Direttore Responsabile: Ruggero Ferro
Iscrizione al Registro Stampa del Tribunale di Padova n. 1235 del 26.9.1990

Pubblicato con il contributo di:

f%4 Cassa di Risparmio di Padova e Rovigo
',

Stampa Veronese (Padova)
Laser Fotocomposizioni (Padova)

FLEXIBLE AND STRICT TYPING THEOQORIES*
Enrico Mcricdm1 - Fraﬁcesca Vitale?

! Dipartimento di Filosofia — Universita di Pisa
2 Dipartimento di Informatica — Universita di Pisa

Abstract. The aim of this paper is to define a translation from (a weakened variant of)
the Theory of Operations and Classes I0Cy introduced by Feferman in [3], into the
Intuitionistic Type Theory of [7], enriched with the (formation and introduction rules
concerning the) first two Universes UQ and U1.

- § 1. Introduction.

In [2] Beeson laid special stress on interpreting Feferman's Theory of Operations and
Classes into Martin-Lof's Intuitionistic Type Theory (ITT, for short). Actually, Beeson
didn't consider the full Feferman's Theory, but the subtheory — called FT — which is
obtained by preventing quantification on type variables. In that paper Beeson doesn't offer
technical details, but limits himself to the observation that a natural approach to the subject
could consist in translating FT into the theory termed MLy, i.e., ITT with the first Universe,
Uo. In such a way Ug would supply the range both for individual and for type variables, and
the combinators of FT would be interpreted «as suitable terms built up by the operation of
"abstraction"» permitted in ITT.

Here we will refer to a subtheory of Feferman's theory which is different (stronger) from
that considered by Beeson, even if we will follow Beeson in using the name FT because it
works suitably both for Feferman's Theory and for Flexible Typing Theory. And it is
different also the basic idea that features the definition of the function which translates
individual terms, classes and formulas of FT into entities of ITT, in such a way that an
inhabited type of ITT corresponds to a provable formula of FT.

As it is well known, both Feferman and Martin-Lof started to develop their systems in the
middle of the Seventies, and one of their (shared) aim was to provide a formalization of
Bishop's flavour of constructive mathematics. When people gradually became aware of the

_relevance of those systems for the theoretical computer science, they immediately realized

* Ricevuto il 2 marzo 1992; accettato in forma finale il 13 luglio 1992.

their being two different answers to the basic question of typing. In a typed theory every
object must belong to a well-determined type, and the theory is dubbed strictly typed (or
“monomorphic™) if such a type is unique. Also Feferman's theories allow the formation of
types through the mechanism of abstracting with respect to a bunch of class variables. But in
these theories (also termed "polymorphic”) it does not hold that every object must be
classified in a type, and we can provide uniform constructions across types; i.e., objects
belonging to more than one type. This is what people mean when speaking of flexible types.

This common source gives reason of the great deal of work spent on inquiring about the
relationship between the two kinds of theories. The most practised field of research has been
till now that one having FT-like theories as target theory. We remind, for example, the
embedding of ITT into the operator-part APP of Feferman's theories, and into the weak

theory of inductive definitions ID;. As regards the opposite direction, the most significat

result — to our knownledge — concerns the interpretation of HA® + AC + EXT into ITT
(consult [17 and {8] for references). This situation explains, we think, the relevance of the
point emphasized by Beeson in [2], and sets the scene for the translation result we are going
to prove.

In order to save space and to keep this paper within reasonable limits of size, we assume
that the reader is familiar with both FT and ITT. On the other hand we feel entitled 1o
proceed this way because a clear and sufficient background for this paper can easily be
found in the relevant chapters of [1] and [8]. So we limit ourselves to the following rough
remarks. (Anyway, we supply in an Appendix a brief description of the two systems).

In [3] Feferman introduces two theories, termed EQC, and I0C, (with I0C, < 10C,).
They are respectively the elementary (or predicative) and impredicative versions of the
"theory of operations and classes” he previously worked out. By FT we mean the theory
resulting from 10C, of Feferman {3] when type variables are allowed to range only over
constant types. In other words, we rule gut abstractions over types which depend on
type variables (i.e., over polymorphic types).

The Martin-Lof's theory we shall refer to is the theory which results by adding to ITT
the first two universes Ug and Uy, plus the relative formation- and introduction-rules. This
theory is usually called ML, but we will use the simpler name ML. In the formulation of the
rules relative to the universes we shall adopt the Tarski-formulation of Martin-L6f [7] (see
the Appendix for the relevant definitions).

Before embarking on the definition of the translation of FT into ML, we have to face two
problems of a general nature, problems which require some adjustements. First, classes are
formed in FT by separation from the set V of all things. ML, on the contrary, is a strictly
typed theory: this brings it about that every entity belongs to a single, unique type. This also
prevents the possibility that any entity belong both to its proper type and to another
(universal) type. To deal with this problem we have to find a way to "simulaie” in ML a sort
of universal type. We use intentionally the verb "simulate” because what we are going 10
define is simply the domain of the objects on which, at every level, we will work, and hot
the translation of V in ML, This fact helps to put under the correct perspective the question
of the preservation of meaning under the translation (whose main feature is the preservation

5

of provability). The Ontological Axiom of Feferman [3], which expresses that the classes are
regarded as some among all the objects in the universe, makes only sense with the proviso
that the translation of an FT-class must belong to a higher level domain than that which its
elements belong to. In order to do that we shall introduce the types (Xy € Ug) To(y) and
(Zy e Uy) Ty(y), called respectively Dg and Dy, which we can get by the rules of ML in the
following way (i=0,1):

[ye Ul

Ui tp Ti(y)tp
Cye UDTi(y)tp

In this figure 'tp’ is a shorthand for 'type', and T; is the decoding-function which, given a
name (of a certain type) belonging to the universe Uj, outputs the corresponding type.
Therefore, D is the set of pairs <y,x> in which y is the name of a type in U;, and x is an
oobject of type T; (y). It is worth noting that Dg is isomorphic to a subset of Dy, i.e. if <y, x>

€ Dg then <t(y),x> € Dy ('t being the function which carries names along universes: this
allows the inference from 'a € Up 'to 't(a) e Uy"). Further, let us introduce the following
new (and easily seen 10 be sound, because perfectly in accordance with the meaning of

- judgements of the form "(Xy € U) T;(y) tp") inference rules:-

<a,b> e Dy and be A
be T;(a) <name(A)/t(name(A)),b> e D;

Moreover, we observe that Uy contains a name for Dg: in fact we have:
lye T; (up)]

up e U 't(y) e Uy

Glug,(y)t(y)) e Uy

Ty (slug,(y)t(y)) tp
(Sy e T (o) Ty (ly)) tp

Sy e U To () 1p

and the last type obtained — whose name is 6(ug (y)t(y)) — is the very type Dy.

Thanks to the 2-rules (that is to say, to the notion of "such that"), Dy will make it
possible to translate into ML the elementary (i.e., not depending en type variables) classes of
FT. In the course of the translation, however, it comes out a previously not perceived
distinction falling within the domain of elementary classes themselves. For we will have to

distinguish FT-classes in the two categories of homogeneous and non-homogeneous
classes. An FT-class belongs to the former category if it is such that all the objects falling
within its translation belong to one and a same ML-type. Classes belonging to the latter
category are instead cldsses for which this is not the case; i.e., their elements, if "seen” from
the point of view of ML, have different types. It is to take due account of this fact that we

added the two universes Up and Uj.
A second general problem arises from the availability of partial functions in I0C, and

from the consequent adoption of the Logic of Partial Terms. In ML, on the contrary, every
operation is totally defined and it may be applied to an object only under the hypothesis that
the object is of the suitable type. As a result of this discrepancy, the translation function will
have to provide also a check for the coherence of types. Actually we shall exploit what we
can call intermediate operations (denoted by outlined characters). They work directly on the
pairs <name of a type, object of the type named>, and their task is to check the coherence of
the type-assignments. If such coherence doesn't subsist, the intermediate operations will
yield the pair <1,c>, where L is, for example, I(M,0,1): grantéd we will never encountera ¢
& 1, an operation which produces the pair <.,c> corresponds to an "abort"-command. We
observe that intermediate operations will allow us to define the translation of an FT-term in
direct dependence on the translations of the terms which that FT-term is going to be applied
10; i.e., directly on pairs belonging to Dj. In fact, as we will see, they are just shorthands for
easily to be found ML-derivations.

We conclude this introduction recording some notational conventions we shall adopt in
this paper: elements of D; will be denoted by small greck letters; if y e Uj, the type named
by vy, T; (y), will be denoted by Y; if "Y tp" holds, Y will denote its name in U; (i=0,1).

§ 2. Constant types.

We are now ready to introduce the inductive clauses of the translation (-)* from FT into ML
which constitutes the main body of the theorem we are going to prove. In order to simplify
such definition, let's first consider as our source theory, FT, the subtheory of IOC, which
results through the omission of type variables. As a result of this restriction, for the time
being we limit our considerations to range over the set Dg. Following the syntactical

- . specifications of [3], § 2.2, we define (-)*-translations for individual terms, type terms, and

formulas (when possible, we will be parsimonious in the use of brackets, prowded that no
ambiguity arises.).
Beginning from the

i) Individual terms
we remind that we intend to translate them as pairs belonging to Dy:

a) 0*= <n,0> (e Dy), where To(n) = M (0 is the unique individual constant of FT).

b) a*= @ e Dy, a being an individual variable of FT

¢) If s¥=<k,j> and t¥*=<r,m>, then the pairing function P is translated as follows:
(P(s,0)*= P(s*,t%)
= P(<k,j>,<r,m>) = <b,<j,m>>
with b = ok, (x)r(x)).

Remark. P is what we called an infermediate operation: given the pairs s* and t* as above,
it stands for the following derivation in ML (which is as one expects once he is mld that b
must have the shape previously displayed):

<k,j> e Do <r,m> € Dy <k,j> e Dg <> € Dy
je Tk me Ty(r) keUO re Up
<jm>e (Zx € To(k)Tp (1) (2x € To (k)T (1) =Ty (o(k,(x)r(x))

<j,m> e Ty (o(k,(x)r(x)))

<o(k,(x)r(x)),<j,m>> e Dy
Projection functions are easily described following the last definition:
d) (P (D)*= P1(t%)
R et
e) (Pa(0)*= Pp(t*) |
= 1?2(<k,j>)={ <r(p(j),q()>, if k= o(b,(x)r(x))

<l,c>, otherwise

In th%s definition p and q are the projection functions of ML. We note that while the pairing
operation is always defined, projections are partial operations. Here we can clearly see what
the job of the intermediate operations consists in. Granted the "partial” nature of projections,
we cannot give the *-translation of the term Pi(t) outright. It needs a beforehand check of the
qoherence of the types, and this is the task of the intermediate operation P;.

R(q(s™),t*,(x,0)e(x,0)) , if p(s*)=n
D *a
£ (Dés,tv)) { <l,c>, otherwise
In the translation of the Definition-by-cases-operator of FT we use the operation R
introduced by the NE-rule in ML, and denote by (x,m)e(x,®) the constant function which
gives v* as value. It is worth seeing the construction of the term in ML, with all its
assumptions displayed:

[xe N, we Dol

qis¥)e N t*e Dy [v¥=] e(x,a}} e Dg
R{g(s™),t*,(x,m)e(x,m)) € Do

2) (st)¥= Ap(s*,1%)

=Ap(<r,m>,<k,j>)s{ <b,Ap(m,j)>, if r=<n(a,(x)b(x))> and k=a

<l,c>», otherwise

We temporarily delay the treatment of (x:A) (and, obviously, of (s°T), and (AX.1)) as it
is first necessary to define the *-translation for type-terms, abstracts, and formulas.

i) type-terms v
Since we have omitted type variables, we only have the constant class N of natural numbers,
and the classes we can form from that one by separation. The translation rule for M is
simply:

a) (Npp)*= <up,n> (¢ Dj), which we dub Ny, or simply N if there is no danger of
confusion.

iii) Abstracts and formulas
Abstracts and formulas have 1o be treated simultaneously, for on the one hand an abstract
has the shape {zl¢(z)}, where ¢ is a formula; and the definition of the set of formulas, on the
other hand, is based on atoms such as (s=t) or (t € A), where Asa type-term, possibly
defined by abstraction. While giving the translation rules, we will check that to every
theorem of FT a non-void type of ML will correspond. i

a) (sd)*= (Zw e DYI(Dg,0,5%). ‘
If the term s is defined, then the type (Zw € Do)I(Do,®,s*) contains the pair <s*,d>, where
d is the canonical proof for s*=s*, while it is void if (sl) doesn't hold in FT. For in this
case s¥= <1 c>, which is different from every element of Dy.

b} (s=t)*= I(Dg,s%,1%).

The key-role played by the type Do appears from the last clause: in fact, it is a peculiar

feature of ITT that I-rules can be applied only to objects belonging to one and the same type.
With Do available, we can write an equality as a proposition, That is to say, given any two
objects we can ask about their equality by joining either object with (the name of) its type
and then by asking if the resulting pairs are equal in Dg. One immediately observes that the
translation I(Dg,s*,1*) contains a canonical proof of (s=0)* iff (s=t) holds in FT.

c) (s € A)*=da*(s*), where A={zlda(2z)].

Of course, the formula ¢ will ultimately consist of equations and statements of membership
relations concerning N, this being the only constant class. Consequently, for the clause ¢) 1o
be well-defined, we must give explicitly the translation rule concerning N, Accordingly, we
define (s € N)*, i.e. On*(5%), as I{Ug,n,p(s*)). Since a pair has the shape <n,x> iff it is the
translation of a numeral of FT, the formula (s € N) holds in FT iff ihe first component of s#
isn (we recall that T (n) = N), i.e. iff I{Ug,n,p(s*)) is an inhabited type. We must proceed
differently in the transiation of the formula (s € A) because, as we shall see later, the name
of the translation A* doesn't belong, in general, to Ug, but o Uj.

Obviously, in (s € A)* the type §4* is the translation in ML of the abstraction condition
which occurs in the definition of A in FT, and the procedure adopted resis on the
comprehension axiom of FT:

Vy(y e (zolz]} ¢ olyD).
Actermi t of FT belongs to the class A iff ¢a(1) is satisfied in FT, iff — by induction
hypothesis — ¢4*(t*) is an inhabited type of ML.

Having provided the *-translation for atomic formulas, the transiation of other formulas

doesn't present any particular difficulty:

d) (@ v @) = (0% + ¢¥);

e) (¢ & @)*= (9* x ¢*);

D0 — 0)*=(9* — ¢%);

g) (=9)*=(o* — L1);

h) (Vx ¢)*= (1w € Do) p*(w);

1) (Fx §)*= (Zw € Do) o*(w).
Finally, we can give the general scheme for handling the absiraction procedure of FT*

D if A= {zlpa(z)} , then (A)* is (2w € Do)pa*(),
which we will refer to simply by A*. Roughly speaking, we can say that the translation of a
class A of FT singles out the type of those pairs whose first projection belongs to Dyg, and
whose second projection is a canonical proof that the previous element satisfies the *—
translation of the formula separating A. It is worth noting that A*?, the name of the
iranslated class, doesn't belong to Up, but to Uy, (We could now define (N)* also as (T
€ Do)I(Ug,n,p(w)) or as (2o € D)I(Uy,t(n),p(w))).

Examples Some examples will be useful in clarifying the mechanism of the translation (cfr. §
3.1, of [3]):

a) (V)*= ({xlx=x})*= (X0 € Do)I(Do,®,0);

b) ({ar,a2))*= ({xIx=a; v x=a2})*= (Lo € Do) (I(Dg,w,(a1)* + (Do, m,(a2)*));
we proceed analogously if n> 2.

¢) (AY*=({xlx e A})*=(Zw e Do)(9a*(®) — L1);

d) (AUBY*=({xlx € A vx e B})*=(Zm e Dp)(da*(w) + dp*(®)); ‘ It is precisely the assumption(s) discharged that we have to pay attention to in order to stay

e) (AxBY*= (zBxIy(z=(x,y) & x € A & y e B)})* in Up (as we know, A** € Uy). In fact, the assumption{s) points to the function's
= (Zw e Do)((Za e Do)(ZP € Doy(da*(r) x dp*(B) X I(Do,w, P (c.,B)))); maximum possible definition domain, subsequently restricted to A* by the A-term we are
DA - B)*=({zVx(x e A —zx e B)})*= going to translate. To cope with this problem we introduce a further notion, that of the Type-

Set of A*, denoted by TS(A*), and which is the set to which belong the first projections of
the pairs satisfying ¢ * (and hence members of D). Shortly (in § 2.2) we will show how to
obtain a purely syntactical definition of TS(A™), resting for the completion of the argument

=(Zw e Do)((Tla € Do)(0a*(0) — dp*(Ap (,00)));
8) (Mxe aATED*= ({ylVx(x € A > ye TIx])*=

= - Ed * . '
(20 € Do)([Iox & Do)(0a™(09) = 9™ 1ga)(@)); ' on the previous informal explanation. We shall say that A is a homogeneous class if TS(A*)
) (xe A TIxD*= ({zIVx(x € A — zx € T[x]))*= ' : is a singleton; non-homogeneous otherwise.
= (2w € Do)((TTo € Do Y(ha*(o) = d¥7(o(Ap (0,0)))); When applying the []-introduction rule we must check the Type-Set of A* If Aisan

homogeneous class (reflecting the previously displayed case b)), then TS(A*) is a singleton
and we can give the translation a well-defined type. Otherwise, having 10 handle a derivation

§2.1.

« ‘ shaped as in a), we can only discharge the assumption [x € Ty (y)], while the other
Let us now tackle the problem of giving the definition for the still missing individual term of B assumption of derivation a), [y € U], still survives. In other words, what the translation
FT: ((Ax:A)t(x))*. With reference to this problem, we assume that A* is (S0 € Do)pa*(®), amounts to in the latter case is the output of a parametric module. That is to say, it will be

the job of the application operator Ap to give properly a type to the "generic” function

with A*A e Uy, and that (t(x))* is <k,j>, or, more explicitly, j(x) € K(x) (we remind that
before applying it to an object. As a result of this situation we get the following general

t(x) means that x may, but it need not, occur in t). We have to make some preliminary

remarks. The derivation in ML of the judgement j(x) € K(x) necessarily depends on some definition:

type:-statemems concerning x (if x actually occurs in t). That is to say that the derivation must (O A) 1())*=

begin with one or two assumptions, of the form [x € Y] and [y € Ug] or just [x € B]. This k Ax)j if TS(A*)=
situation reflects the need to distinguish the case in which the A-term which is finally = X(TS(A*),t*):{ <:£?y(§i)(k}zi)))((7;));1)(;);> 1otherwi;{a}

obtained by discharging the assumption(s) is an uniform across types function (as, for
example, the identity function) or not (as, for example, the successor function, belonging to

. . . The reason for using, in the latter case, the variable y € Up is that we must wait until we
the type N - M). This fact means that in ML we can face the following two situations: & Y °

have to apply the function before giving it a type.
a) According to the translation rule for the A-operator, the previously given definition of the
[ye U T, *-translation of an applicative term (st) (cfr. § 2.i)g)) has to be completed in the following
Ly e Uo, x e To(y)] . i .
fi.c.<y.x>=w € Do way. Let s be (Ax:A) c(x), and suppose the *-translation of s is <b,(Ax)j(x)>. As we know,
.£.,<y, 0 b can be either 7(a,(x)k(x)), which means that A is an homogeneous class and that TS(A*) =

_ i®) < K(x) {a}, or m(y,(x)k(x)). The first task the intermediate operation Ap is entrusted with is
[i.e.,<k(®),j(®0)> € Do] ; properly typing s*. In the former case s* is a constant, and hence nothing essentially new

x)j(x) e (IIx e Y) K(x) must be added. If the latter alternative of the definition holds, it means that s is a uniform

) across types function. In this case, Ap must first discharge the assumption [y € Upl,
An)(Ax)jx)) € (ly & Vo(TIx & Y) K(x) , 4 producing (Ay)s*. The second step will amount to apply (Ay)s* to the name corresponding

to the first projection of t*. In this way we specialize the generic function nt(y,(x)k(x)),

b
) . being then allowed to performe the proper application operation.
B prop P!
[xe B] More in detail, we can say that if the latter alternative holds, then the derivation in ML of
jx) e K(x) (s)*, i.e., of
()j(x) e (ITx e A) K(x) ‘ A ' <y, ()k(x)),(Ax)j(x)> € Do,

depends on the assumption [y & Uo]. Consequently, the first step manages to discharge this
hypothesis through an application of the [I-introduction rule. What we obtain in this way is
the term:
)<y, (0k(x)),(M0)j(x)>) € Up — Do

which then has 1o be applied to p(t*), say a, which is an element of Up. In this way a type
has been assigned to b, and we obtain a term (Ax)j(x) € (ITx € A) K(x). At this point we
have to proceed in the usual way applying the last term obtained to q(t*). We can give the
derivation the following compact form:

[y € Uo]

(AX)j(x) € (I:Ix e Y)Kx)

[oy)=]<n(y,(x)k(x)),(Ax)j(x)> € Dy t* e Dy
(Ay)oy) & Up - Do =9 e U
Ap ((Ay)a(y),a) € Do
<n(a,(x)k(x)),(Ax)j(x)> € Dy
(Ax)j(x) e (ITx € A)K(x)
Ap ((Ax)j(x),d) € K(d)
<k,j> € Do

[d=]q(t*) € A |

As this construction makes it clear, localizing the generic function s* to a given type must be
made implicitly (that is to say, through the intermediate operation Ap). In fact, the object

(Ay)a(y) doesn't belong to Dy.
Taking into due account the shape of the translation rule given for a A-term, we can
finally restate the *-translation rule for the application as follows: ‘
g) if s*=<n(B,(x)b(x)),(Ax)m(x)>, and if t¥=<k,j>, then

<b(j),m(j)>, if B=k (a constant value) or =y

st)*= Ap (s*,t%)=
=0 P) { <l,c>, otherwise.

10

f—

S r—

§ 2.2. The notion of Type-Set.

Let A be a class of FT and let A* denote, as usual, . € D) p5*(w). From the previously
given informal definition it follows that if TS(A*) contains a name a € Uy, then at least an
object x € Ty (a) exists such that the type ¢ao*(<a,x>) is non void. We note that the
proposition *(w) depends on the variable ® by means, ultimately, of expressions of the
following kinds:
() IUop(t(w)),),
(i) I(Do,(0),0)

where the term t{®) depends on . Obviously, the & occurring in (i) need not be a constant:
typically it may occur within a subexpression like
(Zae Do) dpp*(ar)

or

(IToe € Dg) dp*(v).

We will indicate with (ii) the case in which o is a constant, and with (iii) the other case.
Moreover, each one of the propositions (i)-(iii) can appear in a negated (even mdré than
once) form, like, for example:

(i)' I(Dg,t(w),00) — L.

First, we observe that an easy lemma to prove is that if (i) holds, then we must have
t(®)=w and a=n. In fact, the restrictions we imposed on FT entail that only stratified
formulas (i.e., of the form "s € A") concur to the definition of an FT-class. In general, the
definition of the class A can have whatever logical complexity, but it will ultimately consist
of equation- and membership-expressions involving N, the only one constant class. But if
case (i) holds, then the translation of A doesn't have any logical complexity, and contains
only equations between the first projection of the pair t(w) and the name of a type. Finally,
from the above and from the way we have defined the translation of the membership
relation, we have that the type named must be N (i.e., it must be a=n) and that the pair ()
must be the translation of an FT-numeral (i.e., t(m)=w).

Given A*=(2w € Do) da*(w), for each I-type occurring in ¢o*(®w) which actually
depends on ®, we build a subset of Up, whose definition is given by cases on the structure
of the term t((). Let's call ISj(A), the set corresponding to the jth (starting from the leftmost
one) I-type taken into account. We have: ‘

D) =w
in case (i), we have a € 1Sj(A),
in case (ii), we have p(a) € IS{(A),
in case (iii), we have TS(B*) c ISi(A).

11

2.1) t{w) = P(w,B) (cfr. Def. 2.i) ¢))

in case (ii), if p(a@) is, say, G(B,(x)c(x)), then b e ISj(A),

in case (iii), we have {b € Upld=6(b,(x)c(x)), d € TS(B*)} < ISi(A).
2.2) {w) = PB,w) (...)

in case (i), if p(0y) is o(c,(x)b(x)), then b € IS;(A),

in case (iii), we have {b e Upld=0o(c,(x)b(x)), d € TS(B*)} < ISi(A).
We proceed analogously in the other cases.

TS(A*) can be obtained from the ISi(A)'s in many ways — possibly producing a type-set

larger than necessary. For simplicity's sake, we choose to define TS(A¥) as the union of all
the ISi(A)'s, with only a further elaboration for the ISj(A)'s corresponding to I-types which

are negated or occur within negated types. We have to take account of two possibilities,
depending on either the I-rules considered are referred to Dy or to Up. In the second case,
the type-set is given by the usual set-theoretical operation \. In the first one, we introduce a
new operation, say J, which is active only in presence of a complement symbol, as follows:
AlB=A
C\(A [B)=(C\A) UB.
An example will clear up what the problem consists in. Let's consider:
h A= {xlx=0} and B= {xlx € N}
Obviously, TS(A*)=TS(B*)={n} holds. If we now consider complements, we have:
-A= {xIx#0} and -B= [xix ¢ N}
The type-set of (-B)* — which is obtained by making reference to Up— is Up\{n}. The
type-set of (-A)* — defined with respect to Dg— is UoJ {n} = Ug. Twice iterated negations
output {n} in the first case, and UNUp | [n}) = (Up\Ug) U {n} = {n} in the second one.

§ 3.Type variables.

The abstractions so far considered fall within the theory EOC, of Feferman [3] in which
every application of the comprehension axiom must concern stratified formulas which
contain no bound type variables. We can drop this restriction by allowing quantification on a
type variable, provided it doesn't depend, in its turn, on a type variable (as, for
example, (AX:(ITY.T(Y)).C(X)) with T variable). As a result of this stipulation, FT comes
now to denote a proper subtheory of IOC, and it would be interesting to single out precisely
the portion of I0C, that we actually translate into ML. We will not dwell on this subject,

limiting ourselves to suggest that special attention could be focused, for instance, on the

relations between FT and the semi-predicative core of IOC, that Feferman discusses in [3]
(ctr. alse Longo [5]).

Owing to the presence of type-variables, and because constant classes of FT are mapped
on ML-types whose names belong to Uy, we have to make recourse to the domain Dy (see §

12

1). All the translation rules given in §2 still hold — mutatis mutandis — also for Dy. For
example, we will have:

a) 0*= <t(n),0>.

b) x*= <y, x> (e D).

¢) We make class variables X, Y, Z,..., range over elements of Uj.

Rule ¢) holds a separate position because the translation of a class variable does not abide by

the usual way; that is to say, it is not a pair. The reason is that otherwise we would obtain an
objéct, say <uy,y> which does not belong to D;. Using Uy as quantification domain, it will
be possible to translate universal and existential quantifications on types from FT to ML; and
thanks to the restriction imposed, abstractions can be translated making recourse only to Ug-
variables. Equality betweeen classes will be expressed in ML through the I-rules of ML
applied to the names (belonging to Uy) of the translated classes.

Concerning A-abstraction and application, it is easily seen that the definitions of
homogeneous and non-homogeneous class, and‘(‘)f Type-Set of a class, can be immediately
transferred to level 1. The new terms, which are to be dealt with now, are A-abstraction-and
--application. We remind that the former allows abstraction on type variable, by which

. polymorphic classes can be produced. The latter, in its turn, has the task to localize at a

given type a polymorphic function. In IOCj the two terms are connected by the following
axiom:
((AXLXD) » Y =t[Y].
For these terms we give the following translation rules. Let t* be <r,m>, then
(AX)UX))*= <m(uo,(Y)r(y)).(Ay)m(y)>;

*

and

Tk - Ap (s*,<up,a>), if TS(T*)={1(a)} ‘
(s°T)*= Ap (s*,<up,y>), for y variable, otherwise.

The first rule is self-evident: if 1(y) is an FT-term depending on a type variable, and if the
pair which translates t(y) corresponds to the ML-object m(y) € R(y), then the translation of
(AX)t(X) outputs the function (Ay)m(y) belonging to the type (Ily € Ug)R(y). We
emphasize that, thanks to the Type-Set notion, the translation of a A-term involves []-rules

‘referred only to Up, with the consequence that the resulting objects are elements of Dy. This

would have been impossible if we had had to take into account the universe Uy.

In the second rule, the name a, or the variable y, is coupled with its type-name, u,
because inputs for the intermediate operation Ap must be pairs belonging to Dy (when the
variable y occurs, we obtain a parametric module). What is worth emphasizing is that the
second rule is well-defined iff the Type-Set TS(T*) contains names belonging to Uj via the
coding-function 7. This condition, however, is clearly satisfied, because type variables are

13

bound to range on constant types which — as we saw in §.2 — are translatable as subtypes
of Dg: consequently, names belonging to their Type-Set already occur in Uy.

‘We can now define:

a) (VX ¢)*= (IIx € Uy ¢*

b) @X ¢)*= (Zx e Uy ¢*
where i is 0 if the formula to be translated occurs within the separation condition of an
abstraction, and i is 1 otherwise,

Finally, we can add a last remark to justify the choice of Uy as appropriate range for type
variables in the first case, in spite of the fact that, as we have pointed out, the name of the *-
translation of a class usually belongs to Uy. Concerning this, it is enough to remind that type
variables are restricted to range over constant types, which are already named in Uy, as can
be easily seen. For instance, the class of even natural numbers, which, according to the
general rule, is translated into a type having its name in U;, can be expressed in Ug by the
type (Zm e N)((Zn € N)I(N,m,2n)).

§.3. Appendix

The language of FT has a bunch of individual variables a,b,c, ..., a bunch of type variables '

AB,C, ..., an individual constant 0 and a type constant N. The class of individual terms,
type terms and formulas are given by means of a simulianeous inductive definition:

individual terms::= 0 1 a,b,c, ...l st | soT | (Ax:S)T | AX.T | P(s.t) TPyt (i=1,2) 1 D(s,t3,1)
type terms::= M1 A,B,C,...| {xl6(x)}, for ¢ stratified

atomic formulas:=sl ls=tlse T

formulas::= atomic formulas I=010&QlIovelo—@IVxoITxdIVX 613X ¢.

Leaving aside axioms and rules relating to the Logic of Partial Terms, we record the
axioms of IOC,, which are arranged in the following I-V classes: :

L. Abstraction-Reduction

@ ye X - ((xXxDy =tly]

(i) (AXA[XD = ¥ =t[Y]
where (s = t) is an abbreviation for sdvid)— s=t]
11, Pairing, Projections

() P(x,y)=0

(i) P1(x,y)=x & Pa(x,y)=y
I, Comprehension Axiom

Vy (y € {zI9[z]} < ¢[y]), for each ¢ stratified
IV. Natural Numbers

H0e N&Vx(xe N—suce(x) e N) _

(iD0e X&Vx(xe X —succ(x) e X) > Nc X

14

V. Definition by Cases on N

(@) x=0 = D(%,y1,y2)=y1

() x e N & x#0 — DX, y1.y2)=y2

The axioms of EOC, are the same except that in the Cémprehension Axiom the formula ¢
is requifed to be elementary stratified, which means that the formula contains no bound type

variables.
The features of the theory ML.which are mainly relevant for this paper can be restricted to

those involving the following two forms of judgements:
"Atp" (Alis atype or A is a proposition)
and
"ae A" (ais an element of the type A or a is a proof of the proposition A).
In fact, the body of ML consists in a set of operations which can be performed on types
according to the following rules (which, at the same time, give the meaning of the two forms
of judgements:

(i) the Cartesian Product 1 of a family of types

IT-formation [T-introduction
[xe A] [xe Al
Atp B(x) tp V b(x) € B(x)
(IIx e A)B(x)1ip Ax)b(x)e (TTxe A)B(x)
[1-elimination IT-equality
[xe Al
ce (erA)B(x} ac A ae A b(x)e B(x)
Ap(c,a)e B(a) Ap((M)b(x),a)=b(a)e B(a)
(ii) The Disjoim‘ Union 2. of a family of types
>.-formation >-introduction
[xe Al
A tp B(x) tp ac A beB(a)
(Tx € A)B(x) tp . <a,b>e (Txe A)B(x)
15

* Y-climination T-equality
‘[xe Aye B] [xe Aye B]
ce (Exe A)B(x) d(x,y)e C(<x,y>) ac A beB(a) d(x,y)e ci<x,y>)
E(c,(x,y)d(x,y)e C(c)) E(<a,b>,(x,y)d(x,y))=d(a,b)e C(<xa,b>)
By putting

p(o)=E(c,(x,y)x) and q(©)=E(c,(x,y)y)

2.-elimination gives the usual left and right projections.

Besides other important interpretations, the type (¥xe A)B(x) has the meaning of the set
of all a in A such that B(a) holds. That is to say that Y-rules play the role of the usual
Comprehension Axiom. '

(iii) The Disjoint Union + of two types

+-formation +-introduction
A 12' B tp acA be B
A+Bip i(a)e A+B j(b)e A+B

%—elimination
[xe A] [yeB]

ze A+B d(x)e C(i(x)) e(y)e C(i(y))
(D x,yXz,d(x),e(y)e C(z)

+-equality
[xeA] "lyeB] [xe A] [yeB]

aeA dx)eC(i(x)) e(y)eC((y)) beB d(x)eCy(x) e(y)eC((y)
(D x,y)i(a),d(x).e(y)=d(@)e Ci(@) (D xy)(|(b),d(x),e(y))=e(b)e CGo)

(iv) Identity

I-formation , I-introduction

Aitp ae A beA a=be A
I(A,a,b) tp rel(A,a,b)

16

I-elimination I-equality

cel(A,a,b) cel(A,ab)
a=be A c=reI(A,a,b)

where the judgement "a=be A" means that a and b are equal objects (proofs) of the type
(proposition) A; and r is a canonical object (proof) of the type (proposition) I(A,a;b).

(v) Natural Numbers ¢
N-formation | N-introduction
Nip OeM s_u—c?c-jg;;
N-elimination
[xe N,ye C(x)]

ce N deC(0) e(x,y)e C(succ(x))
Rec(c,d,(x,y)e(x,y))e C(c)

N-equality
[xe N, ye C(x)]
de C(0) e(x,y)e C(succ(x))
Rec(0,d,(x,y)e(x,y))=de C(0)
and

[xe N, ye C(x)]

acN deC(0) e(x,y)e C(suce(x))
Rec(succ(a),d,(x,y)e(x,y))=e(a,Rec(a,d,(x,y)e(x,y)))e C(succ(a))

(vi) Universes

Following the Tarski-formulation, we introduce an Universe Uy whose elements are indices
or names of types. Canonical elements of Ug are constructed by means of new operations
(denoted by lower case greek letters) which reflect on names the operations I'IPZ on
types. We limit ourselves to few examples.

Up-formation

. ac Uy
Uotp To (a) tp

17

Up-introduction

xeTy(a)] (xeTy(a)]
3€U0 b(x)e U() ae U() b(x)e Uo
n(a,(x)b(x))e Up To (m(a,(x)b(x)))=(I1xe To (a))Tp (b(x))
[xeTp(@)] [xeTp(a)]
ae Uy b{x)e Uy ae Ug b(x)e Uy
o(a,(x)b(x))e Ug To (o(a,(0b(x)))=(Zxe To (2))Tp (b(x))

The process can be iterated, introducing a new Universe Uy (and in fact any U, for n naiural
numbers; but for our purposes the first two Universes are enough) with similar formation
and introduction rules plus the following new introduction rules:

upe Uy T (up)=Up
ae Uy ae Up
t(2)e Uy , Ty (t(a)=To (a)’
REFERENCES

[11 M. Beeson, Foundations of Constructive Mathematics, Springer, Berlin, 1985.

[21 —, Proving Programs and Programming Proofs, in R. Marcus et al. (eds.) VII Int.
Cong. for Logic Methodology and Philosophy of Science, North-Holland,
Amsterdam, 1988, 51-82.

(3] S. Feferman, Polymorphic typed lambda-calculus in a lype-free axiomatic
Jramework, in W. Sieg (ed.), Logic and computation, Am. Math. Soc., 1990, 101-
136. '

(4] G. Longo, From type-structures to Type Theories. Notes for a graduate course at
Carnegie Mellow University, 1988.

[51 —, Some Aspects of Impredicativity. Notes on Weyl's Philosophy of Mathematics
and Today's Type Theory, in H.D. Ebbinghaus et al. (eds.), Logic Colloquium '87,
North-Holland, Amsterdam, 1989, 241-274,

[6] P. Martin-Lof, Constructive Mathematics and Computer Programming, in
L.J.Cohen et al. (eds.), VI Int. Cong. for Logic Methodology and Philosophy of
Science, North-Holland, Amsterdam, 1982, 153-175. . .

(7Y —, Inwitionistic Theory of Types, Bibliopolis, Napoli, 1984.

[8] A.S. Troelstra, D. van Dalen, Constructivism in Mathematics, North Holland,
Amsterdam, 1988.

18

