we replace in ® every equation with pointers
t = s with A E, where E is the set computed in Lemma 3.1. Finally, we
put the formula in disjunctive normal form. This procedure will be called
Elementarize ®. It is immediate to prove that the transformation is correct
with respect to the theory Ojr.

We call reduced a system S of conjunction of atomic formulas with point-
ers of the kind: ¢t < wvort £ v or t # v, where v is some variable and ¢ is
different from v.

Now, we describe a procedure along the same line as the unification.algo-
rithm (see [MT89,Com90]). The input is a given quantifier-free formula with
pointers ® and the output is a formula &' which is either TRUE or FALSE
or a disjunction of reduced systems and var(®') C var(®). Moreover, if ¥ a
list of the variables in ® then Or = TP « FTP’.

We call trivial the following kind of formulas: TRUE, t <t, =1,
for any term with pointers . We call incoherent their negations: FALSE,
t£t, t+#t If®isin disjunctive normal form ® =V, ®;, where every @,
is conjunction of atomic formulas, then we call every ®; a disjunct.
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The procedure is the following

Reduce &;
repeat

1. elementarize P;

2. cancel all the trivial atomic formulas in every disjunct of ®;
3. if some disjunct is empty then return TRUE;

4. cancel all disjuncts which contain incoherent atomic formulas;
5. if the disjunction is empty then return FALSE;

6. eliminate the elementary formulas v =t or t = v, where v is a variable
and apply the substitutions [t}/v]

until TRUFE or FALSE is returned or @ is disjunction of reduced systems.

The termination is clear since step 6 eliminates variables. The correctness of
transformations 1-5 is clear. The correctness of transformation 6 is discussed
in Remarks (2.2) and (1.6). So, the procedure returns a formula @' such that
Orr = 0P « 309’ and @’ is disjunction of reduced systems. Observe also
that if ®” denotes the set of elementary equations eliminated by 6, then the
solutions of ® are the solutions of the conjunction ® A ®”. Thus, to solve ¢
one needs to solve @ since ®” is in solved form.
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4 Satisfiability test for reduced systems

To solve the satisfiability of existential sentences in models of O we may
consider only reduced systems after the procedure given in Section 3. So, we
consider a single reduced system S since the existential quantifier distributes
over disjunction. We give a procedure which fails if and only if S is not sat-
isfiable in a model of Oyp. Furthermore, when § is satisfiable the procedure
gives a solution in RT[X], where X has cardinality not less of the variables
in §. The procedure uses the following transformation T0O and the tests T1
and T2.

T0 Denote by V the set var(S). Define the relation R on V' by: vRw iff
there exists t < w € S such that v € var(t). Let — be the transitive
closure of R and C be the reflexive closure of — . The relation C is
called elsewhere Occur-check relation (see [JK90]). Let Vg be the set
of v € V such that there is no ¢t for which t < v € §. Let V4,...,V,
be the classes of the equivalence relation on V'\ 1 associated with the
preorder C. In other words, v C w, w C v iff there is 1 <4 < n such
that v, w € V;. Observe that the classes Vi, ...,V, can be indexed such
that:

(To*) IfveV,weV;,, vCw then 7 <j.
Tl fvEwand v LwéeS, for some v,w € V, then return FAILURE.

T2Ift<vesS, sLwesS vILCw st for some v,w € V and
some t, s € R[V], then return FAILURE.

The tests T1, T2 are clearly necessary for the satisfiability of & in a model
of Orp. The following Theorem proves that they are also sufficient.

Theorem 4.1 Let S be a reduced system of formulas with pointers and vari-
ables V. If the tests T1-T2 do not fail on S then S has solution in RT[X]
where X is any set of cardinality greater or equal to the cardinality of V.

Proof: It is clear that it is sufficient to prove the satisfiability of & in
RT[V]. To be more clear, we fix a set X bijective to V' and some bijection
v ¥ from V to X. Assume that V be partitioned into Vg, Vi,..., Vs as
it is described in T0. Let Xg, Xi,..., X, be the corresponding partition on
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X under the fixed bijection. Denote V¢; = U;<; Vj, X<i = Uj; X for @ =
0,...,n. We will define substitutions v; : R[V] — R[VUX] fori=0,...,n
such that all the following conditions (Ci) are satisfied.

(Ci)1  war(vy) € X< forv e Vg and vy; = v otherwise;
(C1)2 vy vy forallt € R[V], veVy
such that t <v € §;
(Ci)s svi A vy for all s € R[V], v € V such that
thereisw e Vand s L we S, v w;
(Ci)4 svi Aty forallsdweS, t<ves
such that v C w;
(C1)s wy; A vy for allv € V, u € R[V]

such that u #v € S.

Observe that by the Remark 2.7, the substitution -, gives a solution of
the system S in RT[X].

First, we define vy by vyg = «¥ if v € Vj and vyy = v otherwise. Then
(C0); is true by the definition of vg; (C0); is true by emptiness; (C0)s is true
because of T1; (C0), is true because of T2; (C0)5 is true because v # v ¢ S
and u ~ v implies © = v, when v is a variable.

Then, we assume to have defined ~,_; satisfying the condition C(i — 1)
for i > 0 and we define ~; as follows. We fix a function symbol f in the
signature of arity greater than one. To simplify notation we assume that f
is of arity two. Otherwise we may do a similar proof with the binary term
for, .. v1,09).

Let L = (ty,...,t,) be a list of elements of R[V U X] and x € X. Then
define, by induction on p, a syntactic term (z, L) € R[V U X] as follows (see
Fig. 1) (z,L) = f(z,u,) where ug = z, u; = f(t;,u;—1) for 1 <4 < p. The
terms uo, . .., u, will be called principal subterm of (z, L).

Let now M; = {ty;-1: t <v € S for some v € V;} and L; be a list of all
the terms in M;. Observe that, by (T0*) and by (Ci — 1)1, we have

(4.1) M; C R[V; U X<y

Then, as we said in Remark 1.7, it is possible to compute 77 € R[X<;] such
that

(4.2) 77 ~ (2, Ly)p; for every v eV,

where p; = [17 /v :v € V}].

3R

Hence, we define

s it veV;
(43) V= { VYi—-1 lf v E V \ V;

We now claim the following properties:
(CL1) v ="ic1pi ;
(CL2) ifty;_1 € M; then ty; I 77,  for every v € V ;
Let H = {s| s € R[V U X], var(s) N X; = 0} then

(CL3) p; is injective (modulo ~) on H,

37




e e S e e i
vt

(CL4) sp; ~ up; is impossible if s € H and u is a principal subterm of (z*, L;)
for some v € V.

Proof of (CL1): By (Ci — 1); and by definition of p; and ;.
Proof of (CL2): By definition tvy;,_; < (z¥, L;) . Hence

v

ty; = tyim1pi {2, Li)ps ~ 77

Proof of (CL3): It is sufficient to verify (1i) of Corollary 3.2. So, assume
(4.4) tp; ~ zp; for t€ H, z€wvar(H).

We may distinguish three cases.

Case 1: z ¢ V;. Then zp; = z. Hence, by (4.4) and the definition of p;,
t=z.

Case 2: z € V; and t is a variable. Then we may assume that ¢ € V;,
otherwise, by symmetry, we are in Case 1. So, (4.4) implies 7 ~ 77. This
implies z} = z7. Hence, t = 2.

Case 3: z € V; and t is not a variable. Then, by the definition of 77, we
have z* = (t//1)p;. This is impossible since var(t) N X; = 0.

Proof of (CL4): Assume u to be a principal subterm of (z¥, L;) for some
v € V;. Then, v = uy, where ug = z¥ and v = f(tg,ux—1) , for every
0 < k < q and some t;, in the list L;. Now, we prove a contradiction assuming

(4.5) Spi ~ UgpPi for some s € H.

The proof is by induction on ¢. If ¢ = 0 then (4.5) implies sp; ~ z°.
This implies s = 2¥ which is impossible since z¥ € X;. If ¢ > 0 then
Uy = f(tg,uq-1), where var(ty) N X; = 0. Now, we distinguish three cases.

Case 1: s is a variable not in V;. Then, (4.5) implies s ~ uqp;. Hence,
a2 € var(s). This is impossible because s € H.

Case2: s € V;. Then, (4.5) implies 2° = t,p;. This is impossible because
var(ty) N X; = 0.

Case 3: s is not a variable. Then (4.5) implies (s//2)p; = ug—1. This is
impossible by inductive hypothesis.

Now, we are able to prove the conditions (C'17).

38

Proof of (Ci);. This follows from (Ci — 1); and (4.3).
Proof of (C%),. This follows from (CL2).
Proof of (Ci);. We take v,w € V, s € R[V] such that s £ w € S, v C w.

Moreover, We assume
(4.6) sy < vy

Then we prove a contradiction by distinguishing three cases.

Case 1. v € Vi, k < 4. Then vy; = vy,—;. Hence, (4.6) implies
var(sy;) € X<(-1)- Therefore, var(s) N'V; = 0. Hence, sv; = sv;-1. Thus,
(4.6) contradicts (C7 — 1)s.

Case 2: v € V;. Then vy; = 77. Now, looking at the definition of 77
(see Fig. 1 and (4.6) ), we have that r < 77 implies either 7 ~ 7/ for some
u € V; or r ~ zp; for some principal subterm z of (z¥, L;} and some u € V; or
r ~ zp; for some z < t7,_1 and some ty,_1 € M;. Therefore, by Claim (CL4)
we have to examine only two subcases.

Subcase 2.1: sv; ~ 7 for some w € V;. Then, by (4.3), (CL1), (Ci—1);
and (CL3) we have sy;_1 ~ wy;—1. Moreover, u C v by definition of V;. This
contradicts (C7 — 1)s.

Subcase 2.2: There exist ty;,_1 € M; and z < ty;_1 such that svy; ~ 2p;.
Then, var(svyi—1,2) N X; = 0 by (Ci — 1);. Hence by (CL1) and (CL3) we
have sv;_1 ~ z. Therefore, sv;_1 < ty;_1. This contradicts (C7 — 1)4.

Case 3: v € Vi, k > 4. Then vy; = v. Hence, (4.6) implies s = v. So,
we have v € w € § and v C w. This is impossible by the test T1.

Proof of (Ci)y. Lett <v e S, s £w € S and v C w. Assume by hypothesis
to be contradicted that

(4.7) sy <ty

Then, only two cases can occur by (CL1).

Case 1: There is z < ty;_; such that sy; ~ zp;.  Then, by (CL3), we
have s7v;_1 < t7;_1. This is impossible by (Ci — 1)4.

Case 2: There exists u € var(t)NV; such that sy;<I7*.  Thenu C v E w.
So, (4.7) implies sv; < wy; where u C w and s € w € S. This is impossible
by (Ci)s which was already proved.

Proof of (Ci)s. This is immediate by (CL3) and (Ci — 1)3.
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5 Solving reduced systems in RT

When S is a reduced system in the variables V' Theorem 4.1 gives criteria to
solve S in RT[X] where X has cardinality not less than V. In this Section
we first prove that every solution v : R[V] — R[X] can be composed with a
preorder morphism 7 : R[X] — Rly] to obtain a solution of S in the rational
trees with a single indeterminate y. This gives necessary and sufficient con-
ditions for the solvability of S in some model of the theory Orr (see Theorem
5.7). Then, we look for a solution 6 in the rational terms by taking 6 =g,
where 3 : R[y] — R[0]. When the signature S is not singular a such [ exists
for any system and, when S is singular, a condition on the reduced system &
must be satisfied; moreover, the construction of £ is different. Hence, we have
that the existential theories of (RT'[y], <) and (RT, <) are equal if and only
if the signature is not singular. Moreover, we have decidability conditions
for the existential theory of (RT, <) also in singular signature.

Before the main result, we give a definition and we prove some technical
lemmas.

Definition 5.1 Let t € R[V] be an term. We define the size of ¢, denoted
1211, by
||| = min{depth(s) : s € R[V], s ~t}

where depth(s) is max{|p| : p € Occ(s)} and |p| denotes the length of the
word p. If ® is a syntactic object then |®|| denotes the mazimum size of the
terms which appears in P.

Remark 5.2 By definition, t ~ s implies ||t| = ||s||. So, we may define
unambiguously the size ||t|| of every rational term t € RT[V].

Remark 5.3 Let t be a finite term. Then ||t|| = depth(t). So, for every
m < ||t|| there exists some subterm s of t such that ||s|| = m; moreover, s It
and ||s|| = ||t|| implies s = t. The properties fail when t is in R[V] and not
in FT[V].

Here we use a fixed function symbol f of arity greater than 2. To simplify

notation we may assume that f is binary otherwise we could use the binary
term f(vq,...,v1,02).
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Lemma 5.4 Let X be a finite set. Then, for every m > |X| there exists an
injective map from X to FT|y|, say x — h*, such that

(i) The morphism n : RT[X| — RT|y| determined by the substitution
[h®/z . x € X] is injective and a preorder morphism (modulo ~ ).

(ii) Ift € Range(n) then either y ¢ var(t) or f(y,y) < t.

(iii) Let B : FT[y] — FT be any substitution. Then the elements {xng :
z € X} are pairwise distinct and of the same size m + 1+ ||y0]|.

Proof: Assume X = {zy,...,z,}. Let zg,Zpy1,...,2Zn be new indeter-
minates. For i =0,1,...,m define inductively k; € FT[xo,...,zy] by

(51) ]{JO = f(CC(), 1,’0), kz = f(.il?z, ki-1)7 for 1 <1< m.

Then, put

(5.2) A" =knlf(y,y)/zi y/z;: 0<j<m, j#1] forl<i<n

Proof of (i). We use the Corollary 3.2. So, assume tn ~ zn. Then tn € F'T[y]
and ¢ty = h*. So, t must be some variable in X. Hence, by construction (5.2)
(see Fig. 2), t = x. Now, assume tn < zn. Then var(t) # 0, otherwise
A < h* for some constant symbol in the signature S. Let z € var(t). Then
zn < tnp < xn. Since all A%, for v € X, have the same depth, we have that
z =z and zn = tn. Hence, t = = by the injectivity of n.

Proof of(ii). Let ¢t = sn. Then var(s) = 0 implies y ¢ var(t) and var(s) # 0
implies f(y,y) < t.

Proof of (iii). Assume z;78 = z;nf and i # j. Then h™F = h* 3. So, by
definition (5.2) (see Fig. 2), we have f(yf,yf5) = yfB. This is impossible
because yf € FT. Moreover, the definitions (5.1), (5.2) imply that || 8| =
1A% 4+ l|yBll = m + 1+ [lyB||  for every 1 <i<n.
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Fig. 2

Lemma 5.5 Let A be a fized constant symbol in the signature. Then for
every positive integer m there exists a by, € R[B] such that for all u,v,d €

R[0]
(i) f(u,v) < by, tmpliesu =A orv=A;

(i) d 4 by, implies d = A or ||d|| > m;

(iii) Let H C Rly] be closed under subterms and |H|| < m. Then § = [bm /Y]
is injective (modulo ~) on H.

Proof: We define a function ¢ : {1,2}* — FT[Q], where €2 is an indeter-
minate, by induction as follows

(53) tql -

where ¢ is the empty word. Then, for every p € {1,2}* we have (see Fig. 3)

(5.4) t(g)=f it ¢g=<p for every q € Occ(t,);
(5.5) ty(r)=A if notr =<p forevery r € Occ(t,);
(5.6) p € Occ(t,) and t,(p) =Q.

Now, we define the element b, € R[0)] by by, = (t,) where o is the word
121221...12®1...12(™ | Then b,, is a rational tree such that

(5.7) every subtree d of by, is A or by, /p for some p < o,
by (5.4), (5.5) and (5.6). Moreover,
(5.8) ldl| >m  ifd#A

since d has a chain of more than m subtrees. In fact, by definition of by,
by /T # by /q for all 7 < q < 0.

Now, by definition (5.3), f(u,v)<t,impliesu = A orv = A. This entails
a proof (i). The proof of (ii) follows from (5.7) and (5.8). For the proof of
(iii) we use Corollary 3.2 as follows. Assume that sg ~ yB and s # y for
s € H. Then, s{ ~ by, by Remark 1.7. Therefore, [|b,|| = [s{]| < [|s|| < m.
This is impossible by (5.8).
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Then, we define b, = (t(m))?. By construction by,(¢) = f and f(d,e) < by,
implies d(g) = g, e(e) = g. Hence (i) holds. Property (ii) holds since on each
branch of b, there exists a chain of more than m subtrees. The proof of (iii)
is quite analogous to the proof of (iii) of the previous Lemma 5.5 .

$(3)
f
g 9
Fig. 3
g g g g
g g g g
p = 121221222 Q
f f { f
Lemma 5.6 Assume that the signature has two function symbols f, g of pos- / \ / \ / \ / \
wive arily, where f s the binary term used in the previous lemmas. Then, g g ¢ g g g ¢ g
for every positive integer m, there exists b,, € RT such that
(i) f(bm, bm) f b, 9 g; 9 g g gy 9 g
(i) d < by, implies ||d]| > m;
(iii) Let H C Rly] be closed under subterms and ||[H|| < m. Then = [bm /Y] g g 9 g g g 9 g
is injective (modulo ~) on H.
Proof: Firstly we define, by induction on the natural number &, the finite
terms g®), t*) as follows (see Fig. 4) Q Q Qo Y Q 9 Q
g9 =q, g™t =g®[Q/g(Q,...,Q), Fig. 4
10 =q, D =1 B[/ f(g®),. .. g™)]. '9-
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Theorem 5.7 Let S be a reduced system of atomic formulas with pointers
in the signature S and with var(8) = V. Then (i)—(iii) are equivalent

(i) S has solution in some model of Orr;
(i) The tests T1, T2 do not fail on S;
(iii) S has solution in RT[y).

Moreover, let Sy be the (non empty) set of constant symbols in S. Assume
either that S is non singular, i.e. |S\ So| > 2, or Sy # C, for allv € V,
where Cy = {A: A€ Sy, GweV)vTw, ALweS}. Then (1)—(v) are
equivalent, where

(iv) S has solution in RT';

(v) S has solution in every model of Orr.

Proof: (i)—(ii), (iii)—(i) are clear.

(ii)—(iii). Let V = var(S) and assume (ii). Then, Theorem 4.1 proves
that there is some X and some substitution v : R[V] — R[X] which gives a
solution for S in RT[X]. Let m = |X| and n : R[X] — R[y| be defined as in
Lemma 5.4. Then, the substitution § = yn gives a solution in RT'[y] since 7
is injective and preorder morphism (modulo ~) (see Remark 2.7).

Now, we assume (ii) and we fix a solution v : R[V] — R[X] as in Theorem

4.1. The we split the further assumption in two parts and in either cases we
prove (iv).
ASSUMPTION 1: S is non singular. Say f the fixed (binary) symbol used
in the construction of 7. Let n : R[X] — Rly] be the morphism given in
Lemma 5.4. Thus, as we proved before, § = 7 is a solution for S. Let K
be the set of terms with pointers which appears in S. Let H be the set of
subterms of terms in K¢§. Fix an integer m > ||H||, compute b, € R[f] as
in Lemma 5.6 and let 3 : Rly] — R[0] be defined by § = [bn/y]. Now, we
claim the following

(5.9) 3 is injective (modulo ~) on H,
(5.10) B is a preorder morphism (modulo ~) on KO¢.
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After (5.9)—(5.10) we prove that 64 is a solution for &, hence (iv), as follows.
Ift <v e S then t6f8 < véf because ¢ is a solution and [ is a morphism.
If » # u € S then 76 # ub because ¢ is a solution and (5.9). Finally, if
s £ w € S then s6 Awéf because ¢ is a solution and (5.10).

Proof of (5.9) is by (iii) of Lemma 5.6. To prove (5.10) we may use (2i)
of Corollary 3.2. Hence, we prove that the assumption

(5.11) t3<dylB andy#t, for some t € K¢

leads to contradiction. We assume (5.9) and we distinguish two cases.

Case 1: y ¢ var(t). Then t8 =t. So, by (5.11) ¢t < b, and ||t|| < m.
This contradicts (ii) of Lemma 5.6.

Case 2. y € war(t). Since t € Ké and Range(6) = Range(yn) C
Range(n), by (ii) of Lemma 5.4, we have f(y,y) < t. Therefore, (5.11)
implies f(by,, by) < by,. This contradicts (i) of Lemma 5.6.

ASSUMPTION 2: S, # C,, for every v € V. Firstly we define a morphism
¢ : R[X] — R[X]. For every z € X let h* be the term in R[y| as in Lemma

5.4, ie. h® = zn. Put z6 = h®[z/y]. Then, in complete analogy with the
proof of Lemma 5.4, we have

(5.12) g is injective and a preorder morphism (modulo ~);

(5.13) if t € Range(f) and x € var(t) then f(z,z) d t.

Now, 6 = 0 is a solution of S since  is a solution and (5.12). Then, let
us look at the inductive definition of v in the proof of Theorem 4.1. By
the definition of vy and by (4.3), (4.2) and (4.1) it is possible to prove by
induction on ¢ that, for every u € V, if z* € var(vy;) then u C v. Therefore,
by v = 7, and by the definition of § we have

(5.14) z” € var(wd) implies v C w, for all v,w € V.

Now, let K be the set of terms with pointers in S, H be the set of subterms
of terms in K6 and Hy be K6\ Sg. By Assumption 2 we can choose, for every
v € V, a constant symbol A, € Sp\ C,. Then, fix an integer m > ||H|| and
define b7, as in Lemma 5.5 with respect to the constant symbol A,. Moreover,
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let B : R[X] — R[0] be defined by z"8 = b},. Now, along the line pursued
before, we prove

(5.15) 8 is injective (modulo ~) on H;

(5.16) £ is a preorder morphism (modulo ~) on Ho.

After (5.15)—(5.16) we prove that 60 is a solution for S, hence (iv), as follows.
Ift <v e S then t64 < v63 because § is a solution and 3 is a morphism.
If r # u € S then 76 2 ud because 6 is a solution and (5.15). If s L w e S
then we distinguish two cases.

Case 1: s & Sp. Then {s6,wé} C Hy = K6\ So. So, s68 J w6 because
§ is a solution and (5.16).

Case 2: s € Sy. Then, 568 < wéf would imply s JwdfB. But, s = s6 Fwd
because § is a solution. So, there exists ¥ € var(wé) such that s < z°0.
Hence, s = A, by construction of b%, and v C w by (5.14). Thus, A, £ w € S
and v T w. This would imply A, € C, which contradicts the definition of
A
Proof of (5.15). We use (1i) of Corollary 3.2. Hence we assume 3 = v = b,
for some term t in H. If 2 € var(t) then b% < b2, hence by, = by,. So, by
(iii) of Lemma 5.5, we have t = v.

Proof of (5.16). We use (2i) of Corollary 3.2. Hence, we prove that the
assumption

(5.17) t8 <4 z’F and x¥ #t, for some t € Hy

leads to contradiction. We assume (5.17) and we distinguish two cases.
Case 1: var(t) = 0. Then t3 =t and, by (5.17), t<J by, and [|t]| < m. So,
by (ii) of Lemma 5.5 we have that ¢t = A,. This is impossible since A, ¢ Hy.
Case 2: var(t) # 0. Let z* € var(t). Since t € K6 and Range(6) =
Range(v0) C Range(0), by (5.13) we have f(z*,z*) < t. Therefore, (5.17)
implies f(bm, bm) < by, which contradicts (i) of Lemma 5.5.

Remark 5.8 Observe that the reduced system

{’US’UU, Al ﬁ’U, A? ﬁwa f(U,’U) 7/:?}}

4R

in the singular signature {A1, Ay, f} has no solutions in RT, but [y/v,y/w]
is a solution in RT[y]. Therefore, the extra condition to prove (iii)—(iv) in
Theorem 5.7, is necessary.

Moreover, observe that when C, = Sy and the signature S = SoU {f} is
singular then any possible solution for the system S in RT must assign to
v the full k-ary tree, if k is the arity of f. So, if 0 : V. — R[] defines a
solution then o(v) ~ f(1,...,1).

The above remarks and Theorem 5.7 prove that the existential theory of
(RT, <) can be decided by the following procedures. They are different for

a singular and non singular signature. The termination of the procedures is
clear.

test(®) {where ® is a quantifier-free formula }
if Reduce(®) does not fail and returns \ S;
then for every i test1(S;)
else return not SATISFIABLE.

test1(S) {where S is a reduced system }
if T1-T2 fail
then return not SATISFIABLE
else distinguish the cases

Case 1: S is non singular. Return SATISFIABLE
Case 2: S singular.

if So = C, for some variable v
then test(S[v/f(1,...,1)])
else return SATISFIABLE.
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6 Venkataraman Theorem Revisited

Following the lines of the proof for the decision of existential sentences of the-
ory Th(RT, <), we can give an analogous proof for the decision of the existen-
tial sentences of Th(F'T, <). The latter result was obtained by Venkataraman
in [Ven87]. Our proof is straightforward after the technique developed in the
previous sections.

Remark 6.1 The satisfiability problem for existential sentences in models of
Opr can be solved by means of a test for the satisfiability of reduced systems.
Such systems will, of course, contain no pointers. In fact, there is an anal-
ogous procedure to the one given in Section 3. We describe below the slight
modifications.

Formulas ¢ = v, t < v, where v € var(t) and ¢ is different from v, have
to be classified as incoherent formulas. Therefore, formulas t # v, t £ v,
where ¢, v are as before, have to be classified trivial. Moreover, only the
substitutions [t/v], where v ¢ var(t), are allowed.

Now, it is clear that the modified procedure transforms quantifier-free
formulas of L< into a disjunction of reduced systems. Furthermore, the
transformation is correct with respect to the satisfiability of the input and
output formulas in models of Opr.

Remark 6.2 Let S be a reduced system of atomic formulas of L<. Then,

analogously as in Section 4, we may test the satisfiability of S in a model of
Opr as follows.

The tests T1, T2 remain the same, but in TO we have to put the controls

T0": Do as in T0, compute the relation — on var(S). fv mvandt <v € S
for some v € var(S) and some term ¢ ¢ var(S) then return FAILURE;

T0": After T0', for all different variables v, w with v — w and w — v apply
the substitution [v/w] and cancel the trivial formulas. If there are
incoherent formulas the return FAILURE.

The test T0' is correct by the Occur-check Axiom of Opr and T0” is
correct by the antisymmetric property of the partial order. So, by T0” the
equivalence classes Vi,...,V, are singletons. Moreover, if ¢ < v € S and
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v € V; then, by the property (T0*), var(t) C Vi U...UV;_;. This forces
the necessarily unique term 7 defined in (4.2) to be in FT[X;]. Thus, the
following Theorem can be proved along the proof of Theorem 4.1.

Theorem 6.3 Let S be a reduced system of atomic formulas with variables
in V. Assume that the tests TO', T0", T1, T2 do not fail on on S. Then
there is a substitution v : FT[V] — FT[X], where X is bijective to V, such
that

(a) 7 solves S in FT[X];
(b) z¥ € var(vy) and not vy =z, i.e. ¥ < vy, for everyv € V.

Here, v — z¥ s a bijection from V to X.

Corollary 6.4 Let S be a reduced system of atomic formulas. Then, the
following are equivalent

(i) S has solution in some model of Opr;
(ii) The tests TO', T0"”, T1, T2 do not fail on S;
(iii) S has solution in FT[y].

Now, we give a procedure for testing the solvability of a system S in F'T.
Then we prove its correctness. We denote by Size(r) the set of terms ¢ in
FT such that ||t]] = 7.

Procedure sat(S)

Case 1: var(S) =0 . Sis SATISFIABLE in FT iff all sentences in &
are true in F'T".

Case 2: var(S8) =V # 0.

2a) if S is not reduced then compute a disjunction \/ S; of reduced systems
with the procedure described in Remark 2.1; return SATISFIABLE
iff, for some 17, sat(S;) does it.

2b) If the tests T(0', T0”, T1, T2 fail on S then return FAILURE.
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2¢) For every v € V put G, = {s|s € FT, s L v € S}

and let 7 = 1+ max{]|s]| : s € Upey Go}-
2d) Compute the Occur-check relation C on V.

Case 2.1: (Jv € V) (Vb € Size(r))(Fw Jv)(3s € Gy) (s < b) .
Choose a witness v € V for the above formula
and return SATISFIABLE iff for some u € F'T,

llul| < 7, sat(S[u/v]) does it.

Case 2.2: not case 2.1. Return SATISFIABLE.

Correctness of Case 1 is clear; 2a) is correct by Remark 6.1 and 2b) since
FT C FT[X]. Thus, we have to prove the correctness of Case 2.1 and Case
2.2. The distinction of these cases resembles the use of a barrier in the proof
of Venkataraman [Ven87, Section 3.

Assume Case 2.1 and assume that o : FT[V] — FT is any possible
solution of S. Let v be a witness for the assertion in Case 2.1. We have to
prove that

(6.1) [lvo|| < r

If (6.1) were not true then there would exist b € F'T such that b < vo and
|Ib]] = r (see Remark 5.3). Hence, for some w J v and some s € G,,, we
would have s < b. Thus, s < vo < wo which is impossible.

Assume now Case 2.2. Then, for every v € V, fix a witness b” in F'T" of
size 7 such that

(6.2) (Vw Jv)(Vs € Gy)(s £ b°) .

Then we have to prove that S has solution in F'T .

Since the execution has not terminated in 2b), the tests T0, T0", T1,
T2 do not fail on S. So, let v : FT[V] — FT[X] be a substitution which
solves S as in Theorem 6.3. Let m = max{||V||,1 + ||Sv||} and let n be the
morphism, relative to m, as in Lemma 5.4 . Define elements in F'I" by

(6.3) d” = wvn[b”/y].

H2

So, by (iii) of Lemma 5.4,

(6.4) {d":v eV} isaset of pairwise distinct element of size m + 1 + 7.
Then, we define

(6.5) g FT|X]— FT, B =1d"/z"]

and we prove that «v( satisfies S. First, we prove that

(6.6) B is injective on the set H of term of size < m.

To prove (6.6) we can use Corollary 3.2 since H is closed under subterms.
So, assume t3 = v, for some ¢t € H. Then, t3 = d' and t0 has size > m
by (6.4). Hence, ¢ must contain some variable, say u. Thus, d* < t3 < d°.
Therefore, we have u = v, again by (6.4), and ¢ = v by the Occur-check
Axiom. Then, hypothesis (1i) of Corollary 3.2 is proved. Hence (6.6).

Now, if t < v € § then tyf < vvy[ since v is a solution and ( is a
morphism (see Remark 1.9). If ¢t # v € S then ty8 # vy since v is a
solution and (6.6). It remains to prove only that:

(6.7) svB £ wyf for every formula s Lwe S .

Assume that (6.7) is not true for some formula. Then, since sy € wy and
since (3 is injective on terms of Svy, must exist some z¥ € var(wy) such that

(6.8) syB < x’B=d".

Now, we distinguish a priori two cases that we prove both impossible.

Case 1: s € Gy. Then sy8 = s because s is ground. Hence, s < d”
by (6.8). On the other hand, by definition (6.3) of d”, we have that s < d"
implies s < 0¥ or b¥ < s (see Fig. 5). Now, s < b¥ contradicts (6.2) and
b¥ < s implies the contradiction r = ||b”]] < ||s|| < r by definition of G,, and
r.

Case 2: s ¢ G,. Then there exists u € var(s) and z* < wuy, by (b)
of Theorem 6.3. Hence, 2“8 < wuvyf because [ is an injective morphism.
Thus, 28 < uwyf < syB. Therefore, by (6.5) and (6.8), d* < d*. This is a
contradiction since d*, d" are finite terms of the same size.
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Remark 6.5 Let M C {0,1,...,w} be a recursive set, then consider the
problem of deciding if the number #S of the solutions of a given system S is
in M. This problem is decidable, as was observed by Venkataraman [Ven87] .
In fact, S has a finite number of solutions if and only if S falls always in Case
2.1 during the execution of the procedure sat(S). Moreover, an upper bound
for #S can be easily estimated. This contrasts with an analogous problem for
the solution of diophantine equations, where Davis [Dav72] proves that for
non trivial subsets M the problem is unsolvable.

The analogous problem for solving systems in the algebra of rational or
infinite terms is even easter. In fact, any reduced system has in RT either 0
or 1 or infinitely many solutions.
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7 Axioms for the decision of existential frag-
ments

We denote by Sy = {A4,..., A} the (non empty) set of constant symbols in
our finite signature S. Moreover, f is a fixed symbol in S of arity greater than
one; to simplify notation we think f of arity 2. S is singular if S = SyU {f}.
We fix an infinite set of indeterminates {zo,...,2,...}. For every v < w we
denote by FT, the algebraic structure FT[z, : n < v] in the signature S.
Analogously, we use the notation RT,, I'T, for every v < w. We denote by E
the set of existential sentences of our first order language L< and by Thg(A)

the set of sentences in E which are true in A, where A is any structure for
L.

Remark 7.1 According to the inclusions of the relative algebras of terms,
we have

Thg(FT,<) C Thg(RT, <),
Thg(FT1,<) C Thp(RTy, <);
Thp(FT,<) C Thg(FT,<);
Thg(RT,<) C Thg(RT, <);
The first two inclusions are clearly proper. The third is proper since

(A LA AN £ )

1s true in F'Ty and not in FT. The last inclusion is proper for singular
signatures (see Remark 5.8) since

Jr (A LN AN LA flz,z) # x)
1s true in RT7 but not in RT. However, Theorem 5.7 proves that
Thg(RT,<)=Thg(RT\,<) =Thg(IT,<)

for non singular signatures. Furthermore, it proves that, for every signature,

Thg(RT\, <) =Thg(RT,,<) =Thg(IT,,<) forl<v<w.

Moreover, for singular signatures, Thg(RT, <) = Thg(IT, <). This will also
Jollow by (2) of next Corollary.
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Now, we consider the set of axioms:

6 = Yo(A L LoV... VA, LoV f(v,v) =0)
no= 3 (Y Ages(a # 9(9)))
om = Yo(Aserr,tj<m EF# V) — Veerr, jsj=m (5 < V)

for every positive integer m.

Axiom 6 is true in RT and asserts that the full binary tree labelled with
f is the unique element which does not admit constant subterms. Axiom 7
asserts the existence of at least an indeterminate; it is true in RT[X] and
in FT[X] when X # 0, but it is false in RT and in F'T. Axioms §,, when
interpreted in F'T" say that every term of size not less than m must have at
least a subterm of size m.

To formulate the next Corollary to the results obtained in Sections 5 and
6, we need the following

Definition 7.2 Let H be a set of sentences. We say that a theory T decides
the sentences E in H iff for every o € E the following are true:

T +F « iff o€ H;

T F -« iff ad¢ H.
Corollary 7.3

(1) Orr U{m} decides the sentences E in Thg(RT, <);

(2) Opp U {6} decides the sentences E in Thr(RT, <) when the signature
18 singular;

(3) OprU{m} decides the sentences E in Thg(FTy,<);

(4) Opp U {b,, : m < w} decides the sentences E in Thr(FT,<).

Proof: Denote by 7}, the first set of axioms in (k) for 1 < k < 4.
Proof of (1). Observe that for every model M of 77 there is an order embed-
ding RT; < M. Then apply Theorem 5.7.
Proof of (2). Assume that some quantifier-free formula ® has solution in
some model M of 75 and not in RT". Choose ® where the number n of the
variables is minimal. Of course n > 0. Then, by the procedure Reduce, we
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can find a reduced system S, with variables contained in var(®), which has
solution in M and not in RT. Thus, by Theorem 5.7, it is C, = Sy in S
for some variable v. Then, since axiom § is true in M, the claimed solution
o :var(S) — M is such that o(v) is the full binary tree labelled with f
(see Remark 5.8). Hence, by substituting v in S for the term with pointers
f(1,1), we would have a quantifier-free formula in less than n variables which
has solution in M but not in RT.

Proof of (3). Observe that, for every model M of 73 there is an order
embedding F'T} < M. Then apply Corollary 6.4.

Proof of (4). Let M be a model of 7;. Then there is an order embedding
FT — M. It is sufficient to prove that every system S that has a solution
in M it has, in fact, a solution in FT. Assume not. So, it must exist a
reduced system S as a counterexample, where var(S) = {vy,...,v,} and
n is minimum. Then it follows that, for every solution o of & in M, it is
vio € M\ FT, for every i = 1,...,n. Moreover. the tests T0’, T0”, T1,
T2 do not fail on § by Corollary 6.4, since M is model of Opp. So, the
procedure sat(S) either terminates in Case 2.1 or in Case 2.2. Now, assume
Case 2.1. Then there is a variable v which is a witness for the assertion in
Case 2.1. Thus, by the axiom ¢, there is an element 0¥ € F'T of size r with
b¥ < ov and such that the negation of (6.2) is true. Hence, for some w J v
and some s € GG,

sc=s<b' <vo<woc and sLweS.

This is a contradiction. Therefore, the procedure sat(S) terminates in Case
2.2 and the system S has solution in F'T.
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