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Abstract.
A proof is given that the set of maximal intermediate propositional logics with the
disjunction property and the set of maximal intermediate predicate logics with the
disjuntion property and the explicit definability property have the power of
continuum. To prove our results, we introduce various notions which might be
interesting by themselves. In particular, we illustrate a method to generate wide sets of
pairwise "constructively incompatible constructive logics”. We use a notion of
"semiconstructive" logic, and define wide sets of "constructive" logics by
representing the latter as "limits" of decreasing sequences of "semiconstructive" ones.
Also, we introduce some generalizations of the usual filtration techniques for
propositional logics. For instance, "filtrations over rank formulas" are used to show
that any two different logics belonging to a suitable uncountable set of "constructive"

logics are "constructively incompatible".

0: Introduction.

Despite their interest and relevance in such areas as constructivism, questions
concerning the characterization of maximal intermediate propositional logics with the
disjunction property (or of maximal intermediate predicate logics with the disjunction
property and the explicit definability property) have been scarcely investigated in the
literature. Likewise, little interest has been devoted to the study of the strongly related
problem of the "constructive incompatibility of constructive logics”, where:

a) An intermediate propositional logic is constructive if it satisfies the disjunction

property; an intermediate predicate logic is constructive if it satisfies the disjunction



property and the explicit definability property. We do not pretend, however, that these
properties qualify any notion of "constructivism" from a philosophical point of view.
b) Two intermediate propositional (respectively, predicate) constructive logics are
constructively incompatible if there is no intermediate propositional (respectively,
predicate) constructive logic containing both.

¢) The existence of more than one maximal intermediate propositional (respectively,
predicate) constructive logic entails the existence of constructively incompatible
intermediate propositional (respectively, predicate) constructive logics.

d) Since Zorn's lemma entails that any intermediate constructive logic is contained in a
maximal one, from the existence of constructively incompatible intermediate
constructive logics one deduces the existence of more than one maximal intermediate
constructive logic.

Only in the last ten years special attention has been devoted to such questions.
In 1982 Kirk showed in [9] the constructive incompatibility of two intermediate
propositional constructive logics, namely, the logic KP of Kreisel and Putnam [10]
and the logic D of Gabbay and De Jongh [6]. As discussed in [13], although
Kirk's result is true, its proof in [9] is not fully correct. Anyway, this result was
implicit in a paper that had appeared ten years before [1]. In that paper the author
proved the existence of infinitely many intermediate propositional constructive logics,
each of them being characterized by a superintuitionistic axiom-schema in one
variable. Among these, let us mention the following logics: Scott's logic ST [10],
which is characterized by the axiom-schema denoted Fo in [1]and intuitionistically
equivalent to (TTA= A)=+ A TA)—=TAWTTTA; and the logic  AST, which is
characterized by the axiom-schema denoted F; in [1] and intuitionistically
equivalent to (((TTA= A)= AwTA)="T AT TA)=TTAWTTA=A). AST
stands for "anti-ST". Now, ST and AST are constructively incompatible. But
the author, who probably was not interested in this kind of questions, did not mention
this fact.

After Kirk's paper, questions concerning constructive incompatibility. or the
number of the maximal constructive logics, have been considered with increasing
interest. For instance, in [11] Maksimova raises the problem of determining the
number of maximal intermediate propositional constructive logics. In [13] and in W.
Poloni, Strumenti metamatematici per lo studio di logiche costruttive, analisi della
massimalita, Tesi di Laurea, Dipartimento di Scienze della Informazione, Universita

degli Studi di Milano, 1988, it is shown that there are infinitely many pairwise

(o]

constructively incompatible intermediate propositional constructive logics. It follows
that there are infinitely many maximal intermediate propositional constructive looics
Also, in [17] the paper [12] of Maksimova is quoted where the existence of infinitely
many intermediate propositional constructive logics is proved. We do not know
whether the proof technique in [12] is the one used in [13] and in Poloni's thesis,
which indirectly establishes the existence of maximal constructive logics by first
proving the existence of a suitable set of pairwise costructively incompatible
construcive logics, and then applying the axiom of choice. A different method is used
in two unpublished papers by the authors, namely, P. Miglioli, Nota su logiche
proposizionali costruttive massimali (manuscript), 1989, and M.Ferrari, Logiche
intermedie costruttive massimali, Tesi di Laurea, Dipartimento di Scienze della
Informazione, Universita degli Studi di Milano, 1990. In these works a direct
semantical characterization, in terms of the usual Kripke semantics, is provided for a
countably infinite family of maximal intermediate propositional constructive logics
including the well known Medvedev's logic. This proves the existence of infinitely
many maximal intermediate propositional constructive logics without using the axiom
of choice.

In the present paper we evaluate the cardinality of the set of maximal
intermediate propositional, and also of predicate constructive logics. As we shall see,
this cardinality is 250 for both sets. We are not able to directly characterize all
maximal logics, but only to single out a set of 270 intermediate constructive logics
which are pairwise constructively incompatible. As in [13] and in Poloni's thesis, our
proof will turn out to be highly non effective.

Our paper is organized as follows:

After the preliminary definitions, we introduce the notion of an intermediate
propositional logic L being semiconstructive in another logic L', in the sense that a
disjunction  AwB isin L onlyifeither A or B isin L'. A similar notion is
given in §9 for predicate logics. One of the key ideas of the paper will be to define
uncountable sets of intermediate constructive logics by characterizing the latter as
“limits of decreasing sequences of semiconstructive logics" (see §2). To obtain
uncountably many sequences of semiconstructive logics, we define a binary tree T
of logics, where the two logics L; and L, immediately following a logic L are
semiconstructive in - L. In this way, the 230 paths of the tree give rise to 2%0

constructive logics. The definition of the tree T is given in §4, while §3 introduces



some axiom-schemes (together with their semantical characterizations in terms of
Kripke frames) to be combined in §4 in order to build up the logics of T. These
logics will be characterized both syntactically (in terms of superintuitionistic axiom-
schemes) and semantically (as the logics generated by suitable classes of posets).
Soundeness and completeness theorems will be proved, in §3 and in §4, without
using filtration techniques. The semantical characterization of the logics of T will
give rise to a semantical characterization of the constructive logics associated with the

paths of the tree (see §4j. At this point, the problem is to show that any two
constructive logics frl and ?2 associated with two different paths of T are
constructively incompatible. Taking into account the structure of the two classes of
posets o and IF, generating ETl and iTz, it is indeed possible to prove

that the logic generated by & IM¥F, (i.e., the "intersection of the semantics" of
7T 7T . . . . . .
L', and L ,) cannot be contained in any intermediate propositional constructive

logic. So, to state the constructive incompatibility of ]‘:Fl and ETz it would be
sufficient to show that the smallest propositional intermediate logic containing both
ETl and ETQ is exactly the one generated by F |15 ;. '
Unfortunately, this cannot be proved using the methods of §1-4. However, we
will prove a related fact, which is sufficient for our purposes. With every path of the
=T =T =T =T \
tree T, we will associate a second logic L. suchthat L <L ., L being called
the first logic. We will show that, for any two paths of T, if frl and sz are
the second logics associated with these paths, then the smallest logic containing frl
and L , cannot be included in any intermediate propositional constructive logic.
The second logics associated with the paths of T are defined in §7, both in
syntactical terms (by means of axiom-schemes related to the logics in the paths) and in
semantical terms (by classes of posets related to the semantical characterizations of
the logics in the paths). From our proofs of the completeness theorems we deduce the
impdssibility of extending any two such logics into an intermediate constructive logic
(Corollary 3, §8). Thus, from the proof given'in §8 that the second logics associated
with the paths of T are included in the corresponding first logics, we immediately
deduce that the first logics associated with any two different paths of T are
" constructively incompatible; hence, by Zorn's lemma, there are 2™ 0 (istinet

maximal intermediate propositional constructive logics (Theorem 7, §8).

To prove the completeness theorems for the second logics associated with the
paths of T, we develop a filtration technique which involves two aspects:

a) the definition of the models obtained by filtration from the canonical models;

b) the definition of particular formulas generating the filtrations.

For a) we describe in §5 a variant of the filtration method used by Gabbay and De
Jongh in [6]. For b), in order to prove the completeness of a given logic L with
respect to some class F  of posets using our filtration technique, for every AglL
we build up a model K, insuch a way that A turns out to be invalid in Ka.
and Kp isbuilt on a poset of F. Now, the first requirement is automatically
satisfied if A itself is taken as the filtration formula. But, to satisfy the second
requirement, it may be appropriate to choose a filtration formula &  with some
desirable properties and containing A as a subformula. To define a formula &
suitable to our completeness proofs, in §6 we will introduce the notions of v-rank
and of formula extensively completed up to the v-rank 1.

Finally, in §9 we prove that the cardinality of the set of maximal intermediate
predicate constructive logics equals 2% 0. The proof heavily depends on the
previous proof for the propositional case. A tree T" of predicate logics is put in one
to one correspondence with the propositional logics of T. The elements of T are
semantically presented as the logics generated by classes of posets generating the
corresponding propositional logics of T. It turns out that the two logics L*; and
L% of T" immediately following a logic L* are "weakly" semiconstructive in
L* As in the propositional case, we then obtain that the predicate logic associated with
any path of T" is constructive. On the other hand, the logic associated with any path
of T* contains a propositional part coinciding with the first logic associated with the
corresponding path of T. Therefore, the predicate logics associated with two
different paths of T" are constructively incompatible. Hence the cardinality result
follows for the maximal intermediate predicate constructive logics.

The cardinality results presented in this paper have been previously discussed
by the authors in the above quoted papers by P. Miglioli, Nota su logiche
proposizionali costruttive massimali  and by M. Ferrari, Logiche intermedie
costruttive massimali. In the first work we give a sketch of the proofs both for the
propositional and for the predicate case, while in the second paper a detailed proof of

the propositional result is provided. The latter result has been independently proved



also by Chagrov and by Galanter, as the authors have learned from [3]. where

Chagrov's paper [2] and Galanter's paper [7] are quoted.

I: Preliminary definitions.

The set of the propositional well formed formulas (wff) is defined as usual,
using the connectives w3, If A isawff, Al A Will be the set of
propositional variables of  A. We say that a wff A is negarively saturated iff all its
variables are within the scope of 1.

INT (respectively, CL) will denote both an arbitrary calculus for intuitionistic
propositional logic (respectively, for classical propositional logic) and the set of
intuitionistically valid wff's (respectively. the set of classically valid wff's). An
intermediate propositional logic will be any consistent set L of wff's containing
INT and closed under detachment and substitution. Throughout this paper, the term
"logic" will mean an intermediate propositional logic. As is well known, for every
logic L, we have INTZLZCL. Following tradition, we will define logics as sets of
theorems of  deductive systems, following tradition. If S is a setClof axiom-

schemes, then the deductive system (logic) obtained by adding to INT the axiom-
schemes of S will be denoted INT+S. If LI and L2 are fogics, then L1+L2

will be the smallest logic containing both L, and L,.

A logic L will be said to satisfy the disjunction property iff AwBsL
implies A=L or BeL (forevery A and B); alogic satisfying the disjunction
property will be referred to as a constructive logic. The set of all logics, as well as the
set of all constructive logics has the power of continuum [8.20]. A constructive logic
L will be said to be maximal iff there is no constructive logic L' such that LZL'
and L=L"

We assume the reader to be familiar with the notion of Kripke model
K=<P,<,l—¥, where P=4P,<¥ isaposerand l— isthe forcing relation,
defined between elements of P and atomic formulas (propositional variables) and
extended in the usual way to arbitrary wff's; we say that K is built on the poset
P, orthat P isthe underlving poset of K. A poset P issaid to be principal iff
P has a least element r (called the roor of the poset). We will only consider
principal posets and Kripke models built on them. To avoid unnecessary repetitions,

we will consider "poset” as synonimous with "principal poset". Sometimes we will

s

explicitly indicate the least element r of the poset P or of the Kripke model K
by writing respectively P=<P.=r* and K=7P,=rl

». For any element o of
a poset P=uP,=i, P . or if necessary, also < P =¥ denotes the principal
subordering generated by o in P, i.e., the restriction of <P,<* to the set

P ={p/ PP and a<f}. The poset P, will be called the cone of @ in P.

An element fof P=<P,<¥ will be called final (in P) iff, for every =P, f=f'
implies f=f. For any P=+P,s* and any =P, Fin(a), will denote the
set {f/ asf and f isa final elementin P}. When ambiguities cannot arise, we
will write Fin(a) instead of Fin(a)p. We remark that Fin(a) is nonempty if P
is finite. A nonfinal element o of P=<P.<¥ isprefinal (in P) iff all immediate
successors of o in P are final. .

If ©F s a nonempty class of posets, % (iF) will denote the set
{K=P.=,r =3/ <P.=rre¥F }, and ZE(F) will denote the set  {A/ for every
K=+P,=.1,ll

Kripke model of #.(3F). As is well known, for every nonempty &, I5(F) is

e W(F),  rl—AY, ie., the set of all wif's which are valid in every
alogic [14].

If T isanysetof wif'sand L isany logic. by ' A we will mean that
there are Bl""’Bn such that {B] ..‘.,Bn}-:; I' and B [ Bn-—:'; AzL. By

I+ A we will mean that FI—LA does not hold. A saturated ser T will be any
consistent set  I' of formulas closed under [NT-provability (i.e., F}-INTA implies
AzI) and under the disjunction property (i.e., AwBel' implies Az’ or BeD). If
L isalogic, LzI' and I' issaturated, then I isclosed under L-provability: in
this case, we will say that I' is L-saiurated. If T is a saturated set, by the
canonical model generated by T, in symbols, T(T"), we mean the Kripke model
K=4P,<rll—>

satisfying the following properties:

1) P={I''/Tcl'' and T' issaturated};

2)foranytwo I''.['"eP, D['sI'" iff '™
3) r=I
4)forany I''sP and any propositional variable p, I''ll—p iff p=I[".

If T is L-saturated, then all elements of (") include L; in this case, we
say that 5(I") isthe L-canonical model generated by T, and we write 'EZIL(F)
instead of E(I"). The following facts are well known [19]: if F*}LLA, then there
is T' such that T:E:x:;I“, I' is L-saturated and AT if T is L-saturated, "'

&

is an element of Z,(I) and B isawff,then I''l—B in 'ff-IL(F) iff BeI'"



Foreach n=2, let (FIN N be the following axiom-schema:
(FINz): TA (A = TA W (TA =17 Az);

(FIND: A WA =AY A ATATA
ETA DA A aTTA (=TTA ).

Let FIN =INT+{(FIN )}, and, foreach nz2, let F be the class of posets

"FIN,
“P,=* such that, for every «=P, « is followed by at least one final element
and [Fin(a)lsn. Here, as usual, IX| denotes the cardinality of X. It is easy to prove

that, for every nz2, FIN =d&(F 1 ). Moreover, for every logic L'z FIN ,
n

and every L'-satratedset I', % (I is built on a poset belonging to EFFIND'

For an alternative axiomatization of the logics FINn, see, e.g., [5].
Foreach izl, let DE, be the axiom-schema defined inductively as follows:
(DEI): AI%.A;"IAI;

(DE.

1+1): A

i1 (A= (DE).
Also, let DE=INT+{(DE)} and, forevery izl, iFDE be the class of posets
1

%P,=* such that, forevery 0gP, o hasdepth =i in P (the final states
have depth = 1). It is easy to prove that, for every izl, DEi=J'§(3?'DEi).
Moreover, for every logic L'z DEi, and every L'-saturated set T, TQ'EL.(F ) s
built on a poset belonging to S.DE{

An alternative axiomatization of the logics DE, was given by Nagata in [15]. See

also [5].

2: Semiconstructive logics.

Definition 1: Let L and L' betwo logics; L is semiconstructive in L' iff
whenever AwBeL then either A=L' or BeL'.

If L'=CL, we say that L isa semiconstructive logic. The following fact is
immediate:

Proposition 1: Let L and L' be two logics such that L is semiconstructive in
L' then L'zL.[

Proposition 2: Let {L;};5, bea sequence of logics such that, for every izl

2

L,y issemiconstructive in L. then L=r1 L, isaconstructive logic.

Proof: It is easy to prove that E is a logic. Let AwBeE, while AEE and Bg
L. Then there are jk=1 such that A,e‘LJ. and Bel,. Let h=max(j,k). Since,
by Proposition 1, LizL,,,. wehave Agly and BeL,.From A’-.fBerl:, we get
AwBe L, .- But this contradicts the hypothesis that L, ., issemiconstructive in

L,

Definition 2: Let & and F' be two classes of posets. We say that F  links
ZF" iff the following condition is satisfied: for any two posets P, and P, of
F', there is a poset P=iF together with elements o and B of P such that
Eu 1s isomorphic to E_], B{% is isomorphic to Bz, and _Ea and P‘ﬁ are

disjoint.

The next proposition gives a sufficient condition for a logic L  to be

semiconstructive in a logic L' Its proof is routine and is left to the reader..

Proposition 3: Let L and L' be two logics, and let F . and F,. betwo

classes of posets such that L:‘:‘lﬁi(_ZFL) and L'=L(F If .'ZF'L links IF

L!)v L!7

then L. is semiconstructive in L'.[]

Let GS:INT+{(FIN2),(DE2)}, and let irGS be the class of posets “P,<x

with at most two final elements and with depth =2.
From the properties of the logics DE2 and F[N2 described in §1, we immediately

obtain:

Theorem 1: GS coincides with I‘-I(EFGS) Moreover, for every logic L'=GS

and every L'-saturated set T, T () is built on a poset belonging to B‘_‘GS'D

9



" As proved in Poloni's thesis quoted in the Introduction. GS  is the largest

semiconstructive logic.

3: The axiom-schemes (CONE(L)_ ) and (DIFFINn’k).

Let us assume that L=INT+{(A)} isa logic satisfying the following condition:
(c) There is a class of posets & L such that L=33(F s and:
(cl) forevery EEBT'L, the root of P has a finite depth and P has at
most m  final elements (where m is a fixed natural number not

dependingon P );
(c2) forevery logic L =L andforevery L -saturatedset T, the
underlying poset of the canonical model % #(T") belongs to F.

For any arbitrary but fixed L satisfying condition (c), let (CONE(L)m) be the

following axiom-schema:
((AD)'=TB . TB )= TTB T B

where (Ap)' is any instance of (AL). In order to provide the semantics for this

axiom-schema, for each m=2 we define the class *F CONE(L), of all posets P

with finite depth such that: if a=P, and fl,...,fn (2=n=m ) are final elements of
P with Fin(a)z {fl,...,fn}, then there ex{ists BeP such that a=f,
Fill(B);a{fl,...,fn}, and BBE.‘ZF L Thus, e.g., it IFin(a)lzm, then the paths
connecting o in P with the final states, must all reach states whose cones in P
belongto ZF, andhave m final states.

The class ?CONE(L)m depends on the choice of the class =F,  satisfying

Condition (c¢); such a class need not be uniquely determined. In the following, there

will be no possibility of confusion about the class "FL on which ¥ CONE(L)

depends.

Proposition 4: Let m=2, andlet L be a logic satisfying Condition (c). Then

2L,y

every instance of the schema (CONE(L),)) belongs to T(F g p) -

Proof: Assume the contrary. Then for some m=2, and some logic L satisfying
Condition (c), there is an instance (CONE(L)m)‘ of the schema (CONE(L)m) and

a Kripke 1 =" o 2 (T . : !
pke mode K=+P.<r.l "-J"-"'—FCONE(L),“) such that rll=~(CONE(L) ).

Hence, there is an element o=P  such that:
(i) al—A) =B (e 1B
. m

() al==TB v B - where (A ) TB (s 1B are the wif's used in
(CONE(L)m)'.

From (ii) we obtain m not necessarily distinct final elements fl LB of
_....;:, .':;. . N s 3 R o ’ q n]
P=%P.<* such that: {1l....,fm}c=Fm(a) and 1‘ill—-Bi forevery lIsi=m. By

the definition of EACONE(L)m’ it follows  that there exists PP such that a=f,
Fm(B);:-{fl,...,fm}, and BBE F (- From (c) we have that Bl—(A;)". Hence,
piI—1B (] Bm in K. This contradicts the fact that Fin(B);f{f] ot 30O

m

Proposition 5: Let m=2 andlet L be a logic satisfying Condition (c). Let L'
be a logic such that (CONE(L)m)EL' and, for every L'-saturated set I", the

canonical model 13 L.(;{“) has a finite depth and a finite number of final elements

(e.g., considera L' containing, for some n and i, both FIN,, and DE; )
) ) T
Then the underlying poset P of () belongsto IF

- ' = CONE(L)p,’

roof: Othexw1se, there are distinct elements I’ ’,Ffl,...,l"fn of L.(I‘), with
D<n= at i —rf f : " o

=n=m, such that Fin(I' Yz {I' gl n}, but, forevery I'" of !:_“;L,(F) such

that I''sI" " ¢ i Nz 1! f F i
<.F and Fin(I' Mz {T 1,.‘.,F n}. we have P_r W i L Since, by
hypothesis, "QL.(F) has finite depth, we may assume that the following additional

condition holds: for every element I"" of TEL.(F) such that T''sI" " and T '&I" ",

H " f f M sy
Fin(I' YD {T ],...,F n}. Since the elements of L'(F) are L'-saturated sets, and

the number of final elements of L,(l“) is finite, we can find wff's Al,...,A

. ‘ . n
such that, forevery i with Isisn, the following conditions hold:
£ . . . L - .
A, anfi, forevery j with ls<jsn and j=i, F'j 1A
for every IMeFin(r ") such that F’}‘{Ffl,...,l"f o r—1A
n’’ i

Le 1 . . N 1 3 ) H
't (SL) be an instance of (AL) such that I' 'l+~(A| ); such an instance must
exist by iti i T i
y Condition (¢2) of (c), since pT'E F L One easily proves that

F’IIM(AL)'—:ﬂA]‘a.f...xﬂ An in 'fi-'L.(F). As a matter of fact, I' 'lIF~(A})' in

i L,(r) an‘d, forevery I' suchthat T 'sI'" and ©''+I'". there is a final

element I“fi, with I=i=n, such that Ffisz‘Fin(F "). Hence I'"I—TA., by our
17



e

choice of A],...,An. Since T L.(F) is a canonical model, every instance of the
axiom-schema (CONE(L)m) 1% forcedin T

Since n=m, T 'I—TA w00 TA - But this is impossible, since. for every lI=
i=n, Ffi I—A, and T 'sti.D

For every h=2, we define the following axiom-schema:

(DIFFIN,): (TA=TB v 1B =T 1 ARB A B ym . n T B
WITAATB #B,n By TTB v
Lo TTAATB e TBy B ).

Foreach h=2, let S'JDIFFINI be the class of posets P=<P,=r> such that every
i

element of P is followed by at least one final element and, for every —o=P and set
{fz""’fh} of different final elements of P such that Fin((x);{fl,...,fh}, there

existsa P=P suchthat a=f and Fin(p) ={f|,...,fh}.

Proposition 6: For each h=2, every instance of the axiom schema (DIFFIN)
belongs to  &(:F DIFFINh)'

Proof: Let us assume that there is an istance (DIFFINp)" of (DIFFINy), with the
wff's  A.B|,...B. and a Kripke model K=«P.<rll—reH.(F DIFFINh) such
that rl=~(DIFFINy). Hence, there is aeP such that r< o,
al—TA=TB v 1By

alHETIAAB W TByA AT B T (T ARTB AT By By 4B ).

Therefore, there are h final elements fl""’fh of K such that

Fin(a )z {f],...,fh}, and, for each i=1,....h,
EI=TAATB a . a B 1By o] B,. Of course, f....f, —are distinct elements
of K. By the definition of ::VDIFFINh’ it follows that there is  P=P such that

a=p and Fin(ﬁ):{fl,...,fh}. Obviously, pHI—7TA in K, and hence
Bl B vl B, This is a contradiction, since Fin([’;):{fl,...,fh} and for

every I=ish we have fi"_Bi'D

Proposition 7: Let L be a logic such that (DIFFINy)=L (hz2). Assume that

(owing to the presence in L of some other axiom-schemes), for every L-saturated set

I', the canonical model % L(F) has a finite depth and a finite number of final
elements (e.g., considera L' containing, for some n and i, both FIN, and
DE;j). Then the underlying poset of % (I') belongs to irD}FFlNh'
Proof: Assume the contrary. Tl?en there are distinct elements T ‘,I"fl,...,l“fh of
‘i’.'éL(I“) such that Fin(T’ ');;-{I“‘],....I’fh} and, for every element I'" of i3 L(F)
such that I'sT"", Fin(F“)#{Ff! ,...,th}. Since, by hypothesis, % (') has
finite depth, we may assume that the following additional condition holds: for every
element T " of & () suchthat T'sT"" and I''+I'". Fin(l "\D{I"' N
Since the elements of 3 () are  L-saturated sets and, by hypothesis, 7 LD
has a finite number of final elements, we can find wif's A, B ..., B, such that the
following facts hold:

forevery i with I=i<h, I"fi I—TA and Ffi lI—Bi , but, forevery j with
Isjsh and j=i. rfj —1B,: '

for every rfe Fin(I' ") such that Ffe'{l“fl,...,l“fh}, rfi—Aa.

pr, ['IF-TA . As a matter of fact, by hypothesis, there is at least a final element
' of 'EZL(F) such that l"feFin(I“ ") and F?E’{Ffl,...,l“fh}. Then, for every I' "
such that I''sI"' " and I'"l—TA. we have that T''+I" ", and hence there is a
"1 B,. This implies that T"l—TA—=7B (e IBin (D). Since T
isan L-saturated set, T'' forces every instance of (DIFFIN ), and we obtain
['I=11AAB #1B, e B wT(TAATB aB,n By TB .

S TTARTB AL ATBy B in T (D).

This contradicts the assumption that Fin(F‘);a{I’fly.,,l“fh}.D

For each m =3 and 2<n<m, we set:

n,m m

(DIFFIN = ): (DIFFINH),:‘-A,(DIFFINMl),e‘x...;"x(DIFFIN ).

For each 2s=n<m, let ngFF(Nn,m be the class of posets P=<P.<,r* satisfying
the following properties:

(1) every element of P is followed by at least one final element;



(ii) for every a=P, h with n=sh=m and set {f],...‘fh} of different final

elements of P such that Fin((;t);:-{fl ..... fh}, there is =P suchthat as=f and
Fin(B)={f...f}.

From Proposition 6 it follows that:

Proposition 8: Let m=3 and 2=n<m. Then every instance of the axiom schema
(DIFFIN ) belongsto ZE(F

nm’

DIFFING
From Proposition 7 we get:

Proposition 9: Let m=3 and 2<n<m; let L be a logic such that
(DIFFINn m)EL and (owing to the presence in L of some other axiom-schemes),

forevery L-saturated set I, the canonical model EZI (I') has afinite depth and a

finite number of final elements (e.g.. consider a L' containing, for some n and
i, both FIN, and DE;). Then the underlying poset of T (I') belongs to

F DIFFINg

T
4: The logics RI(Lh) and LE(Lh), the tree T and the logics L.

Definition 3: Let L be a logic characterized by a single axiom-schema (which may

be the conjunction of a finite number of superintuitionistic axiom schemas). Let &

be a class of posets such that L= T:(F ). Wesay that L is an (nk) logic (for

F | ) iff the following conditions hold:

v

(i) for every poset P=<P, =<, rie¥ L IFin(r)l = n, and the depthof r in P is
<k;
(ii) forevery logic L" such that L:E:_:;L and for every L™ -saturated set T, the

underlying poset of 5, «(T") belongsto .

For instance, GS isa (2,2) logic; in general, if Condition (¢) of §3 holds
foralogic L, and L = FINHUDEk, then L isan (nk) logic.

Definition 4: Let nz2, k22, andlet L bean (nk) logic for f?F'L; we

define the two logics RI(L) and LE(L) as follows:
- RI(L) = INT+{(FIN,, ). (DEn+k)’ (CONE(L)]]), (D]FFiNn.zu-l)};
- LE(L) = INT+{(FIN, ). (DE 2 (CONE(L)H)}‘

n-+

Given an (n,k) logic L for fiF'L (n=2, k=2), we introduce the following

classes of posets:
=+ RI(L) ™ & FlN?_nI ¥ DElHkﬂ o CONE(L)nl & DIFFIN
Flpy=7F Fing, 15 DE,, | M CONE(L),’

B
n.2n-1

Theorem 2: Let h.k=2. Forevery logic L suchthat L isan (nk) logic for
&F | . we have that:

(HRIL) = 'E(S.RI(L) )

(2) LE(L) = JIEI(EF'LE(L) ).

Proof: (1) Since L isan (nk) logic for &F Condition (c¢) of §3 holds.

=L
Therefore. by the properties of FIN,, and DE,,, explained in §1, and by
Propositions 4 and 8, we get RI(L)< E(?RI(L))? Furthermore, since the axiom
schemes (DEn+k) and (FlNzn) belong to RI(L), it follows that, for every RI(L)-
saturated set I', the poset of TSRI(L)(F) has a finite depth and a finite number of

final elements. Therefore, by Propositions 5 and 9, we get  Iz(F RI(L).

RIL)) =
Property (2) can be proved in the same way.[]

Proposition 10: Let n.k=2. Let L bean (nk) logic for ZFL. Then:
(n EF‘L;EZFR](L);

Dy ol by
) FLeF gy

Proof: Immediate from the definition of

F iy and F LE(L)'D
Using LE(.) and RI(.), we can build a binary tree T whose nodes are logics

as follows:

Definition 5: Let LE(.) and RI(.) be the operators defined above. We
inductively define the binary tree T as follows:

(DOThe rootof T is the semiconstructive logic  GS.

(2)0Let L be the logic corresponding to an arbitrary node of T: then the logics
corresponding to the two nodes immediately following L in T are LE(L) and



RI(L) (respectively called the lefi logic immediately above L and the right logic

immediately above L ).

By a path of the tree T - we mean any infinite sequence L .L,...L ... of

nodes of T such that L] is the root of T and, for every nz2, Ln:RI(Ln_l)

T
or L =LE(L ). We write {Li}is1 toindicate a generic path of the tree T.

T =T .
Definition 6: Let {Li}i=1 be a path of the tree T; let L =l 1oL, We will call

7T . , . . T
L the (first) logic associated with {Li}is1.

I . . T .
For the logic L =ML, associated with the path {Li}iz1 of'the tree T we let

Eer=ll
::TL L izlj L

=]

In the following we will prove some results about the paths of T and the logics

associated with them.

. T
Proposition 11: For every path  {Li}iz1 of T and j=1, there is a class of
posets .“3-' together with two integers n=2 and k=2 such that Lj isa (nk)

logic for &F L

Proof: By easy induction on j, starting from the above propositions. [

Proposition 12: Let a path {Li}Tial of T be given. and let jzl. Then:

(1) Rl(Lj) is semiconstructive in Lj;

(2) LE(Li) is semiconstructive in Lj'

Proof: We use Proposition 3. Let us assume that (n«,k) and F 1 characterize the
logic Lj as specified in Proposition 1 1.

(1) Let :_‘F.RI(Lj) be the class of posets defined in terms of the class |  and
characterizing the logic RI(L) It is easy to prove that, for every s such that
n=s=<2n, and for every set {f e A o+ there is a poset PE={P* <* r*> such

that and Fin(r*):{f o } The proof is by double induction on

PreT RI(Lj)
j and s Let P =<{P,=.r>* and P,=<P,=,r,* be iwo posets belonging to

16

¥ L Without foss of generality, we can assume that P\ 1P,=0. Let flo.f
2 T m

and g j»-+gy,  be the distinet final elements such that Fin(rl)z{fl,....f ¥ and
T m
Fin(r H)={g ) -g,} (obviously, ms=n and hsn; we consider only the nontrivial

case where n<m+h ). Let P=<P,<r» be a poset of ZFRI(I;) such that

Fin(r)= LI ’mvl oy F'l"'lF']=ffi S } and Prp ,={g, gt such a
poset exists by the above discussion. Now, let _E'“f‘* be the poset obtained from P
by eliminating the root r. Startmo from P**, we build the poset P'=<P'.<' '
in such a way that
(i) P'= P“UP IIp LU, with re PFLIP “P,) and
(iyfor o.B=P, as='p iff
 aePuE P=P** and aspP
or
oceP‘, BEP] and ocslB
or
asP,.  PeP, and as,f

or
a=r' and p=P

or

a=r' and PP,
or

o=r' and peP**
or

a=B=r".

It follows that I Iy and the immediate successors of r in P are the immediate

successors of ' in P'. We prove that P' belongs to JRI(L)
j

It is obvious that P'=F FIN, and P'=iF DE, .\ Moreover, we can write P's

-rCONE(L) “IDIFFIN . Indeed, for each OLEP‘, if CLEP], then E'u (in

n.2n-1

P') coincides with E]U (in P, ). hence P’ ET-'L, whence P e

immediately follows. If a»:P

F conewy), M F pirrin 5+ then P! e

n.2n-|

=+ Mo = Pt ! .o .
CONE(LJ)n DIFFIN, 2001’ If a=P**, then Ba coincides with Ea, thus
P =

‘_.~_ CONE(L Jnfl.’r‘ DIFFIN,, 5,.1" If a=r, 2s<ksn, k<m-+h, and f’l,...,f‘k

are distinct final elements such that {f‘l,...,f'k}c{f 2Zygy ). then there is
= m’= ohte

peP**  such that Fin(ﬁ);-{f'l,...,f'k}. Here, P', coincides with _E**B and

[

s



. . e - i et
with P_[). it follows that E:_E’l_, is an element of ¥ CONE(Ly),’ Finally, if «
)
! ¥ isti i s such that
nsj<m+h, and [ ....,T"j are distinct final elements s

o ey : here is  ve P#® such that
{f 1"“’1 j}»={fl,..,,im,g1....,gh}, then th Y

C o " " ; - ) . '=P',. is an element of
Fin(y={f" ...f";}  (with P\ =P** =P ). whence P=F,

5 DIFFINn.ZnJA

In a similar way we can prove ).

..... T
Theorem 3: Let LT be the logic associated with the path iLi}iz1  of T. Then

It N -
L =5(F L‘):J.;,(U.[ZIJLi).

Proof: Let AeiT. Then, by definition, A= ‘”‘ian; and so, by Theorem 2, f?r
every i =1, Aef_lﬁ;(iF'l ). Therefore, for every i=1, the root of every model in
3 y .
B (F ) forces A, Hence, A s forced on the root of every model in
o (F | i, ’. |
Pl .121337' Li). Thus, Ae;ﬁ(Uizli_F Li). Conversely, let A= 3 (L .121.3" Li)‘ Then, for

every izl, Asfi(F Li)' Hence, by Theorems | and 2, for every iz=l, we get

.
AeL.. Therefore. A=L". [

T N . N .
Theorem 4: For every path {Li}is1 of the tree T. the logic L associated
T . .
with the path {Li}iz1 isaconstructive logic.

T o v
Proof: By definition of {Li}is1 and by Proposition 12, the hypotheses of

=T . .
Proposition 2 are satisfied. Thus, L= is a constructive logic.l]

. T 7T .
At this point, it is not difficult to prove that, if L, and L, arethe logics
. . e P e
associated with two different paths of T, and F L‘l and F , are th
corresponding classes of posets, then there is no constructive logic L such that
EFornEFETT )z L From this we could deduce that, if
EXL N L 1 - L 5 e

) T =T . . .
Ll mmo nw o are constructively incompatible.
L ‘+L =E(F L*]I |5F le), then L | and L o A y P

ith an
The circumstance that there are 2%0 paths of the tree T, together with

. . 0 .
application of Zorn's lemma, then would yield that there are 2 maximal

constructive logics. However, from the previous treatment, neither we are able to
T P . T =
deduce that L l+L S=d3(5F E‘}! 15+ ). nor we can derive that L ; and LT2

are constructively incompatible. To establish the constructive incompatibility of the
logics associated with different paths of the tree T we need further machinery, to
be developed in the next four sections. '

5: Selective filtration.

Given any wif H, we let Sf(H) be the set of subformulas of H, while
Sf& -;»J(H) denotes the infinite set of wff's which can be built starting from the

elements of Sf(H) only using the connectives s ,—=.7. Following [4,5], given a
Kripke model K=<P.<,l—» and a,peF, we set CL-:;HB iff, for every H's
Sf = q(H)if afl—H' then PBlI—H'. We also set a=,f iff ag yb and
[3-:;H(x. The relation =, is an equivalence relation. By a result of Diego and Mc Kay
quoted in [4,5], there exists only a finite number of intuitionistically non equivalent

wit's built up starting from a finite set of propositional variables and using only the
connectives ... Hence, as in [4,5], one deduces:

Proposition 13: The set of equivalence classes of =, on the set of elements of
K __is finite.[]

Asin [4,5], given K=4P,=,ll—>*, we define the model K/=, to be the
Kripke model {Pl,sl,!l»—'fﬁ:ﬂ- with the following properties:
1) P, is the set of equivalence classes generated by =, on the set of elemlents of
P
2)if Ja] and [B] are two elements of P[ (where [y] is the class of v ),
then [a]<([p] iff af;H[");
3) for every variable p such that peSfﬁ - ~_](H), and for every element [a]EP

[a]ll—p iff all—p in K: forevery variable q such that qe ST,

D=

and for every element [(XJEP], [all==q in _&/EH.
The main property of K/=, is stated in the following proposition, and can be

proved by induction on the wff B asin [4,5];



Proposition 14:1f BESf  (H) then, for every element a of K,
al—B (in K iff [o/l—B (in K/=,)0

The introduction of the models K/EH is due to Gabbay [4,5] and is a
refinement of a previous filtration metod of Segerberg [18]. We will define a
different kind of models, obtained by "selective filtrations": our filtration technique

can be seen as a variant of the one introduced by Gabbay and De Jongh [6].

®

#, let o and B be two elements of P and

Definition 7: Let K=4P.<.l
let H beawil;, we set a»;‘-—HB iff the following two conditions are satisfied:
hoa=p

2) forevery y suchthat a=y in K_and a#y. thereisa 0 in K such
that B=d and y=p0.

Anelement o€P issaid tobe & -rerminal iff, for every pPEP suchthat a<f

and a= g p, we have =P

The following is an immediate consequence of the finiteness of the number of
equivalence classes of =

Proposition 15: Let K=%P,s,l—>. For every &P thereisa a*&P such

5

that @< ox, o= o* and of is é—H-terminal.D

Definition 8: Let K=+%P,<,I—* andlet ao* be any e—H—terminal element of
K. Anelement B*EP iscalleda & -immediate successor of o in K iff:
l) a:}:ﬁHﬁ:;::

2) o < B:z:;

2 o : ek kY B wE ..
3)thereisno y in. P suchthat a*=y=p*, « ?‘EHY and B*FE v

4) p* is #-p-terminal.

Definition 9: Let o«* be any ﬁ—H-terminal element of K., the set
{a*sl,...,a’*‘sk} is called a complete set of & -immediate successors of o¥

in K iff the following conditions are atisfied:

1 o#S .,a’*‘sk are o:,——H-immediate successors of o in K

I
S xS

2) forevery ij suchthat Isijsk andi%j, oz 0, doesnothold;

20

3) forevery element f* of K suchthat B* isa #p-immediate successor of

a* in K, thereisan 1. I=i<k, such that a*sif;HB*.

The following proposition is a consequence of Propositions 13 and [5.

Proposition 16: For every 4:;—H-terminal element o= of K such that [a*] .is
not a final element of K/=,. there exists k=1 together with i y-terminal

&S S . $ ;
elements o [reee O of K such that {aazsl....,a*‘k} is a complete set of

{-—H-immediate successors of o in K.

Let K=<P,=rl—3>. By K/H we will mean any Kripke model
< Pz,sz,r*,ll—vz'} defined as follows:
1) The least element of the poset -+ Pz,szﬁ‘ isa & -terminal element r* of K
belonging to the equivalence class [r] of the root r of K.
2) Let o* be any nonfinal elment of < P,.=,.r*; then the immediate successors

S %S B e B #S S 3
o Lokt of a¥in “P,.< .1 are such that {a'*'sl,....a*”k} is a
complete set of +p-immediate successors of a* in K.
3)Let a* be anelement of P,: thenif p isavariable of H then o* I—,p

iff a*ll—p in K: if p isavariable which does not occurin  H, then (f"ll—si—zp_
Using Proposition 13 we immediately obtain:

Proposition 17: For every K. the model K%H is finite ]

The model we really need is _[(_ﬁ'lYH, and is obtained by taking the quotient of
the final states of K%VH, as follows:. .
KM/H s the Kripke model < Posqr, II———g} obtained from a model
Ksel/Hz'iPz,sz,r’*¢,Il—z} by the following procedu;e:

1) The set of nonfinal elements of *-iP3,s3,r’1‘f;-‘ coincides with the set of nonfinal
elements of «P,,<,1*> and =3 on this set coincides with =,.

2) The set of final elements of *‘CP3,53,1"“} coincides with the set of =y
equivalence classes [cx*f] (in K ) such that a*1 s a final element of
<P

W3R
2,5211 e

21



NI o and [B*r] are respectively a nonfinal element and a final element of

“Py= ¥, then ct*sﬂﬁ*ﬂ iff there is an element y* of K*/H such that
sk E3 o s:f ‘

afs,y*oand yE=E PR b

4) I o* is a nonfinal element of <P,.=,r*> and p isany variable, then
e . L E N |

atll—p {ff ot ll—,p.

5)1f [B3'] is a final element of < P%.ss,r*}' and p is any variable, then

vl of  KSUH  such that zf’*‘fEH Bl we

/

[ﬁ*f] l—;p iff, for every final element 7y

have that y*fll——zp.
The finiteness of K¢'/H implies, a fortiori, the finiteness of K'™H. The
following propositions [13] give the main properties of KM /H:

Proposition 18: For every AeSfﬂ (H) and for every element o* of

K'"/H, one has:

(i) If o#=[p] is a final element of KM/H, then o*I
Bl—A in K. .

(i) If a* is not a final element of K'"H, then a*l—,A (in K'™/H) iff
a*ll—A in K.

Proof: By induction on the maximal length of the paths connecting o* with the final
elements of K'M/H.

Property (i) is the basis of the induction, and can be easily proved by induction on the

1

JA - Gn KMH) e

complexity of the formula A.

To prove (ii), which is the step of the (main) induction, one uses again an auxiliary
induction on the complexity of A. The cases . A=B»C and A=BwC are easily
handled using the induction hypothesis.

Let a*l—B-+C. Then «*l—3B—C. Otherwise, in K'"H thereisa p*

such that a* =3 p*, B*ll—3B. and PB*l=~3C. Hence, by the auxiliary induction

hypothesis, we get p*li
a*l—B-C.

Now, let  o*ll——3B—+2,. but o*l<~B—Z. Then thereisa B of K (not
necessarily being a & -terminal element) such that o*<f, plI—B and

Bl=~C. Let us assume that p=yo™ is not satisfied. Thenin K there exists f*

such that  f* isa & -immediate successor of o* in K, and B*<f. By

definition of K'™/H, it follows that in K'™H there exists y* such that
y#oyP* and y* s an immediate successor of o with respect to the ordering

22

B and P#I<~C. This contradicts our assumption that

5 of KM™/H. Since a¥=3y*, and o* 3B+, one has that y*l—3B—=

A

Also, since the maximal length of the paths in K'"/H connecting v* with the

i

final elements is less than for a®, one can apply to v* the (main) induction
hypothesis, thus deducing that y*I—=B-»C. Bince v* g p*. p*sp and B—l=
Sfﬁ = (H), it follows that Bl—B-+; this contradicts the hypothesis that pl—B
and BI-~C. Therefore, we must have p= 0%, which implies o*Il—B and
o*I=~C. An application of the auxiliary induction hypothesis shows that =~ o*l-—3B
and a*l=—C, a contradiction.

The case A=T1E can be treated as the case &=B—xt.[]

Propostion 19: Let P =P .=<,> and P,=<P,=;* respectively be the

underlying poset of K/=,, andof _Igﬁ“/H. Then, for every nonfinal element o=

P3, Fin([a’*‘])glein(a*)BB.

Proof: Otherwise, for some a*eFz, there is [ﬁf] eFin([a"c])p] such that [Bf'])z'

Fin(a*)PA. Now, for every {«,'f]eFin([oc*])P1 such that [ﬁf];rz[yf], one can find
P3 , P ,

Fi

AsSf,  (H) suchthat B'l—A andy/lH-A (in K ). As a matter of fact,
according to the definition of E], Bf-f' o cannot hold. Hence, being Fin(a*‘)})x

=
a finite set, one can find BeSfﬁ _, 7(H) such that F)fll'——B, while, for every [y']

=Fin(a®)p , Yf"—?‘LB. To see this, take as B the conjunction of the formulas A
corresponding to the various states of  Fin(a*)p . By Proposition 18, for every
["{f]EFiD(O(*)p3, [yf] l—37B (in L(_ﬁ"/H ). Hence, a*ll—371B. By a further

application of Proposition 18, one gets a*I—T1B. But this is impossible, since in
K thereisa B’ such that oc;*‘f;H[Sf and p'I—B.C]

We will apply our selective filtration technique in Section 7. Here we will be
interested in the models & L(T’)fm/H, obtained from the canonical models ‘f:?L(T).

6: Selective filtration over rank formulas.

Definition 10: Let v be a finite set of propositional variables, and let & be an

element of the Kripke model K. We call atomic v-forcing of a the set



v(o)={p/ pev and all—p}I{Tp/ pev and a.ll—Tp}.

We say that an element « of K is v-final iff v(a) and v have the

same number of elements.

Definition 11: Let a and [ be elements of two Kripke models K, and K,
respectively (possibly with K =K, ), and let v be a finite set of propositional

variables. We define the v-rank Ty of o (the v-rank rﬁ of B) and the

v \ . : .
relati = = for : r 1) by simultaneous
relations a5 f and o« FB  (for any natural numbe ) by
induction as follows:

Basis. r=0:

v v .
o has verank O iff o is v-final; aZp and a [P iff
r,=0, rﬁ=0 and  v(a)=v(p).

Induction step. r>0:

-0, has  v-rank r iff:
(i) o hasnot v-rank =r-1;
(i1) there exists an element a, of &1 such that as0,

and ralzr- l;

(iii) for every element o, of K, such that aso, 0%,

and the v-rank of o, isnot =r-1, the following holds:’

v(cxl):v((x) and, for every o, of _I_(_I such that as0,
and T, =<r-1, there is an element 0y of -}-(-1 such that
2
v

a,=0, and C‘zs;::l 0y

1

N
a=f holds iff:
(1) ru=rﬁ=r;
(i) v(o)=v(P);
(iii) for every element a, of ﬁl such that =0, and

h

v
PP, and o, T B
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r, =r-1. there exists an element f, of K, such that .

(iiii) for every element B, of K, such that Bsﬁl and

rﬁ =r-1, there exists an element o, of &l such that
|

=

asay and B, F

i (Xl.

¥ = Y
o= P holds iff U b oor a=p.

We remark that at most one v-rank can be assigned to every single element of
a Kripke model. Also, a v-rank can be assigned to every element of every finite
Kripke model. On the other hand, since only natural numbers are admitted as  v-
ranks by Definition 11, there may be elements of infinite Kripke models to which no
v-rank  can be assigned. To associate v-ranks with states of arbitrary Kripke

models, one should extend Definition |1 to transfinite ordinals.

As an illustration, we give two examples.

Example [.Let F={fy, 5, .. ,f...}, G={g,.22.....¢,....} and
H={h.hy....h,,...} be three countable disjoint sets, and let  P=F(FUGLIH)-{@}
be the set of nonempty subsets of FLIGLH. Define the relation < on P inthe
following way: for every a,peP, asp iff ozp. Then, P=<P,<> isan
uncountable partial ordering whose final states are singletons of the form  {f;} (with
figF ), {gi} (with geG)and {h} (with hy=H ) respectively, and whose root is
the set FLUGLIH. Note that, for every o=P such that  Fin(a) is finite, the
principal subordering P, generated by o in P is a Medvedev model in the
sense. e.g., of [5,13]. For every ssFLUGUH, we identify the singleton {s} with
s itself; as usual, r denotes the root FUGUH of P. With these conventions, any
nonfinal element o of P coincides with the set of final elements following «,
and  r  becomes the set of final elements. Now, let  v={p,q} and let
K=<P,=,—> be the Kripke model built on the poset P=<P,<X whose forcing
I— is defined as follows:

I) forevery =P and variable p'gv. all=+p';

2) forevery =P such that either ocF or acG or azH,  all—p and

al—q (in particular, for every final state s, sl—p and sl—q):

25



3) for every a.pyeP suchthat azF. pgG and y=allp. v ll—p and
vl-q: 4) forevery w.faeP suchthat agF. pgH and y=allp. vy lI+-p
and yl—q:

S) for every .pyeP suchthat azG. pzH and y=allp.  ylw=p and
vl+q. With these conditions. the model K=%P.=.l—: is uniquely determined and
the following properties hold:

a) forevery =P such that either azF or azG or agH. the v-rank of
is 0: :

b) for every a.pyeP suchthat azF. pgG and y=allp, the v-rank of v

R

is 1t
¢) forevery o.py=P such that azF. pzH and y=ollp, the v-rank of vy
is 13 ‘
d) forevery a,p,yeP such that acG, PpzH and y=ollp, the v-rank of vy
is 11 .
e)the v-rank of the root r equals 2 and also coincides with the v-rank of
{f.e.h}, whenever feF. ¢=G and h=H.
Example 2. Let  v={p,q}: for every natural number nz0, we inductively define
_____.,P_.;; > b} :
;s 2 R > .
three Kripke models _K_n’, K, and K,” as follows:
1) Forevery k such that I=ks3, the model _Ig()l‘ contains only the final state
fi; moreover, forevery j with ks=j and I<j<3, fi=f.
. - . k
2) Forevery k with I=k<3. if plev and Isj<3, then fjl==p" in Kg"
3) The following conditions are satisfied:
: : . 1.
13) fil=p and fil=—q in Kg':
i 2.
23) Ll—p and fH==q in Ko™
: - . 3
3y LiE-p and f3l—q in Kgy' )
o wd_ep ] Py k2o p2 o2 2 | K3=epd < —3%,
4) Let —K-i Z‘:.Pi S ,"""—'i N ﬁi :""'Pi =i, TS and Kyt=s LS i :
For jj with Isj=3 and Isj'<3, let 1 be different from every state of Kj
’ for ] for ever i <h=3, we define
and let rj;;rj- ifon J;vlﬁj', Then, for every h  with  I=<hs3,
o v,
Ko "= P i i
1) Py "=PRLIPMU 1, where  Iskoms=3, hek, h=m and k=m:
1) P -
' . - b_sp | he, . :
2,) 1, is the rootof  Piy =Py =iy #
e I e
3,) ifapePiy " then a =, "p iff

O=Ty

as follows:

or

a,pe Pik and o sik p
or
a.peP™ and o ™M p:

4 =" coincides with —X on the states of K.

] K" and with I—" oy the

states of  K;™.
Note that the forcing of K, " on its root is uniquely determined. for, no variable
can be forced on 1,

Having defined the models ﬁnh with  nz0, I=h=3, we define the infinite
Kripke model K'=4P'.<".l—"* as follows:
5) P={r 0 s cpe3Pa". where P"=<P < "5 s the poset on which K,

n
4 H ; . K- h.
is builtand where r'gll o3P,

6) forevery «.peP. as'p iff either a=r. or there are n=0 and h with
Ish=3 suchthat «.p=P," and s "p:

Nif =P and a=r'. thenthereis n=0 and h with I<h=3 such that the
principal subordering generated by o in P'=<P'.<" coincides with Bnh: for
every variable p' (whetherornot p'evi, we set all—p' iff (L”—nhp'.

Note that the forcing on ' is automatically determined, i.e., ' cannot force any
variable. ‘

Now. using Definition 11, we can give the following evaluation of the v-ranks of
the states of K '

a) Let o beany element of P' different from the root r. Then, for some n=0
and some h  with 1shs<3, the principal subordering generated by o in <P <"
coincides with Enh and the v-rank of « is n.

b) The root 1 of the model K' has no v-rank. This is so because, according to
a), forevery p=z0 thereis o suchthat r'sa and p isthe v-rank of .

We omit the easy proof of the following:

Proposition 20: For every finite set of propositional variables, and every r=0, we

have:
Yy . . o T .

(hH T Isan equivalence relation over the class . v of elements with v-rank r.
Yy . . . ! . .

2 = is an equivalence relation over the class L1 i, of elements with
<t O=<r'<y v

v-rank  r'sr.l]



Proposition 21: For every finite set v of propositional variables and natural number

v
r=0, the number of the equivalence classes generated by = over i rv is finite,

w0

/ I
over J()sr‘sr v

LI

and so is the number of equivalence classes generated by

The proof of the above proposition can be obtained by an easy induction on r
(see G. Faglia, Relazioni fra modelli di Kripke per lo studio della decidibilita di
logiche intermedie costruttive, Tesi di Laurea, Dipartimento di Scienze
dell'Informazione, Universita degli Studi di Milano, 1987). Using Proposition 21, we

can prove:

Proposition 22: For every 120, K=<P.sl—>, =P, and every finite v, if
o hasno v-rank. or o has a v-rank >, then there is PP such that osp
and the v-rank of [ coincides with r.

Proof: We consider only the nontrivial case, proving, by induction on p, that, for

every p, the following holds: for every «, if o hasno v-rank, then thereis

Pp such that aspy and p isthe v-rank of .

First of all, since v is finite, one easily shows that for every «a, thereis By such
that as=By and forevery pev, either Boll—p or Pol—Tp; thus, V(Be)l=Iv,
ie, 0 isthe v-rank of g, and we have the basis of our induction argument.
To prove the induction step, let r=0, and let us assume that for every o such that
o has no v-rank, thereis P, suchthat a=f, and r isthe v-rank of f,.
Let « be an element of P having no v-rank. According to our induction
hypothesis, it follows that the set of o-states over r is nonempty, where we say
that o'=P isan a-state over r iff asa', o' hasno v-rank =r (but o
may have v-rank >r) and thereis p' P suchthat «'sf', and risthe v-
rank of B, Now,since v is finite and since, by Proposition 21, the set of

A

equivalence classes generated by =

) r' . . . .
over U Osr,srﬁt is finite, there must exist

v
Bre1=P suchthat Py isaminimal o-state over r. Here we mean that f,,,
isan o-state over r satisfying the following condition:

1) For every p'eP suchthat P, =p' and P' isan o-state over r, the

following properties are satisfied:

28

1D vBr)=vP;

2y) forevery p"=P suchthat $,.=p" and p" hasa v-rank =r, thereis

3%

=P suchthat B'sp" and B'E B

We claim that r+1 is the v-rank of B, ;. Indeed, Conditions (i) and (ii), ensuring
that r+1 be the v-rank of f,,;, are immediately satisfied. As for Condition (iii),
let p'eP be such that B, =p. P,4;=p' and p' has not v-rank  =r. Then,
" hasa v-rank >r, unless. ' has no v-rank at all. In the first case, one
immediately gets a §',=2P such that $'sf',, and r isthe v-rank of B‘r, in the
second case, the same conclusion holds, because of our induction hypothesis. Thus,
in both cases, B' isan a-state over r; from the minimality of f,,;. one now .
obtains that v(f,., )=v($'). and for every f"=P such that B, =p" and B"
hasa v-rank =7, thereisa f"=P suchthat B'sp" and B"’é‘r "', Thus,

also Condition (iii) holds. This concludes the proof of the proposition.[]
We also have (see the above quoted thesis of Faglia):

Propesition 23: Let =0 andlet v be a finite set of propositional variables, Let

o and P be elements of the Kripke models K, and K, respectively, possibly

L =
with K =K,. Further, let o3 p. Then, for every wff A  containing only the
variables of v, all—A in ~K~1 iff pl—A in K,.
Proof: The proof is by induction on the complexity of A; we will consider only the
case A=B—.

. - LY v

First of all, as an easy consequence of Definition 11, we have that if o= B and
C ' . g . X

aso' in Kj then there exists f' suchthat f<p' in K, and o'Z ' Note

that the v-rank of «' need not be smaller than the v-rank of a. Now, let

R

aZ p,all—B-+Z in K,. and suppose that Bl=~B—C in K,. Then there is

p' suchthat B'I—B and B'IF~Z in K,. By the above discussion, there is o'

. A
such that a=<a' in K; and B'Z a's hence, by induction hypothesis, in K
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there is ' such that  a'll—B and o'+, with a=a'. This contradicts
al—B— in K.

For every r=0 and finite set v of propositional variables, we call

vV v '
= . B SN PN et = g o A
= -equivalence classes  the classes generated by =  ovel Uﬂsr'srﬁ Ll further,

we denote by [Cf.]"sr such classes (where « is some representative element of the

class).

Definition 12: Given Kripke models L(.‘ and K, let ae_l_(_l and Pek,.
v

Assume further that @ and f belong totwo = -equivalence classes. We write

' . . . ‘ ~

as‘]ﬁ if there is an element «' such that as=a' in K, and o' 5 f. We say

fii=

that B isa Z -immediate successor of o iff:

(a) asv]ﬁ and Bi"ra:
(b) for every model _&3 (possibly with L(_B:_lgl or _l%:ﬁz) and every

Ly Y X
element  yeK,. if as"rys"r[?), then we have that y5 a or v B.

Vv
Itis easy to see that « and {3 belong to the same = -equivalence class iff

as'p and ps' o

Proposition 24: Let r=0, and let v be afinite set of propositional variables. Let

a and [ beelements of two Kripke models K, and K, suchthat o and f

belong to !, " and a£'p. Then there exists a wiff H ., containing
g
> O=r'ss v T a,p &

only the variables of ~v. such that al—H B and 6ll—rLHu 8 in their own i

respective models.

Proof: The proof is by induction on p:max(ra,rﬁ), with p=r. If p=0, let Hv(a)

be the wff given by the conjunction of the wif's in  v(a). Let H, [ﬂ:va)‘ Since

j

=0, o and [ are v-final elements. Moreover, o' f entails v(c)#v(p).
p 0

, and Bl==H

[eN)

Therefore, all—H b in their own respective models. Now

30

assuming that the proposition holds for every v-rank less than p, we prove it for
p (p=r). We have six possible cases:

Vv N

A
CASE 1 Bs"‘_a., and [ has justone = -class of = -immediate successors.

\%
Inthis case, let f' beany I -immediate successor of f. Then f and p'
have distinct  v-atomic forcings. For, if this were not the case, } and p' would
X

-equivalence class, thus contradicting the definition of = -

nj=

belong to the same

immediate successor. Thus, al—H and BIH‘LHV Setting H B:H\’(w’

via) (a)
we have the induction step for Case 1.

v

v
CASE 2: Bs='a. and B has at least two  Z -classes of E -immediate
SUCCESSOTS.
Yy . .
Let v bea Z -immediate successor of [ suchthat y= .. and let O bea
A . ' LV Y
= -immediate successor of f such that [6] oF [v] < The v-ranks of &

and v are less than p. Then, by induction hypothesis, there is a wff H_ 5 such
i
that yl—H,  and dl=-H,, 5 in their own respective models. Since (35"1_6 and
1% i»

v<" ., it follows that  BI=~H, , and oll—H_, in their own respective models.
r 1.0 v,0

Thus, setting H 5=HY 5 We have proved the induction step for the present case.

CASE3: p&'a (and af'f). rp=p, and r <p.

nfjl<

In this case, there exists a -immediate successor vy of [ such that a&"ry

v

A

(otherwise, rg=r, or B @ ). Then, by induction hypothesis, there is a wff

%:H( . Then, of

LY

- —— $ .
H(M, such that all H‘L"f and Y"‘."‘"Ha’y. Let us set I—Iu}[

course, OLII—H(”3 and Bil—.ﬁ—Ha P in their own respective models .

CASE 4: Bévra (and (ﬁ"lﬁ ), 1,=p, and rp<p-
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al=+K while, by Proposition 23, every

As in Case 3, we can find a wff Kl3 o+ containing only the variables of v, such that.

A

= -immediate successor ' of o, we

Bll—Kﬁa and all-f"—Kﬁ.a. For every

have a'é"rﬁ (otherwise, asVrB, which is impossible). Let o' ...a'  be
. . Y y .
representative elements of the distinct £ -classes of = -immediate successors

of a. Since, forevery i with Is<isn, a'&" B, by induction hypothesis there

are wif's H | such that o' l—H , and PI-~H , in their own
o' i—Hep Bl-Hop

respective models. Let now HCL,[SZKB,(I-} V 1sianG'i,ﬁ’ We prove that

CL”"“'HQﬁ and BIH"—H% H Moreover,

B I=isn

For, ﬁ]]—Kﬁ,a’ but pl=-V

ao'i,p

ha

= -immediate successor of o in the

p.a

model of o forces V 15iana'i p

I

-immediate

=r

CASE 5: ﬁﬁvra (and ainB ), I =Tp=Ps and there exists a

B =

successor ' of B such that there is no -immediate successor

a'of a with ‘a's"p.

Bl

Obviously, p' has v-rank less than p. Then there is at least one

immediate successor  a"; of a suchthat B'&’ a", (for otherwise,

1 1

would have at least v-rank p, which is impossible). Let o.”z,...,a"m be
. - hA Yo . ’
representative elements of the distinct 5 -classes of = -immediate successors

of @ not belonging to  [a",] (if any). By our hypotheses, a"li"rﬁ‘,
a'y&' Blat & B By induction hypothesis, there are wff's
Ha"1»{3"f"’HG"m,ﬁ' such that f “"'LHa"i,B‘ and o i"_Ho."i,B" Moreover, ‘again

by induction hypothesis, there is a wif H such that ﬁ‘llmHB. ' and

Pl

[T - . . . ) ’ ]
a" - HBKOL"I‘ Let Ha..ﬁ H . Ha"],B‘“‘f""‘(Ha“m,ﬁ" We prove that

pa
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i

fond

g}

B‘Il—f—H(l’ﬁ. Indeed we have f'l—H while B‘li—.}LHa‘,l’ RERRY «

Bl

m-f"
Since  pB=" B we get ﬁ!l-f-Ha 6 in its own model. On the other hand,

N
al—H .. since al-~H and, by Proposition 23, every E -immediate

a.p Bl

successor of « forces Hq"lﬁ"~""““"H B in the model of «a.

"
'm

CASE 6: B&'a (and o' ), [ =Tp=P and, for every = -immediate

successor [ of f, thereisa =

immediate successor o' of o

such that  o's" B,

i<

1

If v(a)=v(p), thereis a -immediate successor o' of o such that, for

=r

Vv
every = -immediate successor  p' of P, B'sl;"rcz‘ (for otherwise, we would

;

deduce o 5 B, which is impossible). Proceeding as in the previous case, we can

find a wff H such that BII*HF) o and al=~H, . On the other hand, let

B.a Bt

A

be a complete sequence of representative elements of the = -

! 1

[reeesCt

Ay

m

Vv

= _immediate successors of o. Since

equivalence classes of =

o' &' B.....a' &' B, and since the v-rank of o' ,..a' ~is <p, asin Cases

m
1-3 one can find wff's H&'I,B""’Ha'mﬁ such that, for every i, a’i"_Ha';,ﬁ
and B I=-H @B in their own respective models. Let
1s

— o 1 J— ‘
HQ’B—HB,G—-; ch‘l,ﬁ\""‘““’ Ha'm,[%’ It is easy to see that all Ha,ﬁ and ﬁll+Ha,B‘
If v(o)=v(p), we proceed as follows. If there is a variable pesv such that all—p
and Bl==p, we set H, ¢=P: if there is a variable psv such that al~—Tp and
Bl=~T1p, we set H o ﬁ="I p. Otherwise, there must be a variable psv such that

pl—p and al=-p, or BI—Tp and al=~Tp: in the first case, we set p¥*=p; in
the second case, we set p*=Tp. Let Ha'l,f ""’Ha'm,ﬁ be as above. Setting
HQ’B=p’*‘—~} Ha‘;,ﬁ""""""" H(l'm,[f)’ it is easy to prove that CL“——HG’ﬁ and l’ill—:x‘“—-l-{a’B

holds in their own respective models. This concludes the proof.[]



Given any set v={p....p,} of propositional variables, the set of formulas of
the form 7B containing only the variables of v s divided into a finite set of
equivalence classes [ BJ, by intuitionistic biimplication. By a  v-complete set of
negated formulas we mean any (finite) set {1C,.. A€} satistying the following
conditions:

I) for every equivalence class  [TB], thereisan i, I=i<h, such that 1Ce
1 B]V: 2) forevery ij with I=ij<h and isj, [7 Ci]\;*['] Cj]v'
Definition 13: 2 is a completed wff  iff there is a sequence v, N, NN
such that the following conditions are satisfied:

D v={p,.....p,} s the set of propositional variables of &I

2) N={1C..7 Ch} isaa v-complete set of negated formulas;

3) N,...N_ are the nonempty subsets of N;

4)forevery j with Isjss, Dy isthe disjunction of all the formulas of NJ.:

i
5) Z-;;FDN ,f-.,...,.-'xDN .
1 s
6) Zgisa subformula of 1,

It is always possible to extend any wff & (o a completed wif &

C
containing the same variables and having £ as a subformula. Just set
2 =0
e ._J.!.,ZEJ,

\/
Given a natural number =0, consider the set of = -equivalence classes. By

Proposition 21, the number of such classes is finite. Let [a*]'_, and [B*]"_, be
two such classes, and let as|a*] Vsr and BE[’B*]VSr. If ai“rB, then, by
Proposition 24, there exists a wff H, i containing only the variables of v, such
Y

=

that al—H

B and Bll-ﬁLHU B in their own respective models. For any two

equivalence classes [0*]"_ and [B*1",, such that (‘LE[OL*]VS]., p=Ip*]*_, and

a:%””lﬁ, let us consider the wff Ha B Observe that such a wff is independent of the

choice of the elements in  [o*]"_ and [B*]'_. Let % be the set of wif's H, 6

obtained in this way, and let ©"_be the conjunction of all the formulas of .
Y ] J

Definition 14: We say that a formula & is  v-exiensively completed up to v iff

Z is completed, and = contains 2 as a subformula.
I .

Any formula & can be extended to a formula ' which is v-extensively
completed upto r, has & asa subformula, and contains the same propositional
variables as &', For, we can set El':IIEZ!,."'.,Z]:.J."“., Elvr, where Z. and © Vl, are as in

Definitions 13 and 14.

=
7: The logies L .

T .
Considera path {Litiz1 ofthetree T: foreach m=1 there are n - and
km such that the logic Lm in the path is a (nm,km) logic, for a suitable class of

posets .”-:FL . Let (CONE(Lpy), ) be the axiom-schema related to the logic L, of
m m

U L . .
the path 1Li}i=1. Since, for every m=1, n - is uniquely determined in terms of

T
m and {Li}iz1, for the sake of simplicity we denote by (CONE(L,;)) the axiom

D o *
schema (CONE(Lm)nm), and let F CONE(Ly) denote the class of posets
o . .
= CONE(Lm)

m

T
Definition 15: Let {Li}izi  be a path of the tree T, and let

T =T
L :INT—:—UmE]{(CONE(Lm))}, with L~ ranging over the path. We call L the

T .
N i reeorciated wi L. o=l o
second logic associated with {Li}i=1. We also set = ]mzl'jCONE(Lm)‘

T =T .
Proposition 25: For every path  {Li}is1 ofthetree T. L k;e.L.(J‘i')

Proof: Immediate from Proposition 4.

=T T
Proposition 26: Let L be the second logic associated with the path  {Li}is ~of

the tree T, let L be a logic such that Lz L and let, for each mz2,
A(p---sp,,,) be a wif containing only the propositional variables PpoPyy Also, et
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~HMm
poy <2 =n,. where

Ly odsa (kg ) logic. Finally, let Pf"=<P™ < T's+> be the underlying poset

T
L, bethe (n k) logic of the path {Li}iz1 such that n

of the model T, (M)A, It PMe o\ p o then, forevery joh, P
E’r'cor\nz(lﬂ)'
Proof: If A is a wif containing only the variables p,,..p. . then the model
’GL(T)ﬁ“/A has at most 2™ final elements: such final elements correspond to the
2™ distinct classical interpretations of the variables p,.....p, .

. ~f pfin. o fin_ rr (T :
Let I's be the root of P since P “SCONE(L},) and IFln(r.)lsnh, there is
an element T's' such that Ta<I'=', Fin(I'=")=Fin(I'#) and, if P' is the
principal subordering generated by  I's' in P'™ then EE‘TL;' Now,

B 1

s o o — = TF ' fin
"‘FLh‘;’IRI(Lh) and “‘?Lh‘:‘—'SLE(Lh)’ whence E—"‘IL;M‘ It follows that P'e

imi fin_ o . L
EFCONE(L;H])' Similary, we can now prove that P eL“FCONE(Lh+2). Proceeding in

. L fin_op
this way, for every j>h we getthat P"eiF CONE(Lj)'D
: A - fin® - o -
By the previous proposition, to prove that P el ]maIJCONE(Lm) it is
- , fin - T
sufficient to show that P'"eln lsmshﬁ" CONE(Lm)fg CONE(Lp)

Forevery mzl, if we consider the logic L, ofthe path {Li}wirz 1, then the
parameter km such that Lm is an (nm,km) logic  (for E}an]), reaches its
maximum value when Lm=RIm" ! (GS), where RIO(GS)=GS and
Rli+](GS)=RI(RIi(GS)). We denote by max,(k,,) such a maximum value.

T =T
Proposition 27: Let {Li}iz1 be apathofthetree T, andlet L. be the second

=T

logic associated with the path. Let L be alogic such that LzL , let A(p,,....p,)

(n=2) be a wif containing only the variables p,....p , andlet I' bean L-
T

saturated set. Denote by L, be the logic of the path {Li}is1 such that n,

I<2“snh. Suppose & is a wff such that T.F@:{pl,..,,pn}, Ef:A(pl,...,pn).»’-.El',

and &' is ‘U ,-extensively completed up to T, with r=max, (k). Then the

F conELy)

M_Qf_i:By induction on  j, we prove that the underlying poset P of
i L(I“)fm/® belongs to EFCONE(Lj); At the basis step, we will prove that pfing

underlying poset of ﬁL(I‘)ﬁ“/@ belongs to I, <j<h
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EFCONE(GS)‘ Assume the contrary. Then, denoting the ordering relation of pin by
=3, as in'§5, there are elements '+, I“*fl,f‘*fz of Eﬁ“ such that :
(a) Fin(T=")z {T"ikfl,l“*fz} and, for every TI'=" such that I#'s3T="  and
Fin(Ds" o {0+ T}, PN F o |
By the finiteness of P1" we can assume without loss of generality that I'+' satisfies
the following additional property: :
(b) forevery TI'=" suchthat I'x'ssI'+" and Ix'sI[=", Fin(F*")Q{F*fI,I‘>1<f2}.
" There are two-possible cases:
CASE A: Fin(l'=)lz3 (in P,
In this case, denoting by I3 the forcing of T (I )@, we can find two wf's
Aypand A, of Sf  4(8) suchthat [l l—3A . T=lI—371A,,
F*fz —3A, and I *fz I—3TA,. Forevery final element I « such that Tx'g
Fin(P+) and Tale (D T3 Tl =74, and Tsll—357A,. Let (FIN,)
be the instance of the axiom-schema (FIN,) given by the wif's A and A,. Let
(DE,) be any instance of the axiom-schema (DE,). - We set
(GS)'=(FIN)'aiDE)". We prove that I'#'ll—(GS)'=TA wTA, (where l—
denotes the forcing of 5 (I') ). ,
Let T'" beany elementof L(I") such that T'='sI'™ (where =< is the ordering
relation of T (I)) and I"I—(GS)". Then I‘*"E@F". As a matter of-fact, since
[+ does not force TA|, TA=TA, and TA =T7A, in 'GL(F)ﬁ“/@, and
since {TTA |, ']Al—'ﬂ Ay TA=TTA ) € Sfﬁ}__}}.}('sl), we have that T'#' does
not force 'lAl, 'IAI-—}"I A2 and “IAl—:»'ﬂA2 in ?SL(F); but F*‘E@F“
implies that I'" does not force TAI, "IA]—-}"! A2 and 'lAl—,ﬂ’!Az n ?SL(I‘),
from which one has I'"lIl~(FIN,)', and a fortiori T"I=~(GS)', a contradiction.
Thus, by definition of T (I ){%/@, there is an immediate successor T'#* of T’
in PfI"  such that [ T From (b), we get that either I“*fle' Fin(I'=%), or

’F*fzstin(I‘*s). Hence, [+ —3TA |, or [#*—3TA,. Therefore, since {1A |,

TA} 2 ng\,_;,;l(a)’ we have T'" Il—~'1A1 or, T"I—T1A,. Since I'" isany
element of “GL(I“) such that TI'#='sT"" and T"I—(GS)', it follows that
[l—GS)'=TA 1w TA,.

Since I'+' isan L-saturated set, T'x' forcesin T L(F) every instance of the
axiom-schema (CONE(GS)). It follows that I's'll—" AW TA,, which implies
='l—1 A, or r='l1—1 A,. Since {TA TA,} < st\,afl‘(e)’ we obtain
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I“*'Il——flAl or  Tal fl—37 A,. But this is impossible, since  Fin(I's") =
XN SN ,

CASE B: Fin(I'+') = {F=z=f1, F*g}, and T=' is not a prefinal element (in pliny,

In such a case there is a nonfinal immediate successor I'=® of T'x' such that
D=3l or I“*ssj,l“*fz. Let, for the sake of definiteness, r=;<553r;;<f1_ Since

I'#'=[%> and T=> is not final, we can find two wff's H and K of

Sf, . q(@)suchthat: Tw'lle—3H,  T#'ll—3H and [+°l=-3KwTK. Moreover,
we ~can find two wif's A, and A, of Sf,.,,,_;,,w('?) such that F=:<flll—3A1,
Pl 3T A, Tl l—3A . and T+l Il—37A . Let  (GS)'=(FIN,)'n(DE,)',
where (DE,)' is the instance of (DEE) given by the wff's H and K, and
(FIN,)' is any instance of (FIN,). Let T'" be an element of T L (I') such that
+'sT'" and T"I—(GS)'. Let us assume tha; F"EE)F*'. Then, since Hs

ng\w—-:.,’t({a) and T#'ll=-3H, we deduce T"l=~H. On the other hand, I's' isa
¢ g-terminal element of T, (') and Tx'sT™". Then there is a i EI

such that =T and r3s@r»:=s. Since T#*l—H, T#%I+-K and T=SI1K

(because  {H.K,TK} < Sf, . (&), we have T lI—H and IYIH-KyTK. -

Therefore, I'lI=~Hss (H-2 Ko 1K), whence T"I-~(GS)', which contradicts the
hypothesis I Il——(GS)'. Thus, & [+ By definition of @L(I’)ﬁ"/& there is
an immediate successor TI'=" of I'x' in ?ZL(F)ﬁ“/@ such that Talg T
From Property (b) it follows that I'#"ll—37A |, or T#ll—37A,. Since
{7AT Az}ganﬁxn (&, i1 ApTTA,. Since T is any element of ’GL(F)
such that I'='sT"™ and I'"II—(GS)', it follows that I's'll—(GS)'—=TA A
This gives rise to a contradiction, as in CASE A. Thus, neither CASE A 11(;1' CASE—I-B

fin_ er
can hold, and P "ICONE{GS)‘

Induction step. We inductively assume that, for every j, lsjsm-1 and msh,
fin . ,

we have Peif . Assume, on ary fin . op
CONE(L) f ‘» , on the contrary, that E’ 353 CONE(Ly,)y Then
there are elements I+, .. .. with 2sm*sn_ (n_ being the maximum

number of final elements that posets of .‘QF'L can have) such that:
. m

(a) Fin(F*');{I‘::«.fl,.,,J’:;:fm*}, and, for every I'#" such that Tsx'sqs", if
Fin(Ps"z T+ .0 ) then PMMpue |

. m
- fi . e
By the finiteness of P'™", we can further assume that I's' satisfies the following

property:
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(bY Eﬁ“rsu_aiF'L and, for every T=" such that Ix's3[=" and Is's=Dx",
m : B

Fin(Me") 2= 0l

Now, L = can be obtained from L in two different ways: LmZRI(Lm.Qs or
LmzLF‘(Lm-1)‘ We will treat the two cases separately.

CASE I: L _=RI(L_ ).

Since P1"pue | . the following four subcases can occur.
m

.oplin | ep
SUBCASEOL: P F:“)EJHNz(nm_l)'

For the sake of simplicity, we set Z=2(nm_l). Since _P_ﬁnrgr_E'EFFINz, there are
distinct final elements F*fl,...,F=%=fZ.I“>::fz+1,...,F>§=fz+s
that Fin(l“*')-—-{l"=%=f1.“.,I“=i=fz,1“>1<f ....,I"*f }. We remark that nm=2(n

| )=zz=m*. Hence. we may assume, without loss of generality, that

z+1° z+s
{F*fl,...,l“*fm%}c;{F*fl,...,F*fz}. Now we can find wff's Al""’Az of

of Eﬁ“r:;u, with s=1, such

m-

St, .](E') such that forevery i with I=isz, F*fi I—3A, and, for every |
L s

with Isjsz+s and  j*i, I“*fj I—3TA,. Let (FIN,)' be the instance of the
axiom-schema (FINZ) given by the wif's  A,,....A . It is easy to prove that
[s'l5(FIN,). This means that T does not force in &, (N)"™/@ any of the
z+1  disjoint wff's contained in this instance. These disjoint wff's belong to
Sf.m.r:;«,“l (71) and so, for every I'" of i L(F) such that F”E@I’*‘, we have
M i=~(FIN,)". Now, let (ALm)' be any instance of the characteristic axiom-schema
of Lm including (FIN,)' among its conjuncts. Let ' be an element of "iSIL(I“)
such that [s'sI"and T ll——(ALm)'. By the above discussion, we get ['s'& I™

Then, by definition of ff-«L(I“)ﬁ“/@), there is an immediate successor =% of I's'
in P such that F*S»::_:@I"". From Property (b') and from our choice of A ,....A_,
it follows that there is an i with I=ism™®, such that =5 —7 Ai’ and hence
m™i— Ay Since T is an arbitrary element of “GL(F) such that I'='sT™ and
I“"ll——(ALm)‘, it follows that F*‘ll—(ALm)‘-—}'lA]\.f...'aﬂAm,kA Since T'#' isan
L-saturated set, T=' forces in ’L‘EL(F ) every instance of the axiom-schema
(CONE(L, ). From this we obtain I'='ll—TA [x;'...ﬁ.,n'"l A It follows that there is
an i with Isism* such that I='l—TA, Since TAiESfﬂ%%ﬂ(EJ), we get
I‘ﬁ:'ll+31 Ai’ which contradicts the fact that there exists (in _P_f—“l) a [xle
(0l s ) such that Dw's3Ts' and sfl—;A.. Thus, SUBCASE |

cannot hold.



.opling e
SUBCASE2: P F;ZV.E.ICONE(Lm—I),

This subca . For i i : fin_ -
his subcase cannot hold. For, by induction hypothesis. P cTCONE(mel)A A

s plin e
fortiori, P F“E'“FCONE(Lm-l)'

SUBCASE 3: P .e5F ‘
r DE”m-l*'km»l

For . .. - - , fin _ep :
or the sake of simplicity, we set =z noo+k - Hence P ZTDEZ. This

means that the depth of ' in fiféL(f F)f’“/B is at least z+1. Then, there are some

elements LI N _Eﬂ”r:s:. such that:

(h I“=14'<3I‘=E='Z<3I"=z:‘z_1{3...<3F=%¢'], where I'+'<3I'+'  means Ps'=3l+' and

'l etey '

(2) I'¥'| isafinal element of Bﬁ"r:h.;

(3) forevery j with Isjsz, I'+' has depthexactly equalto j in P

Now, if T=" hasdepth r in B“"r-,;:g then the U o-rank of T=" (in

o i . ) ~ _
T (M)MMO)is -1, Also, by our choice of T, we have z=r, because

o . . . . . A4
r=maxy(ky) and msh. Let | be suchthat Isjsz. Consider the distinct =-
-

equivalence classes [T'I]VSF,“.,[T'l]VSF (where v:"'l.J”EJ ) such that, for every i

A

with  I=ist, F’5‘|jévifri. We already know that the number of such classes is finite.
By Proposition 24, we can find, forevery i with Isist, a wif Hj ; containing

only the variables of v:‘l.f'g such that, for every o with (xe[[“«*'jv =
o=

O.II-—Hj‘i in its own model, aﬁr}d, forevery o with aE[i:i]VsF’ a "—’Lﬁj.i in
its own model. Now, let Kij,l"ﬁ"““"ﬁ‘ ﬁj,t' Theﬁ, for every o such that o=
[F*'J.]"Si:, a!!_Kj in its own model, while, for every i and every element «
such that asffTi]VSF, C(IHLKJ in its own model. By our choice of @ (to the
effect that @ is extensively completed up to I ), we can assume, without loss of
generality, that K; belongsto ST, (&) andthat T#'ll-=5K in & (D).
As a matter of fact, if I“>!:'II—-—3KZ, choose a K”kESfﬂﬁh_}’.}(E") suclr} that
[+ K*  and F>:<'Zi|—-3K*, and use the wff K'Z=Kz,x«,I(’"-sSff\s}_%_| (=) instead
of K. Now, consider any element T'" of 2 L) such that T'='sT" and
F::c'EQI“". Since I'+' isa {ee-terminal element, there is FZ in @L(F) such

that I <T, and T+ =T
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Since the depth of T'+' in P is z. the state I'+' . regarded as an element of
[ L(F)ﬁ“/(ﬂ, has a v-rank z-l1<r. On the other hand, we do not know whether
Fz, as an element of the (possibly infinite) model 3 L(F), has a v-rank atall, or
hasa v-rank =r1. Let us suppose that ', either has no v-rank or has a v-rank
>1. Then, by Proposition 22, there is I, in ?SL(F) such that I <I" . and
F‘Z (in T:.'SL(F) ) has the same v-rank as T's', (in ?EL(F)fi"/G ). Since K =
Sf,#-g,—:),‘l('zl) and F»:r'z|l—31<z, we have TI'x') II—KZ in TI'SL(F). Since
I+ =T . it follows that FZH-——KZ in ?EIL(F). Hence, from T <I". we get
' I—K, in G (). Since I', hasa v-rank = I, it follows that 1"*‘25";1“‘2.
Indeed, if I+ &';T",, then I' =K in T (D), since, taking j=z. I", isin
one of the equivalence classes [FI]VSF,...,[FJVSF . Thus, since r*'ZSVFF.Z

v
and T'  has the same v-rank as '+, we get that T+ =T We have proved

=r

that , if FZ has no v-rank orhasa v-rank >71, then there is F‘Z in © L(T)

such that I's', %,I“'Z and T <I" . On the other hand, if I' hasa v-rank =T,

=r

V . ;
then I'='_ =T .. As a matter of fact, since T's' EFF , we cannot have [ &Y=,
ZSI‘ z z 7z Z 'z

. P w e ! H ~ = fenilar
for otherwise, I' ZII KZ and FZ|!+ Kz with KZ»=Sfﬁ,_>J_] (). For a similar
reason, since & is extensively completed up to r, we cannot have Fz,é"i;l“:::‘z.

Thus, whether or not FZ hasa v-rank =r, we see that in ,'I'SL(F ) there is a F’Z

N

v
" . By definition of =, thereis I, such
z z-1

such that F"sFZsF'Z and F>:='Z =

A

r

A

v '
that I <I" and T' =TI+ . Here, I's'  is regarded as an element of
77 z-1 z-1 ¢ z-1 z-1

@, (DO, and I", | asanelement of G (I). Indeed,in T (DO one has
that I“=:’-'753I"*'7_1 and the v-rank of I's' | islessthanthe v-rank of I'+' .
We then see that, if ['= T, then in TG L(I“) there are elements F'Z,...,F‘I such

v
%F'l. Thus,

=]

Vv
that: I'"<I" <I", | <..<I"| and I'+' =I" , s

=

1

vV
= 7 !
7-1 S—FF Z-17 r
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forevery i with I<isz, TWI—K; in G (T) and. forevery j with I=j<i.
I"iil—.ﬂ"‘—Ki in T (D).

Now, let (DE,)" be the instance of (DE ) corresponding to the wif's K,...K .
By the above discussion, it follows that, for every element T of & (I') such that
=< and [e'=s 00, r'i=~DE,)" in "'.’EIL(F). Furthermore, let (A )" be

b m
any instance of the characteristic axiom-schema of L~ containing (DE,)" as one
of its conjuncts. Then, for every I'+'sI™ suchthat I'+'= I, Mi=~(AL ) in
m

’ifIL(F). '

Finally, let Al""’Am* be wif's of St 1(!EI") such that, for every i with
=i=m™, F’?ri"'—in, and, forevery T in P such that T *f#l”*fi and
e Fin(Ts), I“:s:fll—v_{]Ai. In particular, for every j with Isj=m* and j=i,
F*fj l—37 A I T isan element of T L) such that I'='sI’" and
["lIl—Ap )", we have Tx'&,T". Then, by definition of 'fEZL(F)ﬁn/@, there is an

m
=L} )
the properties of A .. A . it follows that there isan i with Is<i=sm  such that
I“*Sll—_lA.l in ?EL(T). Hence I“"li——"lAi in 'EEL(F). Since T'" is an arbitrary
element of 'fifIL(F) such that T#'sT" and I"I—(A ), we get that
m

immediate successor I'=® of TI'x' in _Eﬁ“ such that =< _I"". From (b") and

Cal—(ApL )=TA A L in = L. Since ['=' isan L-saturated set,
m

[=' forces every instance of  (CONE(L ) in &, (I'). It follows that

' Apsn A L in (1) and, arguing as in the previous cases, we obtain

a contradiction. Hence SUBCASE 3 cannot hold.

SUBCASE 4: P | '
SUBCASE 4: P pwe DIFFINp, 1,2(npy -1

For the sake of simplicity, we set z=n_ . One can easily prove that there is an

instance (DIFFIN_ , )" of (DIFFIN]Z*ZZ-I)’ only containing the variables
PyseesPys such that  I'l5(DIFFIN, ,, ). We note that any instance of
(DIFFIN_ . ) is a negatively saturated formula (see § 1) and that (being & an
extensively completed wff) every instance of such a schema with wff's of
Sf%_}l_l () s intuitionisically equivalent to a wff of Sf.»-‘a,——‘;_.‘l (). Assume for
simplicity that  (DIFFIN_, )" is such a wff. This is no loss of generality . It
follows that, for every TI'" of 1 L(F) such that I'='sI' and I‘*‘EE‘F",
" l=~(DIFFIN

axiom-schema of L containing (DIFFIN

451 Now, let (ALm)‘ be any instance of the characteristic

. . . .
,05.1) among its conjuncts. Then, for
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every I'" suchthat I'w'sI' and [w'= . T" we get Il ALm)'. Let
Al.....Am:g be wif's of Sfﬂ’%‘_]('ifi') such that, for every 1 with I=sism®,
F*%H———\;Ai. and, for every finai state  T=ls T*ri of Fin(I'=") in Eﬁnrtgn,
Fﬁkfll—ﬂ Ai' Let T'" be an element of 13 L(‘I“) such that TI'='sI™  and
" l!——(ALm)', By the above remarks, we have F*',éla ™. Then, by definition of
T:EZL(T)H“/(B, there is an immediate successor ['=* of I'x' in P such that
st E]F"‘ From (b') and the properties of A],...‘Am*. it follows that there is an i
with  Isism®, such that Ts=*l—1 A Hence, T"II—TA, Since I'" isan
arbitrary element of 'ﬁflL(T) such that Ts='sI™ and I |[—~(A1_m)', we get that
I‘*‘[l-——(ALm)'—-}'IA]'a_.-'..::.,-‘j A« But T=' isan  L-saturated  set, and so I'#'
forces every instance of (CONE(Lm)) in i’fIL(F). It follows that
' —1 A!'-&x...".ﬂ Amﬁ,, which is a contradiction. Thus, SUBCASE 4 cannot hold.
Since Subcases 1-4 cannot hold, we have that, if Lm:RI(Lm), then E_ﬁ”E
EF‘CONE(Lm)'
CASE2: L =LE(L ).

The proof is essentially the same as for CASE 1.[]

From Propositions 26 and 27 we obtain:

sy 1 - T
Proposition 28: Let L  be the second logic associated with the path {Li}i.).

‘:’I‘ ,
Let L be alogic such that LzL . Let A(py.....p,) be a wif containing only the

variables p....p, (n=2),andlet I' bea L-saturated set. Denote by L, the

h
. LlT n -

logic of the path {Li}i=1 such that n <27=n,, andlet & be a wff such that

‘1.!"6:{pl,...,pn}, ':5'=A(P1»---»Pn).-fu. = and @ gsa OUf g-exstensively completed

wif up to 1. with  r=max (k). Then the underlying poset of 'EEZL(F)[”’/G

belongs to ‘:FE’D

As a corollary of Proposition 28, we obtain:

, . T
Corollary 1: Let L be the second logic associated with the path  {Li}i=;. Then

=T
BEF=nel .0
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From Proposition 25 and Corollary 1, we have:

= T
Theorem 5: Let L be the second logic associated with the path {Li}iz1. Then

=T
£(£f)=L O

Now, we are in a position to prove the main consequence of Proposition 27,
from which we will obtain the constructive incompatibility of the two (first) logics
associated with two paths of the tree T.

T T
Theorem 6; Let {Lg}izl and {L%}izl be two distinct paths of the tree T. Let

. T T
, . . . 1
L | be the second logic associated with {Li}iz1, and let L , be the second

2T =T =T e
logic associated with {Lj}i=1. Then L +L 2:33(3-"? F|;Ff‘2).
!

Proof: Let A(pl ,...,pn) (n=2) be a wff containing only the variables PpoPy

T
1
Let Li+  be the logic of the path  {Lj}i=1 such that N, <2"sn,,  and let

T
2 2
L; “be the logic of the path  {Lj}i=1 such that nh**_]<2“s Ny s Let

f’]zmaxh,ﬁ(k ) and r=max, ..(K,..). We set f:max(fl,fz) (we incidentally

h*
remark that f:l—‘I:‘f?_ ). Also, let B:A(pl,,..,pn)ﬁ@', where E' s _v-
extensively completed up to 1, with v=11 o ={p .....p }. Then @ and @' are

v-extensively completed respectively upto 1, andupto T,. Now, let us consider

=T =T
any logic L including both second logics L and L ,. Let T beany L-

T
, 1
saturated set. Then, applying Proposition 27 with reference to the path {Li}i=1

(with the related logic L ) and with reference to the path {Li}ti=1  (with the

=T .
related logic L ,) and using Proposition 26, we deduce that @L(F)ﬁn/é) is built

on a poset belonging to & o I'"IEF'E" . From this we get that
I 2 .

.TE("J'?T I”I‘Qr'"z—"‘ Yol y+L 5 (we have just to set L=L +L ,, etc.). Finally,

' 1 2

a4

e

. =T s - — o =T o T s -
since L lgﬁ(‘»_FLfl)ga.ﬁ(f}”LTlﬂﬁ“Jz) and ngﬁ(ﬁ'b'z):ﬁ(iﬁlﬂ}fz),

Ll e = nw= L +L =&F= nF= )
; = =T =T — T =T T
we get L +L o di( L 1 3 2), Thus, L =da( o 5 2).

=T
Theorem 6 allows to "syntactically overlap" the logics L | and L , into

=T =T

the logic L 1+L ,» in such a way that the resulting logic can be characterized by a

"compound semantics" coinciding with the intersection of the semantics characterizing

the two logics. We do not see how to prove an analogous result for the (first) logics

L associated with the paths of the tree T. This is the reason why we have

introduced the auxiliary logics L .

8: On the cardinality of the set of maximal intermediate constructive
propositional logics.

' . T T :
1 2
Definition 16: Let {L;}i=1 and {Li}iz1 be two distinct paths of the tree T.
T . 5 T
We say that L is the last logic common to {Li}iz1 and {Li}iz1 iff L
1,7 2,7 2.7
belongs to both paths, RI(L)={L;}i=1 and LE(L)={Li}i-1, or RI(L)={L]}iz
1T
and LE(L)={L;}is1.

Since L, Dbelongs to every path of the tree T, we get that, for every pair of

distinct paths of the tree T, there exists the (uniquely determined) last logic common
to both paths.

T
1
Proposition 29: Let L | be the second logic associated with {L;}i=1, and let

) i i 2 T 1 T 2 T
L, be the second logic associated with {Li}tizl, where {Li}i=1 and {Li}iz

T
.. . i
are distinct paths of the tree T. Let L_  be the last logic common to {L;}i=1 and
P m 2
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T
2 . . - .
{Li}iar, andlet L bean (n.k) logic with respect to ':51 . Then, for every

m ~m

poset _Ee.i’:?"»lﬂ‘ I ‘3"1‘ . P hasatmost n+1 final elements.
- -2

Proof: Otherwise, there is a poset P=<P,=.rkglF = !‘”’IG-"E" such that
- 2
IFin(r)lzn+2 (where n+2=<2n). For the sake of definiteness, suppose that LE(Lm)e
1" 2. T
{L;}iz1 and RI(Lm)E{Li}iz!‘ From Eek}fl:'f we get

1
(i) P= ‘5CONE(LE( Loy

From PeiF=' | we get
L,
(i) BELFCONE(R[(I,I“))7I"

From (i) and from [Fin(r)lzn+2 we see that there is an element a=P such that

IFin(a)lzn+2 and Baeﬁf’ . Since EUEE:F

m . . LE(Ly,)

.

LE(L implies P =i e

, W
DEyy)
have
(iti) o has at mostdepth k+1 in P.

From (ii) it follows that P(l belongs also to  IF CONE(RI(Lyy),,° Hence, there is an

element P=P suchthat asp, [IFin(P)lzn+2, and BBEEF.RI(L,“)‘

STRl(Lm) implies EﬁEJDIFFINMn_V whence, in Bﬁ‘ there is an element Bl

But _EBE

such that  p<f, and IFin(B )l=n+I. Moreover, Biei‘;Rl(L , implies _P_BE
m’ :

{

?CONE(Lm)n' Hence Eﬁ]EEFCONE(L (because f=f3,). Since [Fin(p)l=n+I,

I]))n
there is [52 such that Bl<|32, IFin(Bz)Izn, and Bﬁze';:F'Lm. This implies that
f, hasdepth k in P. Asamatter of fact, by induction on m=zI, one sees that, if
the m-th logic L~ isan (np.ky) logic with respect to EFLm’ then the root of
any poset of .‘;F'Lm with exactly np, final elements has a depth =k, Hence f,

hasadepth =k+1 inP, whence
(iv) B hasadepth =k+2in P.
Since a=f, from (iii) and (iv) we obtain a contradiction. Then, [Fin(r)lzn+2

cannot hold.[]

From Theorem 6, Proposition 29, and the characterization of the logics FIN

given in §1, we immediately obtain:
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T —

. T . . : !
Corollary 2: Let L | be the second logic associated with {L;}iz1, and let L,

T T T
. . R 2 1 2
be the second logic associated with {Li}i=1, when {Li}iz1 and {Li}is1 are

eSSl
two distinct paths of the tree T. Then there is k=3 such that FIN, <L ]+L,2.D

To prove that the second logics associated with two different paths of the tree

T cannot be jointly extended to a constructive logic, we prepare:

Proposition 30: Let k=3, and let L be alogic such that FIN L. Then L is

not a constructive logic. _
Proof: The logic FINk contains all instances of the axiom-schema (FlNk). A

fortiori, L contains all instances of the axiom-schema (FINk). Hence, L contains

in particular the wff
H=" plv('l T 1—::»“1 pz)sg(j pl,-"-.-i pz—:r'l p3)x.f Lad(l Py A0 Py 1"3’_‘ pk)"’"
l'u"(_‘ pi)"'-....;r‘r._l pk_l"'*—]_‘ pk)- '
where p....p, are distinct propositional variables. Now, H is a disjunction of
k+1 (negatively saturated) wif's, none of which is a classical tautology. If L were

a constructive logic, then one of these disjuncts would belong to L, hence LEcL,
a contradiction.[’]

From Corollary 2 and Propbsition 30 we immediately get:

T T
1 2
Corollary 3: Let {Li}i=1 and {Li}iz1 be two distinct paths of the tree T, and

let L , and L . be the second logics associated with these paths. Then there is no

constructive logic L such that L. l+L 5 L.

Again, let us remark that the proof of the previous proposition depends on the

=T =T
fact that L +L 2:;13(5}'?’ ﬂ?f“ ). Without this result, we can only prove that
I 2

ﬁ(ﬁfi"' l"]iFfT ) does not admit any constructive extension in the set of the
| 2



:T :T . .
constructive logics (but if L ]+L 7=t=.'.43(i:_FE‘ f“’!EFi‘ ) would hold, then a
- » 2
. . :T :T . .
constructive extension of L +L , might exist).

T =T - . . .
Proposition 31: Let L and L  be the first logic associated with the path

. . . . AT .
{Li}iz1 of the tree T and the second logic associated with {Li}ti=1 respectively.

—r

Then L zL .

Proof: Let Ee?{r. Then there is an integer izl suchthat PeZF | . Let (njkj)
- i

be the parameters associated with L. It easily follows that, for every j=zi, Pg

i we deduce that Peif CONE(Ly.), and so,
i-1

3CONE(LJ~)]]" Further, from EEZF'L

inductively, we deduce that, for every h with I<hs=i-1, Pei¥ CONE(Ly),
: h

. ¥ is, PeF=1. From F=oF— i s the
Hence P= I"Iizl.} CONE(Ly), * that is, P= 'FI . From ¥ = ILI it follows that

1 =T
L'=L O

T T
. 1 2 .
Proposition 32: Let {L;}i=1 and {Li}iz1 be two distinct paths of the tree T,
;T o T . . . . .
and let L ; and L', be the first logics associated with these paths. Then there is
. . ’ =T T
no constructive logic L suchthat L +L ", < L.

Proof: Directly from Corollary 3 and Proposition 31.[]

Thus, there are 2°%0  distinct paths of the tree T, and, by Theorem 4, we are

able to associate a constructive logic L. with every path of the tree T, in such a
way that constructively incompatible constructive logics are associated with different
paths.

Using Zorn's lemma, we have (see, e.g., [9]):

Proposition 33: For every constructive logic L there is a maximal constructive
fogic L* such that LgL*.[] ‘
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According to Proposition 33, with every path of the tree T we can associate a
maximal constructive logic ET;IT the latter being the first logic associated with
the path. By Proposition 32, we deduce that, with any two paths of the tree T, two
distinct maximal constructive logics are associated. Now, the set of maximal
constructive logics does not contain more logics than the set of the constructive logics.
and the latter. in turn, does not contain more logics than the set of logics; further, the
cardinality of the set of logics is not greater than the cardinality of the power set
T(WFF) of the set WFF of wff's. We then have:

2%0

Theorem 7: There exist exactly maximal constructive logics.[]

It is not difficult to prove that the second logics L associated with the paths

of T are constructive logics. Indeed, any two finite and disjoint elements of IF ;’f‘

can be combined into an element of 3"]:' , in such a way that the constructiveness of

=T ’ =T
L can be guaranteed. Thus, the logics L. can be directly used to prove Theorem

7, while the logics L~ are unnecessary to this purpose. However,we believe that
. . T .
neglecting the logics L.~ would have obscured the basic ideas of our proof. On the

other hand, the logics L will allow us to obtain a simple proof of the main result of
the next section.

9: On the cardinality of the set of maximal intermediate constructive
predicate logics.

From the above proof that the set of maximal intermediate constructive
propositional logics has the power of continuum, we can easily obtain a proof that the
set of maximal intermediate constructive predicate logics has the power of continuum,
t00. To this purpose, we introduce the appropriate notions.

The predicate language WFF,eq  will be the set of all formulas built up
starting from the propositional connectives ... and —, the quantifiers V and 3,
a denumerable set of individual variables  X,X|,....X,....  (also represehted by
symbols such as  x,y,z,v,w,...) and, for every n=0. a denumerable set of n-ary
predicate variables  P",Pn, .. P2 ... (also represented by symbols such as
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Pn,Qn R, where, for n=0, one recovers the propositional variables). Neither

constants, nor function symbols will be admitted. By INT and CLpeq we

pred
denote the set of intuitionistically valid and the set of classically valid formulas of
WEF,eq respectively. Anintermediate predicate logic will be any set L such that
INT g2 L2 CLljreq. and L is closed under detachment, substitution and
generalization (see, e.g., [16] for background). Throughout this paper, by a
"predicate logic" we shall mean an intermediate predicate logic. A predicate logic L
will be said to be constructive (and will be referred to as a constructive predicate logic)
iff L satisfies the disjunction property (defined as in the propositional case) and the
explicit definability property: for every AEWFF g, if AxA(X)EL then
A(EL for some term t.

Since the only terms available are individual variables, if JxA(x) is closed
(i.e., it does not contain free individual variables) then the assertion "if IxA(x)EL,
then A()€L for some term t" amounts to saying " if JIxA(x)EL, then
VXA(X)EL". But this is no longer true if JIxA(x) contains free (individual)
variables, i.e., if IxA(x) has the form IXA(X,y|.....¥;y). Where m=z=1 and
Yi.¥m are all the free variables of IxA(x). In the latter case, however, one can
easily prove that the assertion "if IxA(X,Y[,....yn)EL, then A(ty,,...y)EL
for some term t" is equivalent to the assertion "if IXA(X,yq.....y)EL, then
ACYY eenym)EL  forsome i such that Isi=m". Now, IxA(x)EL is true iff
Ax(AX)AB(y)EL is true forevery B(y)EL such that y=x and y isfreein B.
Therefore we can restrict attention to open existential formulas. On the other hand, if
L satisfies the disjunction property, then A(y.yj....yn)€L for Isism iff
AGY 1Y [reeorY ) ALY Y Y m)EL. Accordingly, we say that a predicate logic
L satisfies the weak explicit definability property iff, for every open formula of the
form IXA(X,y[,....¥n) such that IxA(X,y;....y,)EL, we have that
AY Y oY)W ALY mY oY m)EL.

Proposition 34: Let L be a predicate logic satisfying both the disjunction
property and the weak explicit definability property. Then L is a constructive

predicate logic.[]

A constructive predicate logic L will be called maximal iff there is no
constructive predicate logic L' suchthat LgL' and LsL'.

As a natural extension to the predicative case of the notion of
semiconstructiveness given for the propositional level in §2, we say that a predicate
logic L is semiconstructive in the predicate logic L' iff the following two
conditions hold:
if AwBEL, then A€L' or Be&L
2)if IXAX)EL, then there is aterm t such that A(DEL".

Unfortunately, this definition of semiconstructiveness is not useful for our
purposes. What we need is the following weaker notion of semiconstructiveness:
namely, we say that a predicate logic L is weakly semiconstructive in the predicate
logic L' iff the above Condition ) is satisfied, together with the following
condition:

2') for every open formula  AXA(X,y ...y ), if IXAX,y |,y y)EL  then
A LY reYm)W o AY Y oY EL

Since Condition 1) is not the same as the disjunction property, from the fact
that L is weakly semiconstructive.in L' and that, say, AwBwCEL, we cannot
deduce that A€L' or BEL' or Ce&L'. For, it might happen that A€L',
whence BwCEL'"; but, since L' is not necessarily weakly semiconstructive in L'
itself, it is quite possible that B&L' and C&L'. Thus, we are not able to prove
that, . if L is  weakly semiconstructive in L' and
AY 1LY oY) ALY Y oY )EL,  then there is some term ©  such that
ALYy )EL In other words, we cannot prove that L is semiconstructive in
L' evenif L and L' satisfy Condition I), and L satisfies the weak explicit
definability property —which, together with Condition 1) implies Condition 2.

On the other hand, we are interested in sequences of weakly semiconstructive

predicate logics, giving rise to constructive predicate logics.

Proposition 35: Let L and L' be two predicate logics such that L is weakly
semiconstructive in L'. Then L'zL.[]

Proposition 36: Let  {L;}_, bé a sequence of predicate logics such that, for
every izl,  Ljy; is weakly semiconstructive in  L;. Then i:mizlLi is a
constructive predicate logic.

Proof: As in the proof of Proposition 2, one shows that [, satisfies the disjunction
property. Now, let EXA(x,y[,...,ym)Ei. Then, for every iz,
XA [5enYm)EL;, a fortiori IXA(K.Y [y m)EL; for every i=2. Hence, by



Condition 2", one has that, for every izl, A(y{.¥|.....¥p)n ..
A Y 1Y) ELG Thus, Aly Ly ey AY Y e Y)ELs i€ L
also satisfies the weak explicit definability. The assertion then follows from

Proposition 34. [

Our notations concerning predicate logics will be quite similar to the ones used
above for propositional logics. For instance, given two predicate logics L and L/,
L+L"  will be the smallest predicate logic including both L and L'. In other
words, L+L'  denotes the deductive closure, with respect to detachment and
generalization, of LjlUL;. Likewise, foran HoWFF, g, INT,q+H:  will be
pred= He.
This gives rise to a predicate logic if *H is closed under substitution. Finally, if S is
a set of predicate axiom-schemes, INT,q+S will be the smallest predicate logic

pre
the deductive clasure, with respect to detachment and generalization, of INT

containing all the schemes of S. Such a predicate logic is the deductive closure, with
respect to detachment and generalization, of INTpredUS:’:, where S¥ is the set of

all instances of schemes of S.

Coming to semantical aspects, a (predicate) frame F=4%P,=,D* will be a
triple, where «<P,=* is a poset with last element (the root) and where D, is a
function associating, with every element o€P, a nonempty set D(a), in such a
way that the following condition holds: if a=p in <P.,<*, then D(a)=Dif). A
frame F=<P,=,Dx is completed into a predicate Kripke model
Kp,.edzﬁiP,s,D,ll——}, by defining on the elements of P the usual forcing relation
I— [16.19]. We say that the model K .q=%P.<.D.ll

= is built on the frame
% P,=,D*. Given AEWFF .q and a predicate Kripke model Keq. we say that
A holds in Kpreq iff the root of  Kpyeq forcesin Kpeq the universal closure of
A.

It is useful to introduce the notﬁion of an assignment (of the individual variables
of the language WFF ,oq) on a predicate Kripke model - Kpyreq==P.=.D, =1 such an
assignment I  will be any function defined on the set of the individual variables
such that, for every variable x, 1 (x)ED(r), r being the root of the model. Given
a formula A(yy....ym). a Kripke model I_(_med=<P,s,D,Il—Zi=-, o&P and an

assignment & on K,eq=%P.<.D.I—>. the notation all—¢gAlyy....yy,) means

that o forces in Ky.oq the formula A when yj..y, are interpreted as

EL(y s Z(yy)  (respectively) in all states of  Kp,eq (in particular, in all states of
the principal subordering generated by o in “P.=.¥). Of course, if
al—VYy VYA enym) 0 Kpreg=4P.=.D 5 then all—g Aly,.....y,)
for every assignment 2 on Kj.q. Although the converse of this proposition does

not hold, still we have:

Proposition 37: A holdsin K .q=%P.<.D.Il—> iff, forevery &P and
every assignment b on Kp.gla, wehave all—gA in Kyegla, where
Kpredlor s the restriction of  Kpyreq to the states of the principal subordering P, of
<Pkl

For any Kripke model K .q=%P.<.D.Il—* withroot r, and any nonempty

set 4% such that 4MD(a)=C forevery o€P, we define foreach d&D(r) the

-Kripke model  K',eq and the function f as follows:

D K'preg=“P.=.D'II—";

2) P and = areasin _Igpred:

3) forevery o&P, D'(o)=D(a)ltd3;

4) for every o€P andevery d'€D'(a), f(d)=d' if d'&d, and f(d)=d if
d'eds;

5) for every n-ary predicate variable P", every «€P and every n-tuple
£d'y,...,d'y»  of elements of D'(a), al—"Pd",..d'y) (in K'j.q) iff
all—P(f(d'}),..f(d') (in Kprea)-

The above construction allows to "multiplicate” an element d of the domain of
the root of a Kripke model: the element d splits into the elements of the elements of
the set {d)LI4%). By iterating this construction, i.e., by splitting the elements
dy,...d

.d, into the elements of the sets {d)LId& ... .{d)lId3, respectively, one

can easily prove the following:

Proposition 38: For every Kripke model K, .q=%P.<.D.ll ¥, assignment [

on Kpreq and finite set v of individual variables, there is a Kripke model

’_L(_#p,‘edﬁiP,s,D*,II—E:} and an assignment 21" on K ..q such that

1) P and = areasin Kpyeq:

2) forevery A €EWFF

q such that only the individual variables of v occur free
in A, and forevery a€P, al—pA (in Kpreq) iff al—g+A (in AK—*pred);

L
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3)forevery yev and y'€v suchthat ymy' ‘Iflm(y);a[’ilﬁ(y‘).[]

If F=1P.=D> isaframeand AEWFF g, A will be said o hold in F
iff for every Kripke model Ky oq=%P.=.D.l—=> builton E. A holds in Kprea:
If & isanonempty class of frames and AEWF Fored» we say that A~ holds in
@ iffforevery FEDP, A holdsin E. We also let Lipreg(®) denote the set of

formulas AGWFF .4 suchthat A holdsin ®. Asis well known. for every
nonempty class @ of frames, I& pred(®) is closed under generalization,
substitution and detachment, and includes INT},;eq,  but need not be a predicate
logic. In other words, &5 ,.4(P) need not be included in CLpreq- More precisely,

we have [16]:

Proposition 39: For every nonempty class @  of frames, 1% pred(P) isa
predicate logic iff there is F=4P,s,D*E®d together with a&P such that D(a)
is infinite..]

It F=<P=D> isaframe, wesay that F is built on the poser +“P,<. If
& is a non empty class of posets, D(F) will denote the class of all frames
F=<P.<.D> such that the underlying poset P=%P.<* of E belongsto F. For
any nonempty class & of posets, by & pred(F)  we will denote T ((D(TF)).
Since the choice of the functions D in the frames of ©(F) s arbit’rm‘y, from

Proposition 39 we get:

Proposition 40: For every nonempty class & of posets, I pred(F) isa

predicate logic.]

Let us consider the binary tree T defined in §4, where every node of T isa
propositional logic L characterized by a class |  of posets such that
L=J5(:F ). We define the infinitary binary tree T as the tree obtained by replacing
every node L3(F ) of T bythenode I, q(F ). If L") and L, aretwo
nodes of T% we set L"=RI(L"|) iff L,=RI(L;), where L, and L, are the
nodes of T corresponding to L™ and L". respectively. In a similar way we

define LE(L"), forany node L* of T*. Also, by apath {L*% I of the tree T*

we mean an infinite sequence  L*|.L%....,.L*.... of nodes of T such that the

"
corresponding sequence Lj,Ly,....L.... of nodesof T isapath {Li}is) of the
tree T defined in §4.

Proposition 41: Let {L*}1, be a path of the tree T*. Then, for every predicate
logic L% ofthe path, L%, is weakly semiconstructive in LY.
Proof: It suffices to show that, for every node L* ofthetree T". LE(L") and

RI(L") are weakly semiconstructive in L*. We analyze only the case corresponding
to the logics L* and RI(L"), since the other case is similar. Let L*'=RI(L") and
' and IF be the classes of posets corresponding to L™ andto L" respectively,
ien, L¥=2 0 q(F), and L"*::Q‘Epred(iif). We have to show: '
a) AwBEL*® implies AEL" or BEL"

b) AXAKY b Y )ELT implies  AY 1LY seesY )t -5 ALY Y 1oy mEL™
Every formula of the form Hw K is intuitionistically equivalent to
(HaO(zy,.zi0) e (K O(2,..025)), where ©(zy,....zy)  is a formula of  INT g
containing free the individual variables z;.....z; and where we can take the
variables zj....,z; in such a way that all the free variables of HwK are among
Z}.....zx. Therefore we can assume, without loss of generality, that both A and B
are open formulas and contain the same free variables y|,...,yy,, in symbols,
A=A(y ... s¥m) and B=B(y|.....ym ) To prove a), let
ACY oY) BOY ooy ) ELF,L while Ay .oy )L and  B(yj...y)EL".
Then, by Proposition 37, there are two Kripke models K/ .q=4P.<).D.ll—
and  K2p,0q=%P2.25.D),l-— and two assignments @1 and i, respectively
on Klpred and on l_(_zpmm such that Py==P;,=|*€F ., Po=iP,.=,rEF,

ryl=-, mlA(y],...,ym), and

o o @ B oY) where 1) and 1, are the roots of Kl,..q and of

_[g_2pred respectively. We may safely assume that PP, is empty and. by
Proposition 38, that Qi (y)=2(y;) foreach I<ks2, and foranytwo i and j
such that 1] and lI=i,jsm. Again we can safely assume that
D(rMD(ry)={d,...dp,} and, forevery h with Ishsm, dy=(yp==C(yp).
As shown in the proof of Proposition 12, there is a poset P'=<P'<'> such that
PEF', 1P, nepP, B‘rlzf_l and R'rz:Ez. Let F'=<P.<'.D': be

the frame built on P' such that D'(a)=D(a) for a&P;, D'(B)=Dy(p) for
pEP,, and D'(y)={d,....d,} for y&P,; and f,f@éPz. Let



K'preq==P'= D" II—"+  be any Kripke model built on F' such that [lIl—'
coincides with I in the submodel K.]predﬂ:-p]sslﬂDlollf—135~ fl—
coincides with =, in the submodel ﬁzpredz'iPz,sz,Dz,H——z} and I—' s
defined in an arbitrary way compatible with the previous requirements on all states
YEP' such that y&P; and y€P,. Let @' be any assignment on K'preq such
that 2'(yp)=d, forevery h with I<hsm, and A'(x)E{d),....dy,} for every
variable- x different from  yy....,y,,. Then,if ' is the root of K'preg» one has
that r'l=~'¢ A(yq.....y,,) and I BOY Y )s which, by Proposition 37,
contradicts the fact that r'll—'¢ A(y ..oy ) B(Y ey py)» because P'ETF ',

To prove b), let IxXA(X,y1,....yy )E L and
ALY 1Y oY)W o AY Y oY )ELY. Then, by Proposition 37, there is a
Kripke model  K,ioq=%P.<,D,l—>, and an assignment & on Kpreq such that

Pl ACY LY oY)W 0 ACY sY [oeeo¥m)» Where 1 is the root of Kpreq- In
other  words,  rlg ACY 1Y vesY i oo g ACY Y pseenym)- Let
{dpndy 3 ={28y )....C(y,)}, where Isn=m. Asin the proof of the above point
a), we can safely assume that Ci(y )=...=(y,,), i.e., n=m, although this is not
necessary here. Let  P'=<P'<'>, where P'=PLI{r'} for some r'&P. Let
o' if o and B aresuchthat as=p in <P,=*. Let f’ =y for every
vEP. Let E’:{P',s’,D'} be the frame built on P' such that D'(e)=D(e) for
e=r', and Di(e)={dy,....d,} fore=r". Let K',.q=<P'.<'.D'lI—"+ be any
Kripke model built on F' such that I|—' coincides with I— for e=r", and
I—""is defined in any way compatible with the previous requirements for e=r'.
Also, let &' be any assignment coinciding‘with 2 oon {yj,..yp,} andsuch
that 2'(x)&{dy,....d,} for each individual variable x such that XELY [seees¥m) -
Then one readily sees that P'eiF ', whence, by Proposition 37,
r'll

‘o dXA(X,Y ),y y)  immediately follows. On the other hand we have
TS ACY Y Y ) PR A (Y Y 1Y), since Ps't and
rll—s’—'@|A(y,.y1,...,ym),m,f"“f_'m'A(Ym’)’lf-'-»Ym)- One can now see that

'l e 3XAXLY 1oy ), since  d,....d, are the only elements of D'(r'), a
contradiction.]

56

£

Let {L*}L, be any path of theﬁ tree T andlet L 4= L7 In

analogy with Definition 6, we call L pred the predicate logic associated with

% . . . -
{L*¥T). Asan immediate consequence of Propositions 36 and 41, we have:

; T
Corollary 4: Let {L*}L, be any path of the treef T*, and let L pred l?e the

predicate logic associated with {L*i}gl. Then L pred 18 a constructive predicate

logic.[]

Recall that any predicate logic L contains a propositional logic L. In
Yy P & pred prop 5
other words, L is the set of formulas of Lprea only containing 0O-ary predicate

symbols (propositional variables). We call L the propositional logic contained in
Lpred- The following propositions are immediate:

Proposition 42:1f L. is a constructive predicate logic, and L is the
p pred p g
propositional logic contained in Lpreg. then L is a constructive logic.]

£ 3 T
Proposition 43: Let {L‘*‘i}le be any path of the tree T*, let {Li}is1 be the
=T =T .
corresponding path of the tree T, and let L pred and L~ respectively be the
predicate logic associated with {L*i}iT: 1> and the (first) logic associated with

T T iy , Lo 7T
{Li}iz1. Then L' is the propositional logic contained in L pred-

From Propositions 32, 42 and 43 we get:

Corollary 5: Let {L*'}i., and {L*}[, be two distinct paths of the tree T,

andlet L' jpeq and L 5p0q be the predicate logics associated with these paths.
Then there is no constructive predicate logic Lpred such that

— —
L lpl'ed+L 2p1'edngred'

Proof: Let us assume that there is a constructive predicate logic Lprea  such that

L' ipreatl 2prea=lprea- Let L I L, and L respectively be the

P

propositional logic contained in L 1pred> the propositional logic contained in
sk

L 2pred  and the propositional logic contained in Lpred- Then, by Proposition 42,
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L is a constructive (propositional) logic and, by Proposition 43, there are two

. 2,7 : —T =T
distinct paths  {L; }i=1 and {Li}i=1 ofthetree T such that L, and L, are

£ *

the (first) logics associated with them. Since L jpeqtl 2pred@Lpred. One has

ol - . -
LJFIC_.L and szg L, whence L [+L ,<L, where L is a (propositional)
7T T . o
constructive logic,and L | and L , are associated with distinct paths of the tree

T. This contradicts Proposition 32.L]

Disregarding the purely propositional formulas contained in predicate logics, the
constructive incompatibility of the predicate logics associated with two different paths
of the tree T* can be proved, for instance, as follows. Choose an individual variable
x and associate, with every propositional variable p;, the atomic formula P1(x),
where Pl is a unary predicate variable, different propositional variables being
associated with different atomic formulas. Under this correspondence one can
agsociate, with every propositional logic L, a set L of predicate formulas obtained
by replacing, in every A€L, any occurrence of a propositional varigple by an

5 %

. . =T =T
occurrrence of the corresponding atomic formula. Let L= |,.eq and L' oprea be

the two predicate logics associated with two different paths of T". Let L | and

£3

T . . . . 7T . .
L 5 be the propositional logic contained in L 1pred and the propositional logic

—T* =T =T . ,
contained in L' 2pred- LetL=L"j+L 5, andlet L be the set of predicate formulas

associated with the propositional logic L by applying the above substitution. Then

~ =T T . ~
LcL 1pred+L 2pred: and there is a formula  AwBEL such that, for every

sk

T P
predicate logic Lpreq containing L' jpreatl opreds  A&Lpreq and BELpreqg.

As in the propositional case, using Zorn's lemma we can prove that, for every
constructive predicate logic  Lpeq, there is a maximal constructive predicate logic

L'preq such that LyreqZL'preg- Hence, from Corollary 5, we get:

Theorem 8: There exist exactly 2% 0 maximal constructive predicate logics.[”]

The nodes of the tree T*  are predicate logics, and are semantically
characterized by classes of frames. In contrast to the treatment given in the

propositional case, for these predicate logics we have not proved completeness

theorems yielding their recursive enumerability (nor it seems to be possible to state
such completeness theorems). We can, however, improve our constructive
incompatibility results in the following sense: we can replace the nodes of the tree T

with recursively enumerable predicate logics contained in them, thus obtaining an

infinitary binary tree  T™*. For every path {L**}"  of the tree T**, the

intersection L of the logics of the path, i.e., the predicate logic associated with
the path, is a constructive predicate logic. Further,for any two different paths of the
tree T™, the corresponding predicate logics are constructively incompatible.

More precisely, we say that a formula AEWFF,.oq is anegatively saturated
predicate formula iff every occurrence in- A of a predicate variable or of a quantifier
is in the scope of a negation. Let L be any logic of the propositional tree T and
let (Ap) be the characteristic axiom-schema of L. By NSpmd({(AL)}) we denote
the set of negatively saturated predicate formulas obtained by replacing in every
instance of  (Ap)  every occurrence of any propositional variable by an
occuccurrence of a negatively saturated predicate formula. It turns out that
NS, red({(AD)}) s closed under substitution. Also, for every predicate logic L* of
the predicate tree T*, by NS(L") we denote the set of negatively saturated predicate
formulas belonging to L. It turns out that NS(L*) is closed under substitution.
Finally, letting (K) be Kuroda' s axiom-schema VxTTA(X)—="" VXA(x) (see,
e.g., [5]), the tree T*" will be obtained from the tree T* upon replacing every
predicate logic L" of T by the recursively enumerable predicate logic
L:*“”:INTpmd-%{(K)}+NSpmd({(AL)}), where L is the (propositional) logic of T
corresponding to  L". In this way, three one-to-one correspondences are defined, the
first between the elements L of T and the elements L* of T*, the second
between the elements L of T and the elements L** of T**, and the third
between the elements L* of T and the elements L™ of T

From the above results and using the techniques of the above quoted P.
Miglioli, Nota su logiche proposizionali costruttive massimali (see $0), combining
syntactical and semantical tools, we can prove the following:

-Af L is any predicate logic of T* and L** is the corresponding predicate logic
of T*", then L**:INTpmd+{(K)}+NS( L#yzL”

-Let {L**i}gl be any path of the tree T*"; let L be the corresponding

predicate logic (i.e., L is the intersection of the elements of the path). Let

NS({L##})) be the set of negatively saturated predicate formulas belonging to all
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T . . . .
the elements of the path. Then L is a constructive predicate logic, and

ek

L =INTpreqt{(K)J+NS(L#3LY).

iz
P %

;T . . . . .
-If L0 and L 5 are the predicate logics associated with two different paths

ok ok

o T . . .
of T*, then L | and L, are constructively incompatible.
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