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On subtractive varieties, I
ALDO URSINI

Abstract. A variety V is subtractive if it obeys the laws s(z,z) = 0, 5(z,0) = «
for some binary term s and costant 0. This means that V has O-permutable
congruences (namely [0JR o S = [0]S o R for any congruences R, S of any
algebra in V). We present the basic features of such varieties, mainly from
the viewpoint of ideal theory. Subtractivity does not imply congruence mod-
ularity, yet the commutator theory for ideals works fine. We characterize
i-Abelian algebras, (i.e. those in which the commutator is identically 0). In
the appendix we consider the case of a “classical” ideal theory (comprising:
groups, loops, rings, Heyting and Boolean algebras, even with multiopera-
tors and virtually all algebras coming from logic) and we characterize the
corresponding class of subtractive varieties.

The plan of this (short) series of papers is the following: in this one we
present the basic features of subtractive varieties of algebras. In the second
one we will tackle some side notions and some useful generalizations. In the
third one we will present some applications, mainly to the case of definability
of (principal) ideals and to Universal Algebraic logic in the Block-Pigozzi
style. Other applications already appear in the joint papers [1] and [2]. Our
notations and basic notions are meant to agree with [8]; specifically, if R is any
binary relation on a set 4, a € Aand X C A, we put «/R = {z € A:a Rz},
X/R = U,ex a/R and we will say that a subset ¥ of A is an R-block- if
Y = a/R for some a € A.

1. SUBTRACTIVE ALGEBRAS AND THEIR IDEALS

Here we study some features of algebras and varieties which satisfy the
identities

s(z,z) =0 5(z,0) ~

for some binary term s and zeroary term (or equationally definable constant)
0 and which will be called subtractive(*). Such an s will be called a sub-
traction term. Of course subtractive algebras abound in classical algebras,
in algebraic logic etc.. We hope that giving them a name may be justified
by the fact that those very simple identities imply a number of noteworthy

(*)If one doesn’t like constants, one may alternatively assume the axioms

s(z, ) =~ s(y,y) s(y,s(y,9)) =y

and then define s(x,x) = 0.
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consequences. Sometimes we will denote by (A, s) a subtractive algebra, to
single out the term s satisfying the basic rules above. In such an algebra,
let us define the term u(z,y,z) to be s(z,s(s(x,y),2)) and note that the
following identities hold:

(1) w(e, g, sle,p) ~ 2
(2) w(z,0,0)~0

(3) wlz,z,0)~x

(4) w(z,0,y) ~ u(z,y,0).

In the first of these, explicit dependence of u on z cannot be avoided, for
if we had a binary term d(z,y) such that d(y,0) ~ y and d(y,s(z,y)) ~ =
then the term ¢(x,y,2) = d(z, s(x,y)) would witness permutability of con-
gruences. Yet implication algebras and BCK algebras are subtractive but do
not necessarily have permutable congruences. Truly, congruences in subtrac-
tive algebras are O-permutable. This means that, if (A, s) is subtractive and
73 € Con(A) and OaufBv, then there is a w € A (namely s(v,u)) with
08w av. From now on we will always consider algebras and varieties having
a constant 0 in the signature.

Let us now recall the main notions from the theory of ideals [10], [12]. If
K is a class of similar algebras, a term p(xy,...,Zm, ¥1,...,¥n) is.a K-ideal
term in 7 (and we write p(Z,7) € 1Tk (7)) if the identity p(Z,0,...,0) = 0
holds in K. A nonempty subset I of A € K is a K-ideal of A if for any
p(Z,7) € ITx(7), for @ € A and b € I, p(a@, E) € I. Under inclusion, the set
Iic(A) of all K-ideals of A is an algebraic lattice; if H C A, the ideal (H)x
generated by H is easily seen to be the set {p(a,b) : p(Z,7) € 1Tk (7)., @ €
A,b € H}. When K is {A} (or, equivalently , the variety V(A) generated
by A), then a K-ideal will be called an ideal and we drop all the affixes and
suffixes in sight. By N(A) we denote the set {0/6 : 0 € Con(A)} and trivially
N(A) CI(A) CIxc(A) whenever A € K. N(A) inherits in a natural way the
lattice structure of Con(A). One can easily check that for any A € K the
following are equivalent:

(1) The mapping from Con(A) into Ix(A) defined by 6 — 0/ is a lattice
homomorphism.
(2) N(A) is a sublattice of Ix(A).

An algebra (resp. a class K of algebras) is said to be O-permutable, or to
have 0-permutable congruences if for R, S € Con(A),0/RoS =0/SoR
(resp. every A € K) is O-permutable). An algebra A (resp. a class K) is said
to be O-regular, or to have 0-regular congruences, if for R, S € Con(A),
0/R = 0/S implies R = S (resp. any algebra in K is O-regular). Let us
recall [7] that a variety V is ideal-determined if for any A € V, any ideal
is the congruence class for exactly one congruence, namely if V is O-regular
and O-permutable. In [7] it is shown that V is ideal determined iff for some
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n > 1 there are binary terms dy,...,d, such that

VEd(z,z) 0N Ady(z,z) = 0;
V k= dy(z,0) =~ z;
V}:dl(a:vy)QOA"'A(Zn(wgy)%O = TRy

Hence ideal determined varieties are subtractive and Iy,(A4) and Con(A) are
isomorphic; moreover it is easily seen that such varieties are congruence mod-
ular. In considering subtractive varieties and algebras we are no more requir-
ing O-regularity, but onle that there is a subtraction term. In case we assume
the existence of an “addition” too, which of course is the case of virtually all
ideal-determined varieties coming from abstract algebra and algebraic logic,
then we have the situation presented in the appendix.

Finally an algebra A is called ideal-coherent if, for any I eI(A)0 e
Con(A), 0/0 C I yields that I is a union of 6-blocks.

PROPOSITION 1.1. Any subtractive algebra A is ideal-coeherent, has 0-per-
mutable congruences and N(A) is a sublattice of I(A).

Proor: We have already seen that A has O-permutable congruences. As-
sume 0/0 € I, I € I(A) and 6 € Con(A). If b € I and (a,b) € 0, then
s(a,b)0s(a,a) = 0, hence s(a,b) € I. Therefore a = u(a, b, s(a, b)) € I,
which proves ideal-coherency.

Next we show that the mapping ¢ — 0/6 is a lattice homomorphism.
Assume that a € 0/(6V ) for 6, € Con(A); then for some ay, . .. Jan € A
we have

abaygas ... a,p0.

If n =0 trivially a € 0/6 V 0/¢.
In the inductive step assume that ¢ faj was ... a, ¢0; then

s(a,an) @ s(a,an—1)0 ... 0s(a,a) =0,

therefore, by induction hypothesis, é(a, a,) € 0/60V0/¢. Since a, € 0/0, we
get a = u(a, an, s(a,a,)) € 0/6 V:0/¢. The argument. is similar if a, 0.

If we consider a variety of algebras, we get a number of equivalent properties
collected in the proposition below. For the proof and for even more equivalent
conditions see [2].

PRroPOSITION 1.2. For a variety V the following are equivalent.
(1) V is subtractive.
(2) Every algebra in V is ideal-coherent.
(3) For any A € V, the mapping 0 — 0/9 is a lattice homomorphism
from Con(A) into I,,(A).
(4) V is O-permutable.



If (A, s) is a subtractive algebra and X,Y C A we define

. X+Y={ula,z,y):ac Aze X,yc Y}

ProrosiTioN 1.3. Let A belong to a subtractive variety V and let I,.J €
Iy(A).

(1) Ify € I and s(z,y) € I then = € I.
(2) Ify € (I + J)y then for some x € I we have s(y,z) € J.
B)I+Jely(A)and [ +J =1V J.
(4) IV J ={y: for some x € I,s(y,x) € I}.

Proor: (1) follows from the identities (1) and
p(Z,7) €ITy(y), d€ Aym e I+ J,b=p(d,m
some d; € A,u; € I,v; € J. Let ¢ = p(a@, u(dy

(2) regarding u. For (2) let
) and let m; = u(d;, u;,v;) for
1, 0), .. u(dy, ug, 0)). Since

p(-73 u(zlpyla 0) ~~~~~ (2]wyk O)) € ITV(?:/‘)

we have that ¢ € I. Moreover the term

S’(p(i]&’ U'(Zl:yl w )' BRI ("k»yka wk)) 27(33 u(zlvyla O): e su(zksykao)))

belongs to 1Ty (1), hence s(b, c) € J.

We now prove (3). From (2), if y € (I + J)y, then s(y,z) € J for some
z el Theny = u(y,z,s(y,z)) € I+J and thus I +.J = (I +.J)y. Moreover
ITuJ C I+ J C1IV.J, which yields I +J = I v J. Finally, (4) follows
immediately.

By the well-known Mal’cev criterion for being a congruence class we get:

- ProrosITION 1.4. If A belongs to a subtractive variety V then Iy(A) =
N(A).

Proor: Let I € Iy(A) and let g(z) be a unary polynomial of A. Then
g(z) = t(ar,...,an,x) for some term ¢t and @ € A. If i,j € I, since
s(t(@, y1), H(&, y2)) € ITy(y1,92). then s(g(i),g(j)) € I. By (1) of Propo-
sition 1.3 we conclude that if g(i) € I then g(j) € I. Therefore I is a
congruence class, i.e. I € N(A).

Therefore, if A belongs to a subtractive variety V, I),(A) = N(A) = I(A).
Thus we are allowed to denote simply by I(A) the lattice of ideals of A,
without any reference to the variety V, and I+ J is the join of any two ideals
I,J of A. As observed in [2] the condition I(A) = N(A) for a whole variety
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is not a Mal’cev condition, since it holds in the variety of pointed sets. Here
is a more interesting fact:

‘PROPOSITION 1. 5 If A is a subtractive a]gebza, then I(A) is a modular

lattice.

Proor: Let I,J,H € I(A) and assume that I C J, [ + H = J + H and
INH=JnNH. IfaeJ, then a €]+ H, hence s(a,c) € H for some c € 1.
Then ¢ € J, hence s(a,c) € J N H which yields s(a,c) € I. Therefore a € T
and [ = J.

REMARKS: To show that the lattice of,e.g., normal subgroups of a group is
modular, a short way is to prove that the congruences of a group permute.
Proposition 1.5 seems to shorten further the way: having a subtraction term
is enough.

It is easy to find examples which show that subtractivity does not imply
congruence modularity (for such an example see [2]). Modularity of the lattice
I(A) is not even a Mal’cev condition, as the variety of pointed sets shows (the
ideals of a pointed set (A, 0) are simply the subsets of A to which o belongs).

For any subtractive algebra A and I € I(A), let I’ denote the binary
relation on A defined by

al'b  iff s(ba)el

and let I* denote the subalgebra of A x A generated by I’. Let us say that
a reflexive subalgebra of A x A is a semicongruence of A. The I° is a
semicongruence of A for any I € I(A).

PROPOSITION 1.6. For any subtractive algebra A and for any I € I(A) the
following are equivalent:

(1) o/I* = 1.

(- ) IS — I/'

(3) I is a subalgebra of A x A.

(4) I' is a congruence of A.

PROOF: First we show that (1) and (2) are equivalent. In fact from (a,b) €
I*, since (a,a) € I°, we get (0,s(b,a)) € I* and from (1), s(b,a) € I and so
(a,b) € I'. The converse follows from the fact that (0,a) € I' iff a € 1.

Assume now (1) and observe that I’ = I* is a congruence. In fact, if (a,b) €
I', since (a,a) € I', we get (0,s(a,b)) € I and from (1), s(a,b) € I. Hence
(b,a) € I'. For transitivity, from (a,b), (b,c) € I', because of symmetry, we
conclude that (0,s(c,a)) € I’, hence (a, c)el. Therefore (1) implies (4).
Finally it is obvious that (4) implies (3) and (3) implies (2).
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When the equivalent properties of Proposition 1.6 hold for a whole variety,
then they are equivalent to a remarkable property which we now introduce.
A subtractive variety V' is called d-subtractive if for any n-ary operation
f in the type of V there is a 3n-ary term (%, ¥, 2) € ITy(2) such that the
identity

s(f(Z), F() = (&, 7, 8@, 1) o 8(20, Yn)

holds in V. An algebra A will be called d-subtractive 1f it belongs to a
d-subtractive variety.

PROPOSITION 1.7. A variety V is d-subtractive if and only if it is subtractive
and, for any A € V and I € I(A), I’ is a subalgebra of A x A (i.e. I' = I*),

ProoF: Let I be an ideal of A € V and let (0,¢) € I°. Then for some term p
and for some (a;,b;) € I’ we have p(@) = 0 and p(b) = c. If V is d-subtractive,
then there is an ideal term in 2, 7,(Z, ¢/, Z) satisfying the definition. Therefore

¢ = 5(c,0) = s(p(B), p(@) = 1,5, s(br, 1), ., (b, 22)).

But since s(b;,a;) € I for all i, we conclude that ¢ € I. Therefore 0/1° = I
and hence, by Proposition 1.6, I’ is a subalgebra of A x A.
Conversely, given an n-ary operation f, consider the free algebra in V

generated by x;,y;, ¢ = 1,...,n and let I be its ideal generated by s(x;,v;),

t=1,...,n. If I’ is a subalgebra of the square, then.in particular one must
have (f(Z), f (”)) € I'. Hence (s(f(Z), f(%)),0) € I' and, by Proposition 1.6,

s(f(&), f(#)) € I. From here a standard argument yields a term r; with the
desired properties. Thus we can conclude that V is d-subtractive.

Examples of d-subtractive algebras: groups, rings, Heyting algebras. In all
these cases I’ is simply the congruence corresponding to I (which is the a nor-
mal subgroups, two sided ideal, ideal or filter). Ideal lattices of d-subtractive
 varieties have a lattice-theoretic property stronger than modularity. We will
show in fact that they are Arguesian i.e. satisfy the Arguesian law. To.do so
we will make use of some facts already pointed out in [12]. Since that paper
never appeared in print we feel it necessary to reproduce the proofs.

LEmMA 1.8. Let X be a set and L be a subset of P(X) that does not
contain §) and is a lattice under inclusion. Suppose that to each I € L there
corresponds I#* C X x X in such a way that, for I, J € L we have
(1) I** is symmetric and transitive.
(2) I x1CI#.
(3) (INnN)#* = I#nJ#,
(4) Forae X, a eIV J iff for someb € J, (a,b) € I#.
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Then L is Arguesian:

Proor: Let ]Q}J()311312:J15J2 e L. We define GQ = (Il V ]2) mn (J1 \Y Jg)
and cyclically Cy, Ca; let Cf = Coy N (Cy vV Cy). Assuming that a € (IpV Jy) N
(I vV J1) N (I V J2) we have to show that a € I; N (C V Iz). By (4) there
are ag € Jo, a1 € Ji1,a0 € Jo such that (a,a;) € I;# for i =0,1,2. By (3) if
I C J then I# C J#, hence, by (2), (ap,a1) € Jo V Ji. Also, (ap,a1) € 1y
and (a,a1) € I7, so a(Io Vv I1)# ag (Ig V I1)# ay; therefore (ag,a1) € Cgfﬁ.
Similarly we get (ai,az2) € Cf and (ag,az2) € C’l# . Then

a (01 \ Cg)# ag (Cl i\ Cf)) CLo,
hence a; (C1 V Co)# N cg‘* as, ie. (ag,az) € (CH*. Also (a,a;) € Ii# and
a (IQ \% Cé)# a0 (IQ \Y C{J)# ay,

therefore a (I7 N (1,VC))#)) ay € J. Now, using (3) and (4), we can conclyde
that a« € I; N (L2 vV Cy) V Ji. -

Then follows the corollary: -

COROLLARY 1.9. Let A be an algebra. Assume that for some binary poly-
nomials dy,...,d,, we have:

(1) For I € 1(A), the relation I° defined by
(a,b) € I° iff d;(a,b) € ] foralli=1,...,m

is an equivalence relation. -
(2) ForI,J € I(A) and a € A we have that a € I+ J iff, for some ag € J,
(a,a9) € 1% i )
Then 1(A) is Arguesian. 4
Proor: Since (0,0) € {0}°, we get d;(0,0) = 0 in A. Therefore, if I € I(A),
IxICI% Ofcourse (IANJ)Y =(InJ)¥=1"nJ° and Proposition 1.8
applies.

Finally, we easily conclude:

&

PROPOSITION 1.10. If A is d-subtractive, then [(A) is an Arguesian lattice.

REMARKS: (a) If N(A) is a sublattice of Iy(A) for every A € V, then in fact
N(A) = Iy (A). Moreover from above it follows that, if V is a subtractive
variety, A € V and I is a nonempty subset of A, the following are equivalent.

(1) Iis an ideal of A.
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(2) If p(Z,11,92) € ITv(y1,y2) then for every @ € A, .j € I we have
pld.i,j) € I.
(3) For any term t(&,y1,y2) and any @ € A,i,5 € I we have

s(t(d,1.§).4(7,0,0)) € L.

(b) Here are some examples of ideals in the context of some well-known
varieties: rings (two-sised ideals), groups (normal subgroups), Heyting or
Boolean algebras (ideals = O-ideals, filters = 1-ideals), Banach algebras (ide-
als), C*-algebras (ideals) etc.(*).

For semigroups, which have a well established theory of ideals, we have to
cheat a bit. If S is a semigroup then let S! be S with an adjoined unity (if
S does not have one already). Then of course I is an ideal of S iff there is
a l-ideal of S', I' such that I = I' N S. Note that the correspondence is
one-to-one, modulo the admission of @) as an ideal, in case S has no unity. Of
course subtractive semigroups are of a very special kind...

For lattices or semilattices, as soon as there is a decent “subtraction” (or
“implication”) around, one can easily embed the lattice-ideal theory into our
framework (e.g. Skolem (semi)lattices of Biichi-Owens [4], relatively pseudo-
complemented lattices, etc.).

2. THE COMMUTATOR IN SUBTRACTIVE VARIETIES

We assume that the reader is familiar with commutator theory for modu-
lar varieties [6]. We develop the basic facts of commutator theory for ideals
in subtractive varieties. As we noted above, subtractivity does not imply
congruence modularity, while trivially congruence modularity does not imply
subtractivity. The commutator theory below, which has to do with ideals,
works fine even if the variety is not congruence modular. Therefore this
theory goes beyond commutator theory for congruence modular varieties, in
particular it goes beyond ideal-determined varieties. It may be a bit surpris-
ing that the very simple identities defining subtractivity have this remarkable
consequences. After all, commutator theory in [6] is a very succesful way of
extending the commutator from groups (we might say: from ideal-determined
varieties) to modular varieties, from normal subgroups (i.e. ideals) to con-

gruences. In subtractive varieties we go the other way round: back to ideals,

and their “product”.
‘Let V be any variety‘ A term t(Z,7,7) is a commutator term for V
in ¢, 2, (where 7,7 are disjoint sets of variables), if ¢t € ITy (%) N ITy(2).

(*)Of course, one-sided ideals of rings may be generalized as well, by relativizing our theory
to a subset of ITy (see [13])

By CTy (¥, Z) we denote the set of all commutator terms for V in ¢, Z. For
instance, if V is subtractive and f(#,¥, Z) is any term, then the term

s(s(f(2,0,0), £(2.5,0)). s(£(Z.0,2), (&, 7, 9))

is a commutator term for V in 7, 2.
Given an algebra A and H, K C A we define

(H,Kly.a = {t(d@hk): t(Z,§2) € CTy(§,2),d € A he H ke K}

and [H, K]y A is called the commutator of H, K in A for V. We drop the
suffix ¥V when V is clear from the context and for sure when V = V(A); we’
drop the suffix A when no confusion is possible. First we prove some general
facts.

PROPOSITION 2.1. IfV is any variety, A € V and H, K C A then:
(1) [H K]y = [K,H]y € (H)y N {K)y.
(2) [H, K]y € Iy(A).
(3) ['PL K}V = [<H>\/a (K>V]V

Proor: (1) is trivial. If p(Z,9) € ITy(7) and (%, 7', Z") € CTy(i, 7 for
i=1,...,n, then of course p(Z,t1,...,t,) € CTl,(y o g Tk ),
This proves (2). In (3), the inclusion from left to right is obvious; for the
converse, observe that if t(Z,7,7) € CTy (¥, 2) and ¢;(&,§) € ITy(§) and
pj(uJ @'7) € 1Ty (), then t(x,ql, Qs Pl Pm) € CTu(F -5 g, T %

<k ,Um)

It follows that it is worthless to consider commutators of subsets other
than ideals. Now we show that the commutator of two ideals of a subtractive
algebra really depends on the algebra and not on any subtractive variety to
which the algebra happens to belong. For any term g(Z, ¥, Z) let us consider
the term

s(s(9(2.7, %), 9(2,0, 7)), s(9(Z, 7,0), 9(2,0,0)))

—

and call it ¢'(Z,7, 7). Of course ¢'(Z,7, Z) is a commutator term in 7, 7 for
any class of subtractive algebras.

PROPOSITION 2.2. If I,J are ideals of a subtractive algebra A the commu-
tator of I, J is equal to the ideal generated by
{g'(@,7,7): g any term, @ € A, €' 1,j € J}

Hence we are allowed to simply denote by [I, J] the commutator of I, .J in A.

Proor: Let V = V(A4). Then for any @ € Ai e I,j e Jand any term
9(Z,7, %) we have ¢'(@,7,]) € [I,Jlv.a. If t(#,7,2) € CTy(7, %), then of
course the identity :

H@,7.%) = V(2,7 7)
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holds in V. This concludes the proof.

ProrosiTioN 2.3. Let A, B belong to a subtractive variety V; let I, J, K,

foz' A € A belong to I(A), g be an homomorphism from A onto B and
L. M e (B). Then

LK+ K, =[I,K\]+[I,K,].

L.V yen KAl = Vyeall Kol

9([L, J]a) = [9(1), g(])]B.

[1.J]a +g71(0) =9 “L(lg( +g71(0)). 9 + g7 (O)]).

97 H[L, M) = [g7 (L), g~ (M)]a/ker(g).

Proor: For (1) it is enough to prove that if H, A/ C A and a € [I,H vV M|,
then « € 1, H] + [I,M]. Let a = t(a i.0) for some ¢(F,7,7) € CTy(7, 2,
ae A, 2 el e HVM. Assume that [ = hi,....,h..mi,...,m; where h; € H

and mJ € M and let o’ = (d.1,0,...,0, my,...,my). Then o’ € [I, M] and
moreover :

(1)
(2)
(3)
(4)
(5)

S(HE T, 210y 2y s e ug), HE, 7, 0. i)

is a commutator term in ¢, 2. Therefore s(a,a’) € [I, H], that yields a €
I, H) + [I, M]. ‘ , '

The inclusion from left to right in (2) is trivial. For the converse, if ¢ &
[1.Vea K], then for some finite £ C A, a € [I,\,.p Kyl By (1) we
conclude that a € /. p[l, K,\} that of course implies the desired inclusion.
The proof of (3) is immediate. For (4) let us observe that, if I € I(A),
g~ Hg(I)) =I+g71(0). In fact, if a € g~*(g(I)), then g(a) = g(i) for some
i€ 1. Since g(s(a,1)) = s(g(a),g(7)) = 0 and a = u(a, i, s(a,i)), we conclude
a € I+ ¢~1(0). On the other hand, if a € I + ¢~(0), then a = u(da’, i,¢) for
some a' € A,i € I,e € g7(0). Then g(a) = g(u(a,i,e)) = u(g(a), g(i),0) =
g(u(a,i,0)). But w(a,i,0) € I, hence a € g~(g(I)). Now we note that
it suffices to prove (4) in case I,J both contain g~ %0). In fact, letting
G =g71(0),

U+G J+G)=[LJ]+[,G+[J,G]+ G, G).
Therefore, if G C IN.J, we get
U+G,J+G+G=[IJ]+d.
Now by the observation above and (3) we have

[LJ]+G = g“l(g[L J)) =97 [g(D),9(J)])

that concludes the proof of (4).
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For (5), let g(a) € [L, Mg, ie. g(a) = t(b,[.7) for some 2',{;’?3'7 7,%) e
CTy(7,%), b€ Bl e L,je M. Choose a; € g*l(m i, € g7'(l,) and
Ji € g7 my). Then o' = 1(d,1,)) ¢ [( “L) YM)] and 0\(1} = gla').
Conversely, if g(a) = g(a’) and o’ = (.1, j) for some t(F,7,7) € C Ty(7, 2),
deAiecg (L),j€ g (M), take b; = g(a;). Then

— - —

g(a) = g(a') = t(b, g(4), 9(5)) € [L, M]p.

REMARKS:

(1) In d-subtractive varieties the commutator behaves in a way analogous
to the case of groups and rings. What we mean is that the commutator
there can be characterized in terms of some “term condition” in Freese-
McKenzie fashion. As a matter of fact one may reproduce in this case
the argument in Chapter 1 of [6] almost literally. We leave this task
to the interested reader.

(2) (At the referee’s suggestion.) A natural equation to consider is the
following

(MC) 0/[R,S] =[0/R,0/S]  R,S € Con(A)

which involves the commutator for ideals and the commutator for con-
gruences and may be called the mixed commutator identity. We will
deal with it in the second paper of the series, in the framework of
varieties which are both congruence modular (to have a good commu-
tator for congruences) and subtractive (to have a good commutator
for ideals). Of course (4/C) holds in any ideal-determined variety.

3. I-ABELIAN ALCEBRAS

An algebra A will be called i-abelian if [A, A] = {0}. It is clear from
the properties of the commutator that, in any variety the class of i-abelian
algebras is a subvariety. For a variety V, let AB(V) denote the largest i-
abelian subvariety of V.

ProrosiTiON 3.1. For any subtractive variety V, AB(V) is d-subtractive.
Proor: We will show that if A € AB(V), I € I(A), then I’ is a subalgebra
of A x A. First observe that if ¢(Z, 7) € IT,(7), then the identity

(T, ), 1. ) ~ 0
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holds in AB(V), simply because the shown term is a commutator term in
Z*Z, 3. Let f be an n-ary operation; then

s(f(u(:cl,yh 0)~ e u(-rn;ynso))a f(g))

is an ideal term in §. Therefore

which means that

—

S(f(u‘(xlvyla Zl)t coee au(wn» Yns Zn)); f(y))

is an ideal term for AB(V) in . Therefore, if (a;,b;) € I', also (f(@), f(B)) €
I

Next we want to characterize AB()) when V is already d-subtractive. For
A in a d-subtractive variety V we define A to be {0}, ie. (a,b) € A iff
s(a,b) = 0. Since V is d-subtractive, A € Con(A); in the quotient A/A the
A-block containing ¢ will be denoted by aa. For a subtractive variety V, let
AF(V) denote the largest affine subvariety of V

ProrosITION 3.2. Let V be d-subtractive. Then
A € AB(V) iff A/A € AF(V).

Proor: Of course AF(V) C AB(V). Let K = I({A/A : A € AB(V)}); then
K C AB(V) and it is routine to check that /K is a variety. Now K satisfies the
axiom :

VaVy(z =~ y <« s(z,y) = 0),

hence it is O-regular. Therefore V is ideal determined and so K C AF(V) (see
7).

Conversely, let A/A € AF(V), so that (A/A, +,0) is a commutative group
for some binary operation + and every operation of A/A is affine. Let g
be any term; to simplify the notation we may assume that g is ternary, but
it is clear that the argument holds in general. Let 7, be the 9-ary term
witnessing d-subtractivity for g. Then r4(Z, 7, ) is an ideal term in Z. Now
affinity vields

rg(2,y,2,2,0,2,0,5,0) = ry(x,y,0,2,0,0,0,y,0) + ,(0,0, 2,0,0,2,0,0,0)
Ty(w)yaovxaozoaovya 0)

I
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But (even in A)

s(g(az,‘y,z),g(x,())z)) = rg(x,y,z,xg(),z,O:y,(O)
s(g(x,.0),9(2,0,0)) = 74 (2, 9,0,2,0,0,0,y,0).

Therefore in A/A

s(9(x,y,2),9(x,0,2))a = s(g(z, ¥, 2),9(2,0,0)) 5

which really means (cfr. Proposition 2.2) that ¢'(r,y,2) = 0. But then
[A, A] = {0} and A is i-abelian.

4. APPENDIX: THE VERY CLASSICAL CASE

As we have already noticed the notion of subtractivity is implicit in the
study of ideal-determined varieties. By itself the notion is admittedly pretty
weak (for some enrichments of this notion one may refer to [5] or to some
results in [2]). Here we want to consider the kind of subtractivity which
is common to virtually all ideal-determined structures of modern abstract
algebra and algebraic logic; that is what we mean by the “very classical
case”.

In all varieties of classical algebras that are ideal determined (e.g. groups,
operator groups, loops, rings, Boolean algebras, relatively pseudocomple-
mented lattices, Lie algebras, Banach algebras etc.) we find as a common
feature a “strong additive structure”, in the sense that there are binary terms
di(z,y),...,dn(z,y) and an m + l-ary term p(zy,... , Tm1) such that

(CLy) di(z,2) ~ ... dy(z,2) =0
ply, di(@,y),. .. s (2,y)) =

are identities of the variety. Note that from CI,, we get at once :
(1) p(z,0,...,0) = x.
(2) Permutability of congruences, since the term

t(xaya 3) = p(ZaCll(xay)x ey dm(x>y))

satisfies the Mal’cev identities.

(3) Ideal determinacy, since O-permutability is obvious from (2) and 0-
regularity follows from the fact that if d;(x,y) =~ 0 fori = 1,....m
then

y=p.0,....0) =ply, di(z,y), ..., dpn(2,y) = z.



Therefore it seems worth seeking the general algebraic meaning of the Mal'cev
condition C1,,.

A variety satisfying C1,, for some m is called classically ideal deter-
mined (in [11] they were called “BIT speciali”). For an algebra A, a subal-
gebra S of A x A is called classical if (z,y) € S implies (2, 2) € § for all
z,y € A. Tt is easily seen that the family Cs(A) of all classical subalgebras of
A x A is an algebraic lattice under inclusion. Since clearly any intersection of
classical subalgebras is still a classical subalgebra it makes sense to define, for
H C Ax A, (H)cs, the classical subalgebra generated by H. A description
of (H)cs is easily obtained if we define

H” = {(x,x): thereisay € A with (x,y) € H}
Hy=H
H, 1 = subalgebra generated by H,, U H,’;\ in A xA.

and we observe that a subalgebra S of A x A is classical if and only if
S~ C 8. ‘

ProrosiTion 4.1. For any H C A x A we have
(H>Cs = U H,.
new

Proor: Trivially H' = |, ¢, H, is a subalgebra of A x A. It is also classical,
since (z,y) € H' implies (x,y) € H,, for some n, implying (z,z) € H,q1 C
H'. Moreover H C H' and and easy induction shows that, if S € Cs(A) and
H C S, then H' C 5. Hence (H)cs = H'.

PROPOSITION 4.2. Let S = (H)gs and S' € Cs(A). Assume that for any
u,v with (u,v) € H it follows (u,u) € §' (i.e. H> C S'). Then S& C §'.

ProoF: By induction on n, one sees that H> C S’. For n = 0 that holds by
hypothesis. Assume now that H5 C S’ and take (u,v) € Hyy1. Then, for
some term (21, ..., 2p4s) we have

w=tlay, ... ,ar,b1,...,bs)

v=t(ag, ... am, by, ..., b )

for some (ay,a1),...,(ara.) € H> and (by,0'y),...,(bs,V's) € H,. But
then, (b;,V';) € H2 for all j = 1,..., s, therefore (u,v) € S'.

DEFINITION 4.3:

(1) An algebra A is classically O-regular if, whenever S,8' € Cs(A),
from 0/S = 0/5', §8 C 8 and (5§)* C S, it follows S = S'. An
equivalent formulation.is: for all S,5" € Cs(A)

0/8=0/S" and S§%=(5)" imply S=5".
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(2) An algebra A is 0-coherent if for any 0 € Con(A) and any subalgebra
Bof A,if 0/0 C B, then /0 C B for all b € B. Equivalently if any
subalgebra containing 0/6 for.some 8 € Con(A) is a union of 6-blocks.

(3) A variety V is classically O-regular (O-coherent) if any A € V is
classically O-regular (O-coherent).

The main result of this section is the following:

THEOREM 4.4. For a variety V the following are equivalent.
(1) V is classically O-regular.
(2) V is classically ideal determined.
(3) V is O-coherent.

Proor: Let us assume (1). Let M be the set of all d(z,y) € Fy(z,y) (the

algebra freely generated in V by z,y) such that d(x,z) = 0 holds and let f
be the endomorphism of Fy(z,y) defined by f(z) = f(y) = ©. We define

H={(z,2)} U{(0,d(z,y)):d€ M}

Sy = (H)cs
K = {(z,2)} U{(0,u) : f(u) = 0}
Sy = (K)cs S = ({(z,0)}e..
First we show that
(i) S CKe(f),

ie. that (u,v) € S, implies f(u) = f(v). To show that, we prove that
(u,v) € I{, implies f(w) = f(v) by induction on n. For n = 0 it is trivial. If
(u,v) € Kpyq then we must have a term #(xq,...,2.4,) such that

w=t(ay,...,0p,b1,...,b)

v="=tar,...,a, by, ..., b)

for some (a1,a1),...,(ar,a,) € K2 and (by,V'1),...,(b,,b's) € K,. But

then, f(u) = t(f("di ]T(ES) = t(}’-(waj,f(vbﬁ) = f(v). It follows that
@ 0/8; = {u: f(u) =0} = £7(0),

~ Moreover we can show that

(ii4) S C Ker(f)



with an inductive argument similar to the one above. Next we want to show
that

(iv) Sf = 9.
To this aim it is enough to show that

(v) 0/S;=0/8
(vi) spcs 5% C Sy

To prove (v) we assume first that v € 0/S;, i.e. f(u) = 0. Then u = t(x,y)
for some binary term ¢ and t(z, z) = f(¢(z,y)) = f(u) = 0. Since (z,z) € S,
we get (0,u) € 5. The reverse inclusion follows from (ii) and (ii¢). To prove
(vi) we apply Proposition 4.2. So assume that (u,v) € K; then either u = 0
and f(v) = 0oru=v = 2z. By (v), (0,0) € S and (z,z) € S, therefore
(u,u) € S, hence S& C S. For the other inclusion, if (u,v) = (z,y) then
u = z and, since (z,z) € S; we are done. So (v), (vi) are proved and (iv)
follows.
We now show that

(Y)ZZ) S/ = SM.
Again it is enough to prove that
(viit) 0/Sy=0/Sum

Let d(z,y) € M. We have f(d(z,y)) = d(z,z) = 0, so (0,d(z,y)) € Sy
Also (z,z) € Sy, therefore H C K and hence Sy; C Sy and, “a fortior:”,
0/Sy € 0/S;. The reverse inclusion is proved using (i7). Assume f(u) = 0,
say uw = t(x,y). Then

bz, ) = f(t(z,y)) = flu) =0,

so t(z,y) € M and (0,u) € Spr. Thus we have proved (viii). For (iz), again

we use Proposition 4.2 and the proof is similar to the one above for (vi).:

Hence (viz) holds. Observe that, from (iv) and (vii) one gets

Sp=5=8u=\ ({00,d(x,y))})cs V ((z,2))cs)-

deM

But S is a compact element of Cs(Fy(x,y)), hence there are dy,...,d,, € M
with

5 = \/ (0, di(ar, )P V (2, 2) s
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As soon as one notes that (x,y) € S, the usual Mal’cev argument vields the
existence of polynomials satisfying CIL,,,. Hence (1) implies (2).

Next let us assume (2), i.e. that CI,, holds for some m. Suppose that
A eV, 8,8 € Cs(A), 0/S = 0/S" and S& = (§)2. Take (u,v) € S;
since S is classical (u,u) € S, therefore (0,d;(b,a)) € S for all i. Hence
(0,di(b,a)) € S for all i and moreover (u,u) € (S')> C ', hence (u,u) € 5.
Therefore, since

u = p(u,0,...,0)
v =plu,di{v,u), ..., dy{v,u))

we conclude that (u,v) € S’. Hence S C 5 and specularly S C 5. So (2)
implies (1).

The equivalence of (2) and (3) was already shown in [3]; for completeness’
sake we give the easy proof. Assume (2) and let A € V, 8 € Con(A),
B a subalgebra of A and 0/0 C B. Let b € B and let @ € b/68. Then
di(a,b) 6 d;(b,b) 6 0 for all 4, hence d;(a,b) € B for all i. But then

= p(b,d1(a,b),...,d(a,b)) € B

so b/8 C B and (3) is proved. Finally, assume (3). Let once again f be the
endomorphism of Fy(x,y) defined by f(z) = f(y) =z and f(0 ) =0. Let B
be the subalgebra of Fy(x,y) generated by {y} Vv {d(z,y) : d(z,y) Ker(f) 0}.
Then 0/ Ker(f) C B and y € B, hence by hypothesis y/ Ker(f) C B. But
then 2/ Ker(f) C B as well, hence # € B. Then apply the usual Mal’cev
argument to get terms satisfying Cl,,. Hence (3) implies (2) and the proof
is finished.

A further condition equivalent to classical ideal determinacy was investi-
gated in [3].
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