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On some Ideal Basis Theorems
PAOLO AGLIANO - ALDO URSINI

Abstract. After recalling the concept of subtractive variety we introduce gen-
eralized notions of ideal, prime ideal and radical ideal, which, for rings, co-
incide with the classical notions. Two concepts of gradation of an algebra
over some of its subalgebras are given in a way that allows to generalize the
Hilbert Basis Theorem and the following statement: “if R is a commutative
unitary ring and all the radical ideals of R are of finite type, then the same
holds for Rlz]”.

The concept of ideal determined variety of universal algebras, though fore-
shadowed by Magari [6] and some others (see, for instance [3]), has been
investigated by the second author of this paper who, in the early seventies
gave the definition and proved the first results ([8], [9]). We deal with vari-
eties with an equationally definable constant (which will be denoted by 0); to
make a long story short, an ideal of an algebra A is a subset of A containig
0 and closed under certain polynomials of the algebra. The case in which
any ideal of A is the 0-block of exactly one congruence of A is particularly
interesting (and we say that A is ideal determined). In that case many
classical results in group and ring theory have been generalized. We mention
[11] and [4] (the concept of commutator of ideals), [12] (prime ideals and
Cohen’s Theorem) and [1] (the prime spectrum). The concept works fine
as well for Boolean Algebras, algebraic structures coming from logic and in
general in almost any context in which the word “ideal” appears. This paper
of course is addressed mainly to a generalization of the ring-theoretic frame.

Here we deal with algebras that, though not necessarily ideal determined,
are still good enough to permit a generalization of the following classics:

(A) (Hilbert Basis Theorem) If R is a Noetherian ring, then also R[z] is
Noetherian. :

(B) (Kaplansky’s exercise [5]) If R is a commutative unitary ring and all
the radical ideals of R are of finite type, then the same holds for Rz].

Both classical results rely heavily on the possibility of defining a notion of
gradation of R[z] over R, where the gradation, for a polynomial p(z) € Rlz],
is the pair “degree of p(x), leading coefficient of p(x)”. Nevertheless a closer
look at the proof reveals a substantial difference between the two arguments,
difference that is probably somewhat obscured by the natural richness of a
ring structure. In fact, while for proving the Hilbert Basis Theorem it is
enough to use the “additive” properties of the ring as a module on itself and
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the fact that the degree of the sum of two polynomials is less or equal to the
maximum degree, for Kaplansky’s theorem there is a critical usage of the fact
that the degree function is also well-behaved, in that, in some cases, we can
divide a polynomial by another one in order to lower the degree; moreover we
need to use the multiplicative structure of R[z] since we need to “multiply
by «™”.

In view of these remarks we have decided to distinguish the two cases,
since we feel that in our more general investigation we should not make use
of the natural algebraic richness of the ring structure that is of course in the
background, not even mentioned, in the classical cases.

Our notation is more or less standard and we refer to [4] for details. We
use the vector notation @ for n-tuples (aq,...,a,) , and we will write @ € A
instead of @ € A™ .

1. PRELIMINARIES

All algebras and varieties considered in this paper will belong to a type
with a nullary operation (or will have a definable constant) denoted by 0.
Most notions will in fact depend on the existence of this constant, but we
will not make this dependence explicit in definitions or notations.

DEFINITION 1.1: A variety V is subtractive [13] if there exists a binary
term s(z,y) in the language of V such that beth

s(z,z) =0 §(z,0) ~

hold in V. An algebra A is subtractive if it belongs to a subtractive variety.

In a subtractive algebra, let us define
w(@,y, 2) = s(x, s(s(z,y), 2))-
Then clearly u(x,y, ) satisfies
w(x,y,s(z,y))) =2 u(z,0,0) =0

u(x,z,0) = u(x,0,z) = .
It would be nicer to have also a binary addition, i.e. a binary term g¢(z,y)
satisfying
‘ gz, s(y, ) =y q(z,0) = z.
If so however, we would get permutability of congruences, since the binary
term
tx,y,2) = q(z,s(2,y))

would satisfy the Mal’cev identities
Ha z,2) =t{y.y.z) =z

Implication algebras, for instance, are subtractive, but do not always have
permutable congruences (see [7]). The congruence of subtractive algebras
however, always permute at 0: if A is a subtractive algebra and 6,¢ €
Con(A), then (0,x) € 6V ¢ implies (0,y) € 6 and (y,z) € ¢ for some y € A.
(Here ”Vv” denotes of course the join of two congruences). More generally we
have:

PROPOSITION 1.2. [2] For a variety V the following are equivalent:
(1) V is O-permutable.
(2) V is subtractive.
(3) V is ideal-coherent.
(4) For any A €V, the map from Con(A) to the lattice I(A) of all the
ideals of A, defined by 6 — 0/0, is a (complete) lattice homomor-
phism.

Let us recall that a nonempty subset I of an algebra A € V is an ideal
of A if for any term p(Z,7) of V, if p(Z,0,...,0) = 0 in V then, for all
Aly.ooyOy € A4y, ... 2m € I we have

p(afla'“aanaila-- -ai’m,) €l

(Any term p(&, ) such that p(Z,0,...,0) ~ 0in V is called an ideal term
in § of V). The set I(A) of all the ideals, partially ordered by inclusion,
is an algebraic lattice. The reader can consult [8], [4] and [11] for more
informations. A variety ) is ideal-coherent if, for any A € V and I € I(A),
if 0/0 C I for some 6 € Con(A), then [ is a union of #-blocks. For a proof of
Proposition 1.2 see [2].

If H C A, by (H)a we mean the ideal generated by H in A; when no
confusion can arise we will drop the subscript A. One easily shows that

(HYa = {p(@, k) : p(Z, #) an ideal term in y,@ € A,k € H}.

If A is a subtractive algebra and X,V are nonempty subsets of A we define

([13])
X+Y ={u(a,z,y):ac Aze X,y Y}

That this definition is quite relevant, it is shown by the proposition below:

PROPOSITION 1.3. Let A be an algebra in a subtractive variety V and let
I,J eI(A). ’
(1) Ifuwe I and s(u,v) € I, thenv € I.



(2) I+ J is an ideal and
, I+J=IvJ={IUJ)a.

(3) If z € I+ J, then there exists a y € I with s(z,y) € J.

Proor: While (1) trivially follows from u(z,y, s(z,y)) = x, we refer to [13]
for the proofs of (2) and (3).

Note that, as a consequence of Proposition 1.3, being an ideal of A does
not depend on which subtractive variety A happens to belong. Moreover in
[13] it is shown that I(A) = {0/6 : 6 € Con(A)}.

2. NOETHERIAN ALGEBRAS AND THE HILBERT BASIS THEOREM

Let x be any infinite cardinal; from now on.we assume the Axiom of choice,
so that all the useful properties of cardinals be available. We say that a set is
k-finite if its cardinality is strictly less that x. A family S of sets is x-closed
if the union of any k-finite chain in & belongs to S. Let now A be a set and
U be a closure operator on A; we say that (A, U) is k-Noetherian if every
closed subset of A is the closure of a s-finite subset.

PRrOPOSITION 2.1. Let U be an algebraic closure operator on A. Then the
following are equivalent:

(1) (A,U) is k-Noetherian.

(2) Every properly ascending chain of closed sets is r-finite.

(3) Every nonempty r-closed family of close sets contains a maximal ele-
ment.

ProOF: (Sketch.) The proof is almost equal to the standard one; let us give
a few hints. First, if § is a nonempty k-closed family of closed sets, pick
Iy € § and, for any o < & define /.41 inductively by picking a set in S
properly containing I,. At limit stages, take unions. Hence (2) implies (3).
For the converse, if C is a chain of length 8 > &, then take S to be the set of
all k-finite unions of elements of the chain, in order to deny (3).

Next let C be a chain, that we may of course assume being strictly increas-
ing. Define a, inductively for a < 3. Pick any ag € lo; if o = 6 + 1 pick
as € Io — Is and if o is a limit ordinal pick a € I,41 — 1. Since there are at
least x successor ordinals below k, the sequence will have at least x distinct
elements. Let I be the closure of {a, : @ < B}; if we have that I is also the
closure of some {b, : ¢ < 7} for some 7 < x we get a contradiction. Hence
(A, U) is not x-Noetherian and (1) implies (2). That (2) implies (1) is trivial.

Let us remark that, in the proposition above, the assumption might be
weakened to U being r-algebraic, i.e. that if x € U(X), then z € U(Y)
for some r-finite subset ¥ of X. Actually we do not believe presently that
it is worthwhile to work at that stage. In one point at least we would have
to strengthen correspondingly an assumption below, at the cost of losing
perspicuity.

Assume now that A is a subtractive subalgebra of a subtractive algebra
B. By this we mean that the operation s(x,y) that witnesses subtractivity
for A is the restriction to A of the operation witnessing subtractivity for B.
We will say that A is k-Noetherian if (4, ( )a) is x-Noetherian.

Let o be any ordinal, o > 1. Let o’ denote o U { L}, where L is a fresh
object decreed to be smaller that 0 and different from «.

DEFINITION 2.2: A gradation of B over A in « is a pair of mappings (6, )
where ‘
6:B —a w:B— A

and the following hold:

(1) 6(b) =L if and only if b= 0, 6(b) = 0 if and only if b € A — {0}.

(2) If a € (u(b))a,6(a) > 0, then a = p(c) for some ¢ € (b)p with

6(c) < 6(b).
(3) For all a € A, b,c € B, we have

5(u(a,b,c)) < max{(‘}(b),é(c)}‘

and u(a, u(b), 1(c)) is either 0 or p(u(a,b,c)).
(4) IE 6(b) > 0, u(d) € (p(ba),..., u(bn))a and 6(bs) < 5(b) fo
1,...,n, then there is a t € {by,.. .,bn)B such that 6(s (b, ) < ( )

THEOREM 2.3. Suppose that there is a gradation (6, ) of B over A in «.
Then, for any infinite cardinal x, if A is k-Noetherian, then B is r-Noetherian.

Proor: Let I € [(B) and define, for § < «

I/f=1{bel:6b)<p)
Iy = {ulv) : b e 1/8).

First we claim that any Iz € I(A). To see that, it suffices to prove that for any
natural number n, ifb; € I/ fori =1,...,n, then (u(b1))aV---V{u(bn))a €
Is. In the language of proposition 1. 2 thlS is equivalent to saying that, if
x e " (u(bi))a, then there is an 2’ € I/ with @ = u(x').

We induct on n: for n = 1 we apply property (2) of the definition of
gradation. Suppose now that z € (ubo))a + > i (u(b;)ya with by € I/5
for i =0,...,n. Then for some a € A, v € (u(bo))a and w e > 1 {u(bi))a



we have = = u(a,v,w). By induction hypothesis there are v, w’ € I/3 with
v=p(v') and w = p(w'), therefore x = u(a, u(v'), u(w')). If & = 0 there is
nothing to prove. If = # 0 apply property (3) of the definition of gradation
to get x = p(u(a,v',w')). Moreover

S(u(a, v, w')) < max{s(v),8(w")} < 8,

since v, w' € I//3. Hence u(a,v'.w') € I/3 as well. So z € I as desired.

Therefore H = {J;_,, I3 is the union of a chain of ideals of A, hence it is
can ideal of A. So H = (a; : i < A)a for some \ < k. Let now f; € I be such
that a; = p(f;) and let

v =sup{6(fi) 1i < A}
J={fi:i<\)B
In=INnA=(s;:j<)\), N <k

Note that, since 1, € I(A), it is generated by some A < r elements s;.
Suppose that v > 0. Then in the chain (I;);., there are only less than x
distinct ideals: let them be I;, for v < « for some © < . Hence [;, =
qu I;. Moreover, for any i < v, there is a v(i) < 7 such that Jupy <t and
Iy =1I;,,,- Again any [, is generated by less than « elements, so there exists
a A(v) < k and, for each p < \(v) there exists a b, € 1/j, such that

L, ={uby) : p < A(¥))a-

Let us now define

L:{{O} iy =0

(b v <mp<Av))s otherwise
and note that L is generated by less that & elements.‘ Finally define
J =(JULU{INAp)s

and note that J' is again generated by less than x elements. We will show
that J' = I.

First observe that J' C I trivially. Let now b € I; we induct on 6 = 6(b)

to show that b€ J'. If 6 <0, thenbe I, CJ. If 6 <+, welet Iy = I;

) Ju(8)
and v(8) < m, ju5 < 6. Therefore u(b) € (u(bs™) : p < A(6)))a.
Therefore (being ideal generation an algebraic operator) there are finitely
many pi,..., o, such that

p(b) € (u(byt™), (b)) A

and (S(b'gi&)) < Juesy <6 for o =1,...,n. By property (4) of Definition 2.1

v g such taht s(bt) < 8. Since s(b.t) €

there exists a t € (b
I, then s(b,t) € J' by induction hypothesis. But ¢ € L C J', hence, by
Proposition 1.3(1), b€ .J'.

Finally, if 6 > v, we have that p(b) € H, hence for some finite m we have

H‘(b) € </l‘(fi1): v ?#(sfim)>A
with i, < A and 6(fi,) < v < 6 for o = 1,...,m. Apply again (4) of

Definition 2.1 to get a t € (fi,...., fi,.)B, such that 6(s(b,t)) < 6. But
teJCJ C1I, s0s(bt) €I and, by induction hypothesis, s(b.t) € J'. But
t € J', hence b € J', again by Proposition 1.3(1). Therefore I C J’ and so

I=.J.

REMARKS:

(1) If R is a commutative ring with unity, our theorem implies the Hilbert
Basis Theorem for R[F], the ring of polynomials in any number of
variables with coefficients in R. In this case, for p(#) € R[Z], p(p) =
leading coefficient and 6(p) = degree of p. The same is true for R[[]],
the ring of formal power series with coeflicients in R, if we take, for
o(#) € R[[Z]], u(o) = nonzero coefficient of lawest degree and 6(c) =
lowest power of the variables. In these cases, of course, s(z,y) = z—y
and w(z,y,2) =y + 2.

(2) If k = |A], then A is xT-Noetherian. Thus the existence of a gradation
of B over A vyields that B is x™-Noetherian as well. It might be
interesting to investigate whether the converse holds.

3. THE COMMUTATOR AND THE A.C.C. FOR RADICAL IDEALS

Drawing inspiration from the commutator theory for modular varieties, the
commutator was defined in [11] for the so-called ideal determined varieties
(those in in which, for every algebra A in the variety, Con(A) and I{A) are
isomorphic under the mapping 6 ~— 0/6, see [4]). In [13] it is shown that
a good version of the commutator is available also in the case of subtractive
varieties (that are not necessarily congruence modular). For details and the
proof of Proposition 3.1 below, we refer to that paper.

Let V be a subtractive variety. A term ¢(Z,7,7) of V is a commutator
term in ¢, 7 for V if it is an ideal term in ¥ and an ideal term in Z. Let
A €V and let H, K be nonempty subsets of A. The commutator of H and
Kin A'is

[H,K]a = {t(d@, h. k) : t(£.7. ) a commutator term in

7.7, dc A heH, keK}.



If no confusion can arise we drop the subscript A and, if H = {a}, K = {b}
we will write [a, b] instead of [{a}, {b}]. :

PROPOSITION 3.1. [13] For any A € V, any nonempty H, K C A we have:

(1) [H. K] is always an ideal and [H, K] = [(H), (K}].

(2) [H K] =|K,H) C{(H)N(K).

() Uies HisUje,s K51 =V, ;[Hi K.

(4) If ¢ is an epimorphism ﬁ“om A to B, then we have o([H, K|p) =
[ap(H),t,.o(K)]B If ¢ € o7 Y([M,N]g) for M,N C B, then there is a
z € [N M), 7Y (N)|a with ¢(x) = o(2).

(5) [H,K] is the smallest ideal I of A such that the followi ing statement
holds: for any term f(%,7.7), for any @ € A, h € H, k € K, if
@, h,0,...,0) = f(@0,...,0,F) =0, then f(& k) € Iifand only
if f(d,0,...,0)=0.

Again in [13] it is shown that [H, K] really does not depend on which
variety A belongs to. As in [12], one obtains a notion of primeness as well as
of radicality. An ideal I of A is prime if, whenever [H, K| C I, then either
H CITor K CI. Equivalently if, whenever [a,b] C I, thena € T orb € I. An
ideal is radical if, whenever [, H] C I, then H C I (equivalently [a,a] C I
implies @ € I). The radical of I, written Rad([), is the intersection of all the
prime ideals containing I. One easily sees that the following are equivalent:

(1) I is aradical ideal.

(2) I =Rad(I).

(3) I is an intersection of prime ideals.

We have a better characterization of Rad([l) if the commutator is finitary
on A, which means that the commutator of two finitely generated ideals
is again finitely generated (equivalently, [a,b] is finitely generated for any
a,b € A). Let us define inductively I and I,, as follows

IM=rt=7 :
I(n+1) — [I(”),ﬂn)] ’ In+1 Un [}

If the commutator is finitary on A, then
Rad(!) = {a € A: (a)"™ € I for some positive integer nt.

For a proof, see again [12] Proposition 3.7. For any subset X of A, the
radical ideal generated by X, denoted by {X 1}, is the intersection of all
the radical ideals containing X. Of course, if I is an ideal, {I}a = Rada (7).

We say that A is a mild subalgebra of B if A is a subalgebra of B and
the contraction I N A of any radical ideal of B is a radical ideal of A.

ProrosiTiON 3.2. Let A be a subalgebra of B. Then the following
equivalent:
(1) A is a mild subalgebra of B.
(‘)) Foralla € A, ([a.ala)s = [a, d]p.
(3) For all J € I(B), Rada(J N A) C Radg(.J) N A.
(4) For all I € I{A), Rada (/) C-Radg({/)B)

are

The proof is quite ecasy and we leave it to .the reader. Notice that if
(1", J] € H for some m > 1, then 1N J C Rad(H).

PROPOSITION 3.3. For any H C A, I,.J € I(A) we have:
(1) Rad((H)) = Rad({H}).
(2) [Rad(I),Rad(.J)] € Rad([I.J]) = Rd([Rad(I), Rad(.])]).
(3) For all m, Rad(I™) =1 and I NJ C Rad([I™..J]).
(4) If J is a'radical ideal and [I, 1] C J C I, then J = I.

PROOF: (1) is obvious. The first inclusion and the inclusion left-to-right in
the equality of (2) are obvious as well. For the other inclusion in (2) observe
that, if P is a prime ideal and [I,J] C P, then

(). (Y € Uyn{g) C P

For (3), if P is a prime ideal and [I™,.J] € P, then I"™* C P or J C P. In the
second case there is nothing to prove; otherwise (for m > 1), [, J] C P,
so we get [ C P sooner or later. Finally (4) follows from Rad([°) = I

We say that a radical ideal I of A is of finite type [5] if there is a finite set
F C A with I = {F'}. As usual we can see that the following are equivalent
for any algebra A:

(1) Every radical ideal is of finite type.

(2) Every properly ascending chain of radical 1deals is finite.

(3) Every nonempty set of radical ideals has a maximal element.

Moreover we have:

PRropoOSITION 3.4. Suppose that the commutator is finitary on A, a € A
and I.€ I(A). If {I + (a)} is of finite type, then for some b, ...,b,, € I we
have

{I + } - {(l bl . m}
Proor: Let {I + (a)} = {c1,...,c,}. Forany ¢; i = 1...., k, either ¢; € [
or there exists an m; > 1 with .J; = [{¢;)"™?, (¢;)"")] C I + (a). Since the
commutator is finitary any J; is finitely generated and any generator is of



the form u(b,c,a) for some ¢ € I, or else it is in I, or it is equal to a. Take
as b;’s all the elements of I that show up this way.

We now look for a notion of gradation suitable for getting a finite basis
theorem for radical ideals. First if ¢ is an ordinal greater than 0, V a subtrac-
tive variety, B € V, 6 is a mapping of B into o, Il C B, b€ B and 6(b) > 0
then we say that b dominates H if for any h € H, there is a b’ € B such
that 6(b') < §(b) and s(b', h) € (b).

DEFINITION 3.5: Let V be a variety, A a subalgebra of B € V and o an

ordinal other than 0. A pair of mappings
6:B—a B — A

is an r-gradation of B over A in o« if:
(1) &(b) =0 if and only if b € A.
(2) For every b,b' € B, if 6(b) > 0, then there exists a positive integer m
such that b dominates the set [(u(b))2", (1')B]s.
(3) If b€ B — A, then there exists a b’ € (u(b))p with 6(s(b,0")) < &(b).

Before getting to the main theorem of this section, further observations
are necessary. In a generic subtractive algebra A we do not necessarily have
that, from s(0,2) = 0 it follows = = 0. (Consider the natural numbers with
the difference truncated at zero.) This suggests us the following definition.

DEFINITION 3.6: An algebra A is strongly subtractive if it is subtractive
and moreover, if s(a,b) € (c), then b € {(a,¢) for all ¢,b,c € A.

It is clear that the above property is equivalent to any of the following
(1) For every a,b € A, b€ (a,s(a,b)).
(2) For every a,b € A, (a,s(b,a)) C (a,s(a,b)).
As standard examples of strongly subtractive algebras one may take: rings,
goups and Boolean Algebras.
The last preliminary result we need is:

PROPOSITION 3.7. If the commutator is finitary on an algebra A, then the
operator sending any H C A into {H} is algebraic.

ProOF: We have that z € {H} if and only if z € {(H)} if an only if (z)™ C
H for some positive integer m. But, being the commutator finitary, (z y(m)
is finitely generated and ideal generation is an algebraic operator.
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THEOREM 3.8. Let B € V be a strongly subtractive algebra, let the commu-
atator be finitary on B and let A be a mild subalgebra of B. Assume that
a r-gradation of B over A exists for some ordinal o. Then, if every radical
ideal of A is of finite type, the same holds for B.

PROOF: Suppose, by way of contradiction, that B have radical ideals not of
finite type. Since radical ideal generation is algebraic we can apply Zorn’s
Lemma to get a radical ideal I of B maximal among those not of finite type.
Since A is a mild subalgebra of B, I N A is a radical ideal of A, hence it is
of finite type, say /N A = {a1,...,an,}ta. Let J = {a1,...,a,}B ; observe
that J C I but they can not be equal. So pick a b € I — J such that 6(b)
is minimal and let @ = pu(b). Then a ¢ I, otherwise a € J and, by property
(3) of the definition of r-gradation, for some b’ € {(a)g C J, we would have
8(s(b, b)) < 6(b). Since b,b" € I, we would get s(b,b') € I and, being 6(b)
minimal, s(b,t'),€ J. But ¥ € J, so b € J as well, that is a contradiction.
Thusa & I. ‘

* Next we claim that
[(a)a,Ils S{J + (b)B}B-
In fact, let 7 € I. By (2) of the definition of r-gradation there is a natural m

such that b dominates the set [(a)%™, (i)g]g. Hence, if ¢ € (@)%, (i)5]B.

then there exists a d with 6(d) < 6(b) and s(e,d) € (b)yg C I. Since ¢ €
(i) € I we may conclude that d € I and again that d € J, by minimality of
6(b). Since B is strongly subtractive, we get that ¢ € (d,b)g. Therefore

(@)%, (i)Ble C {J+ (b)B)B

and, since ¢ € [ was generic we get [(a)xn), Ilg C {J + (b)s}B, whence the
claim follows.

Now, since {I + (a)g}p is of finite type, by Proposition 3.4, there are
T1y...,7m € I such that
{I+(a)yg}tB ={a,"1,....,Tm}B
and moreover the ideal
K = {{J + <b>B}B + <T17 A QTTTL>B}B
is of finite type essentially because J is. So we compute
(1) S {1+ (a)Bl}B

€ Rad([1,{I + (a)B}B])

= Rad([l,{a,71,....7m}B])
= Rad([Rad(!),Rad({a,r1,..., 7 }B])
= Rad([,{a,71,....7m)B])
= Rad([l,a] + (r1,...,7m)B)
C K C Rad(Rad(I)) = 1.
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Therefore K = I, via Proposition 3.3(4). But this is a contradiction, since [
was not of finite type. Hence the theorem is proved.

REMARKS:

(1) It would have been possible to present the above result at the same
level of generality as the previous one on ideals, i.e. with any infinite
cardinal k. But many notions would have been too cumbersome to
formulate, so we leave this further task to the reader.

(2) Let us now explain how our results apply to the classical case of com-

© mutative rings. Showing that the commutator (i.e. the product) of
ideals of rings is finitary is a standard exercise in ring theory. More-
over it is obvious that any variety of commutative rings is a strongly
subtractive variety (interpreting of course s(z,y) as z —y). If R is
any commutative ring then it is again easy to see that R is a mild
subalgebra of R[z]. Finally let us interpret 6 and g of the defi-
nition of r-gradation as the degree and the leading coeflicient of a
polynomial respectively. The condition (1) of Definition 3.5 is satis-
fied. Let now p(z),q(z) € R[z] with §(p(z)) > 0. The reader can
easily check that the algorithm of division yields the desired domina-
tion, so that condition (2) is fulfilled. Finally let p(x) € R[z] and let
a = p(p(z)), n = §(p(x)). If we let p'(z) = az™, then p'(x) € (a)r[q)
and 6(p(z) —p'(z)) < 6(p(x)). Hence condition (3) of Definition 3.5 is
fulfilled and we can apply Theorem 3.8. '

Here is a partial list of classical algebras to which our result may apply:
loops, groups, (multi)operator groups, rings (associative or nonassociative,
commutative or non commutative), group rings, Heyting algebras, Boolean
algebras (possibly with operators), algebras, Lie algebras. It is only fair to
say that some specifications are necessary in some cases in order to make
the assumptions valid. Moreover it is not true that we know the meaning of
our result in each of those cases; this, however, is due to our ignorance and,
hopefully, not to the intrinsic weakness of the results. Presently we aimed
mainly to establish the “true” reason why the Hilbert basis theorem works.

The first trigger to this work was an old manuscript of the second author
[10], which essentially contained THeorem 2.3. Theorem 3.8 was essentially
in charge of the first author. :
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